Hostname: page-component-54dcc4c588-xh45t Total loading time: 0 Render date: 2025-10-12T19:16:18.034Z Has data issue: false hasContentIssue false

Shades of red: several lines of evidence reveal a pest of sugarcane as new species of Mahanarva (Hemiptera: Auchenorrhyncha: Cercopidae)

Published online by Cambridge University Press:  06 October 2025

Andressa Paladini*
Affiliation:
Laboratório de Sistemática e Biogeografia de Hemiptera, Departamento de Zoologia, Centro Politécnico, Universidade Federal do Paraná, Curitiba, PR, Brazil
Gervásio Silva Carvalho
Affiliation:
Pontifícia Universidade Católica do Rio Grande do Sul. Museu de Ciências e Tecnologia da PUCRS, Porto Alegre, RS, Brazil
Diogo Cavalcanti Cabral-de-Mello
Affiliation:
Departamento de Biologia Geral e Aplicada, Instituto de Biociências de Rio Claro, UNESP-Universidade Estadual Paulista, Rio Claro, SP, Brazil
Tatiane Casagrande Mariguela
Affiliation:
Departamento de Biologia Geral e Aplicada, Instituto de Biociências de Rio Claro, UNESP-Universidade Estadual Paulista, Rio Claro, SP, Brazil
Alexandre Cruz Domahovski
Affiliation:
Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Kim Ribeiro Barão
Affiliation:
Laboratório de Sistemática e Diversidade de Artrópodes, Unidade Educacional Penedo, Campus Arapiraca, Universidade Federal de Alagoas, Penedo, AL, Brazil
*
Corresponding author: Andressa Paladini; Email: andri.paladini@gmail.com

Abstract

Many species of spittlebugs (Auchenorrhyncha: Cercopidae) use sugarcane and other grasses as host plants, and when damage is extensive they are considered pests leading tom economic losses. Mahanarva fimbriolata and Mahanarva spectabilis are the most common in sugarcane and can be distinguished mainly by genital morphology. Recently, another morphotype of Mahanarva occurring in sugarcane fields that did not match the morphologies of either of these Mahanarva species mentioned above has been widely collected in Brazil, raising doubts on the identification of Mahanarva species using sugarcane. Accurate specimen identification is critical for sugarcane pest management, because misidentifications can lead to economic losses and inefficient control strategies. Thus, we combined morphology, geometric morphometrics, and molecular techniques to investigate the hypothesis that this morphotype could be considered a new species of Mahanarva. Morphological analyses included examination of male genitalia and tegminal colouration patterns. We also quantified hindwing shapes using geometric morphometrics; and performed a phylogenetic analysis using the mitochondrial COI gene. Morphological evidence distinguished the new morphotype through unique traits in male genitalia. Geometric morphometrics reliably separated species, with over 89% classification accuracy. Molecular analyses confirmed the morphotype as a distinct lineage closely related to M. fimbriolata and M. spectabilis. Thus, we describe M. diakantha sp. n., demonstrating the effectiveness of an integrative approach in resolving taxonomic challenges. Additionally, we provide formal diagnoses for M. fimbriolata and M. spectabilis. This work underscores the importance of precise taxonomy in agroecosystems, supporting sustainable pest management practices.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

Equally contributing authors

References

Armendáriz-Toledano, F, López-Posadas, MA, Utrera-Vélez, Y, Nápoles, JR and Castro-Valderrama, U (2023) More than 80 years without new taxa: Analysis of morphological variation among members of Mexican Aeneolamia Fennah (Hemiptera, Cercopidae) support a new species in the genus. ZooKeys 1139, . doi:10.3897/zookeys.1139.85270CrossRefGoogle ScholarPubMed
Barão, KR, Goncalves, GL, Mielke, OH, Kronforst, MR and Moreira, GR (2014) Species boundaries in Philaethria butterflies: An integrative taxonomic analysis based on genitalia ultrastructure, wing geometric morphometrics, DNA sequences, and amplified fragment length polymorphisms. Zoological Journal of the Linnean Society 170, 690709. doi:10.1111/zoj.12118CrossRefGoogle Scholar
Bartlett, CR, Deitz, LL, Dmitriev, DA, Sanborn, AF, Soulier Perkins, A, and Wallace, MS (2018) The diversity of the true hoppers (Hemiptera: Auchenorrhyncha). In Footit, RG, and Adler, PH (Eds), Insect Biodiversity: Science and Society II. Chichester, UK: John Wiley & Sons Ltd, 501590.10.1002/9781118945582.ch19CrossRefGoogle Scholar
Bini, AP, Serra, MCD, Pastore, IF, Brondi, CV, Camargo, LEA, Monteiro-Vitorello, CB, van Sluys, M-A, Rossi, GD and Creste, S (2023) Transmission of Xanthomonas albilineans by the spittlebug, Mahanarva fimbriolata (Hemiptera: Cercopidae), in Brazil: First report of an insect vector for the causal agent of sugarcane leaf scald. Journal of Insect Science 23, . doi:10.1093/jisesa/iead116CrossRefGoogle ScholarPubMed
Cardona, C, Fory, P, Sotelo, G, Pabon, A, Diaz, G and Miles, JW (2004) Antibiosis and tolerance to five species of spittlebug (Homoptera: Cercopidae) in Brachiaria spp.: Implications for breeding for resistance. Journal of Economic Entomology 97, 635645. doi:10.1093/jee/97.2.635CrossRefGoogle ScholarPubMed
Carvalho, GS and Webb, MD (2005) Cercopid Spittlebugs of the New World (Hemiptera, Auchenorrhyncha, Cercopidae). Pensoft, Sofia, .Google Scholar
Castro-Valderrama, U, Peck, D C, Carvalho, G Silva, Valdez–Carrasco, J Manuel and Romero–Nápoles, J (2018) A new species of the genus Mahanarva Distant, 1909 (Hemiptera: Cercopoidea: Cercopidae), with a key to the species from Central America and Mexico. Journal of Insect Biodiversity 6(2), 1. doi:10.12976/jib/2018.06.1CrossRefGoogle Scholar
Castro-Valderrama, U, Peck, DC, Carvalho, GS, Valdez-Carrasco, JM and Romero-Nápoles, J (2020) Description of two new species of Prosapia (Hemiptera: Cercopidae) from the Nearctic and Neotropics, with a key to species of the P. inferens species group. The Canadian Entomologist 152, 288297. doi:10.4039/tce.2020.20.20CrossRefGoogle Scholar
Cracraft, J (1983) Species concepts and speciation analysis. In Johnston, RF (ed.), Current Ornithology. New York: Springer, 159187.10.1007/978-1-4615-6781-3_6CrossRefGoogle Scholar
de Beeck, LO, Verheyen, J and Stoks, R (2018) Strong differences between two congeneric species in sensitivity to pesticides in a warming world. Science of the Total Environment 618, 6069. doi:10.1016/j.scitotenv.2017.10.311CrossRefGoogle Scholar
de Queiroz, K and Donoghue, MJ (1988) Phylogenetic systematics and the species problem. Cladistics 4, 317338. doi:10.1111/j.1096-0031.1988.tb00518.xCrossRefGoogle ScholarPubMed
Dias, ML, Auad, AM, Magno, MC, Resende, TT, Fonseca, MG and Silva, SEB (2019) Insecticidal activity of compounds of plant origin on Mahanarva spectabilis (Hemiptera: Cercopidae). Insects 10, 111. doi:10.3390/insects10100360CrossRefGoogle ScholarPubMed
Dinardo-Miranda, LL, da Costa, VP, Fracasso, JV, Perecin, D, de Oliveira, MC, Izeppi, TS and Lopes, DOP (2014) Resistance of sugarcane cultivars to Mahanarva fimbriolata (Stål)(Hemiptera: Cercopidae). Neotropical Entomology 43, 9095. doi:10.1007/s13744-013-0182-9CrossRefGoogle ScholarPubMed
Dinardo-Miranda, LL, Ferreira, JM and Carvalho, PA (2001) Influência da época de colheita e do genótipo de cana-de-açúcar sobre a infestação de Mahanarva fimbriolata (Stal)(Hemiptera: Cercopidae). Neotropical Entomology 30, 145149. doi:10.1590/S1519-566X2001000100021CrossRefGoogle Scholar
Dinardo-Miranda, LL, Fracasso, JV, Perecin, D, Oliveira, MCD, Lopes, DOP, Izeppi, TS and Anjos, IAD (2016) Resistance mechanisms of sugarcane cultivars to spittlebug Mahanarva fimbriolata. Scientia Agricola 73, 115124. doi:10.1590/0103-9016-2014-0446CrossRefGoogle Scholar
Dinardo-Miranda, LL, Fracasso, JV, Silva, HDSD and Miranda, ID (2021) Tolerance of sugarcane cultivars to Mahanarva fimbriolata. Ciência Rural 52, . doi:10.1590/0103-8478cr20200632Google Scholar
Dinardo-Miranda, LL and Gil, MA (2007) Estimativa do nível de dano econômico de Mahanarva fimbriolata (Stål)(Hemiptera: Cercopidae) em cana-de-açúcar. Bragantia 66, 8188. doi:10.1590/S0006-87052007000100010CrossRefGoogle Scholar
Distant, WL (1909). Rhynchotal Notes (xlvi). Annals and Magazine of Natural History 8, 187213.10.1080/00222930908692561CrossRefGoogle Scholar
Donoghue, MJ (1985) A critique of the biological species concept and recommendations for a phylogenetic alternative. Bryologist 88, 172181. doi:10.2307/3243026CrossRefGoogle Scholar
Douglas, H, Dang, PT, Gill, BD, Huber, J, Mason, PG, Parker, DJ and Sinclair, BJ (2009) The importance of taxonomy in responses to invasive alien species. Biodiversity 10, 9299. doi:10.1080/14888386.2009.9712850CrossRefGoogle Scholar
Dryden, IL and Mardia, KV (1998) Statistical Shape Analysis. Vol. 4 Chichester: Wiley.Google Scholar
Eberhard, WG and Lehmann, GU (2019) Demonstrating sexual selection by cryptic female choice on male genitalia: What is enough? Evolution 73, 24152435. doi:10.1111/evo.13863CrossRefGoogle Scholar
Fennah, RG (1968) Revisionary notes on the new world genera of cercopid froghoppers (Homoptera: Cercopoidea). Bulletin of Entomological Research 58, 165190. doi:10.1017/S0007485300055954CrossRefGoogle Scholar
Fennah, RG (1979) Revisionary notes on the new world genera of cercopid froghoppers (Homoptera: Cercopoidea) II. Bulletin of Entomological Research 69, 267273. doi:10.1017/S0007485300017739CrossRefGoogle Scholar
Ferguson, JS (2004) Development and stability of insecticide resistance in the leafminer Liriomyza trifolii (Diptera: Agromyzidae) to cyromazine, abamectin, and spinosad. Journal of Economic Entomology 97, 112119. doi:10.1093/jee/97.1.112CrossRefGoogle ScholarPubMed
Fernández-Aldea, AF, Barão, KR, Grazia, J and Ferrari, A (2014) An integrative approach to the taxonomy of Oenopiella bergroth (Hemiptera: Heteroptera: Pentatomidae: Pentatominae: Carpocorini) with the description of two new species from argentina and southern Brazil. Annals of the Entomological Society of America 107, 364381. doi:10.1603/AN13134CrossRefGoogle Scholar
Gao, Y, Reitz, SR, Wei, Q, Yu, W and Lei, Z (2012) Insecticide-mediated apparent displacement between two invasive species of leafminer fly. PLoS One 7, . doi:10.1371/journal.pone.0036622Google ScholarPubMed
Grisoto, E, Vendramim, JD, Lourenção, AL, Usberti, JA and Olinda, RAD (2018) Evaluation of forage grass resistance to Mahanarva fimbriolata (Stål). Bragantia 77, 107115. doi:10.1590/1678-4499.2016280CrossRefGoogle Scholar
Hortal, J, de Bello, F, Diniz-Filho, JAF, Lewinsohn, TM, Lobo, JM and Ladle, RJ (2015) Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics 46, 523549. doi:10.1146/annurev-ecolsys-112414-054400CrossRefGoogle Scholar
Joyce, AL, Higbee, BS, Haviland, DR and Brailovsky, H (2017) Genetic variability of two leaffooted bugs, Leptoglossus clypealis and Leptoglossus zonatus (Hemiptera: Coreidae) in the Central Valley of California. Journal of Economic Entomology 110, 25762589. doi:10.1093/jee/tox222CrossRefGoogle ScholarPubMed
Kaloudis, S, Anastopoulos, D, Yialouris, CP, Lorentzos, NA and Sideridis, AB (2005) Insect identification expert system for forest protection. Expert Systems with Applications 28, 445452. doi:10.1016/j.eswa.2004.12.005CrossRefGoogle Scholar
Kassab, SO, Loureiro, ES, Rossoni, C, Pereira, F, Mota, TA, Barbosa, RH and Costa, DP (2015) Control of Mahanarva fimbriolata (Stal)(Hemiptera: Cercopidae) with entomopathogenic fungus and insecticides using two sampling methods on sugarcane fields. African Journal of Agricultural Research. 10, 803810. doi:10.5897/AJAR2013.8241Google Scholar
Klingenberg, CP (2011) MorphoJ: An integrated software package for geometric morphometrics. Molecular Ecology Resources 11, 353357. doi:10.1111/j.1755-0998.2010.02924.xCrossRefGoogle ScholarPubMed
Klingenberg, CP (2016) Size, shape, and form: Concepts of allometry in geometric morphometrics. Development Genes and Evolution 226, 113137. doi:10.1007/s00427-016-0539-2CrossRefGoogle ScholarPubMed
Klingenberg, CP, Barluenga, M and Meyer, A (2002) Shape analysis of symmetric structures: Quantifying variation among individuals and asymmetry. Evolution 56, 19091920. doi:10.1111/j.0014-3820.2002.tb00117.xCrossRefGoogle ScholarPubMed
Klingenberg, CP and McIntyre, GS (1998) Geometric morphometrics of developmental instability: Analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 52, 13631375. doi:10.2307/2411306CrossRefGoogle ScholarPubMed
Kosztarab, M, O’Brien, LB, Stoetzel, MB, Deitz, LL and Freytag, PH (1990) Problems and needs in the study of Homoptera in North America. Problems and Needs in the Study of Homoptera in North America 90(1), 119145.Google Scholar
Lallemand, V (1912) Genera Insectorum Diriges Par P. pls. Brussels, Belgium: L. Desmet & V. Verteneuil., Fascicule 143, Homoptera Fam. Cercopidae. .Google Scholar
Le Peletier de Saint-Fargeau, ALM & Serville, JGA (1825) Tettigometre, Tettigometra and Tettigone, Tettigonia. Olivier’s Encyclopédie méthodique. Histoire naturelle. Entomologie, ou histoire naturelle des Crustacés, des Arachnides et des Insectes 10, 600613.Google Scholar
Lorenz, C, Almeida, F, Almeida-Lopes, F, Louise, C, Pereira, SN, Petersen, V, Vidal, PO, Vírginio, F and Suesdek, L (2017) Geometric morphometrics in mosquitoes: what has been measured? Infection Genetics & Evolution 54, 205215. doi:10.1016/j.meegid.2017.06.029CrossRefGoogle ScholarPubMed
Loureiro, ES, Batista Filho, A, Almeida, JEM, Mendes, JM and Pessoa, LGA (2012) Eficiência de isolados de Metarhizium anisopliae (Metsch.) Sorok. no controle da cigarrinha-da-raiz da cana-de-açúcar, Mahanarva fimbriolata (Stal, 1854)(Hemiptera: Cercopidae), em condições de campo. Arquivos Do Instituto Biológico 79, 4753.10.1590/S1808-16572012000100007CrossRefGoogle Scholar
Lyal, C, Kirk, P, Smith, D and Smith, R (2008) The value of taxonomy to biodiversity and agriculture. Biodiversity 9, 813. doi:10.1080/14888386.2008.9712873CrossRefGoogle Scholar
Madaleno, LL, Ravaneli, GC, Presotti, LE, Mutton, MA, Fernandes, OA and Mutton, MJR (2008) Influence of Mahanarva fimbriolata (Stål) (Hemiptera: Cercopidae) injury on the quality of cane juice. Neotropical Entomology 37, 6873. doi:10.1590/S1519-566X2008000100010CrossRefGoogle ScholarPubMed
Melo, CG, Tomaz, AC, Soares, BO, Kuki, KN, Peternelli, LA and Barbosa, MHP (2017) Anatomical, morphological, and physiological responses of two sugarcane genotypes of contrasting susceptibility to Mahanarva fimbriolata (Hemiptera: Cercopidae). Bulletin of Entomological Research 108, 556564. doi:10.1017/S0007485317001110CrossRefGoogle ScholarPubMed
Metcalf, ZP (1961) General Catalogue of the Homoptera. Fasc. VII Cercopoidea, Part 2, Cercopidae. Raleigh, NC. North Carolina State College, . doi:10.5962/bhl.title.6822.Google Scholar
Mutanen, M, Kivela, SM, Vos, RA, Doorenweerd, C, Ratnasingham, S, Hausmann, A, Huemer, P, Dincă, V, van Nieukerken, EJ, Lopez-Vaamonde, C, Vila, R, Aarvik, L, Decaëns, T, Efetov, KA, Hebert, PDN, Johnsen, A, Karsholt, O, Pentinsaari, M, Rougerie, R, Segerer, A, Tarmann, G, Zahiri, R and Godfray, HCJ (2016) Species-level para- and polyphyly in DNA barcode gene trees: Strong operational bias in European Lepidoptera. Systematic Biology 65, 10241040. doi:10.1093/sysbio/syw044CrossRefGoogle ScholarPubMed
Namyatova, AA, Dzhelali, PA and Konstantinov, FV (2024) Delimitation of the widely distributed Palearctic Stenodema species (Hemiptera, Heteroptera, Miridae): Insights from molecular and morphological data. ZooKeys 1209, . doi:10.3897/zookeys.1209.124766CrossRefGoogle ScholarPubMed
Nast, J (1979) The genus Maxantonia Schm. (Homoptera, Cercopidae). Annales Zoologici 35, 124.Google Scholar
Nixon, KC and Wheeler, QD (1990) An amplification of the phylogenetic species concept. Cladistics 6, 211223. doi:10.1111/j.1096-0031.1990.tb00541.xCrossRefGoogle Scholar
Nylander, JAA (2004) Modeltest V2. Program Distributed by the Author. Uppsala: Evolutionary Biology Centre, Uppsala University.Google Scholar
Oman, PW (1949) The Nearctic leafhoppers (Homoptera: Cicadellidae). A generic classification and check list. Memoirs of the Entomological Society of Washington 3, 1253.Google Scholar
Pabón-Valverde, AH, Soares, BO, Tomaz, AC, Pimentel, GV, Peternelli, LA and Barbosa, MHP (2018) A new methodology for large-scale screening sugarcane resistance to Mahanarva fimbriolata (Hemiptera: Cercopidae). Bragantia 77, 599608. doi:10.1590/1678-4499.2017403CrossRefGoogle Scholar
Paladini, A, Takiya, DM, Cavichioli, RR and Carvalho, GS (2015) Phylogeny and biogeography of Neotropical spittlebugs (Hemiptera: Cercopidae: Ischnorhininae): Revised tribal classification based on morphological data. Systematic Entomology 40, 82108. doi:10.1111/syen.12091CrossRefGoogle Scholar
Pante, E, Schoelinck, C and Puillandre, N (2015) From integrative taxonomy to species description: One step beyond. Systematic Biology 64, 152160. doi:10.1093/sysbio/syu083CrossRefGoogle ScholarPubMed
Parrella, MP and Keil, CB (1984) Insect pest management: the lesson of Liriomyza. Bulletin of the Entomological Society of America 30, 2225. doi:10.1093/besa/30.2.22CrossRefGoogle Scholar
Paterson, HEH (1991) The recognition of cryptic species among economically important insects. In Zaluck, IMP (ed.), Heliothis: Research Methods and Prospects. New York: Springer-Verlag, 110.Google Scholar
Peck, DC, Morales, A and Castro, U (2004) Alternative methods for rearing grass-feeding spittlebugs (Hemiptera: Cercopidae). Neotropical Entomology 33, 307314. doi:10.1590/S1519-566X2004000300005CrossRefGoogle Scholar
Rambaut, A, Drummond, AJ, Xie, D, Baele, G and Suchard, MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67, 901904. doi:10.1093/sysbio/syy032CrossRefGoogle ScholarPubMed
Raposo, MA, Kirwan, GM, Lourenço, ACC, Sobral, G, Bockmann, FA and Stopiglia, R (2021) On the notions of taxonomic ‘impediment’ ,‘gap’, ‘inflation’ and ‘anarchy’, and their effects on the field of conservation. Systematics and Biodiversity 19, 296311. doi:10.1080/14772000.2020.1829157CrossRefGoogle Scholar
Resende, TT, Auad, AM, Fonseca, MDG, Dos Santos, TH and Vieira, TM (2012) Impact of the spittlebug Mahanarva spectabilis on signal grass. The Scientific World Journal 2012, . doi:10.1100/2012/926715CrossRefGoogle ScholarPubMed
Rohlf, FJ (2017). Stony Brook University. http://life.bio.sunysb.edu. Acessed November 12 , 2023.Google Scholar
Rohlf, FJ (2018) tps Utility program, version 1.76: http://life.bio.sunysb.edu. Acessed November 12, 2023.Google Scholar
Ronquist, F and Huelsenbeck, JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574. doi:10.1093/bioinformatics/btg180CrossRefGoogle ScholarPubMed
Schöbel, C and Carvalho, GS (2020) Niche modeling of economically important Mahanarva (Hemiptera, Cercopidae) species in South and Central America: Are Brazilian spittlebug sugarcane pests potential invaders of South and Central America? Journal of Economic Entomology 113(1), 115125. doi:10.1093/jee/toz252Google ScholarPubMed
Schöbel, C and Carvalho, GS (2021) The ‘state of art’ of Mahanarva (Hemiptera: Cercopidae) research. An economically important New World spittlebug genus. Applied Entomology and Zoology 56, 299309. doi:10.1007/s13355-021-00744-8CrossRefGoogle Scholar
Schutze, MK, Virgilio, M, Norrbom, A and Clarke, AR (2017) Tephritid integrative taxonomy: where we are now, with a focus on the resolution of three tropical fruit fly species complexes. Annual Review of Entomology 62, 147164. doi:10.1146/annurev-ento-031616-035518CrossRefGoogle ScholarPubMed
Shorthouse, DP (2010) SimpleMappr, an online tool to produce publication-quality point maps. Available at: https://www.simplemappr.net (accessed 07 November 2024)Google Scholar
Simon, C, Frati, F, Beckenbach, A, Crespi, B, Liu, H and Flook, P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of Entomological Society of America 87, 651701. doi:10.1093/aesa/87.6.651CrossRefGoogle Scholar
Stål, C (1854) Nya hemiptera. Öfversigt af Konglinga Svenska Vetenskaps Akademiens Förhandlingar. 11, 231255.Google Scholar
Stål, C (1855) Nya Hemiptera. Öfversigt af Svenska Vetenskaps Akademiens Förhandlingar, 12, 181192.Google Scholar
Tamura, K, Stecher, G and Kumar, S (2021) MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38, 30223027. doi:10.1093/molbev/msab120CrossRefGoogle ScholarPubMed
Thompson, V (1994) Spittlebug indicators of nitrogen-fixing plants. Ecological Entomology 19, 391398. doi:10.1111/j.1365-2311.1994.tb00257.xCrossRefGoogle Scholar
Tuda, M, Rönn, J, Buranapanichpan, S, Wasano, N and Arnqvist, G (2006) Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): Traits associated with stored product pest status. Molecular Ecology 15, 35413551. doi:10.1111/j.1365-294X.2006.03030.xCrossRefGoogle ScholarPubMed
Walker, F (1858) Insecta Saundersiana: or characters of undescribed insects in the collection of William Wilson Saunders, Esq. London, 1117.10.5962/bhl.title.5112CrossRefGoogle Scholar
Wang, HL, Lei, T, Wang, XW, Cameron, S, Navas Castillo, J, Liu, YQ, Maruthi, MN, Omongo, CA, Delatte, H, Lee, K-Y, Krause-Sakate, R, Ng, J, Seal, S, Fiallo-Olivé, E, Bushley, K, Colvin, J and Liu, SS (2024) A comprehensive framework for the delimitation of species within the Bemisia tabaci cryptic complex, a global pest‐species group. Insect Science 32, 321342. doi:10.1111/1744-7917.13361CrossRefGoogle ScholarPubMed
Zhang, H and Bu, W (2022) Exploring large-scale patterns of genetic variation in the COI gene among insecta: implications for DNA barcoding and threshold-based species delimitation studies. Insects 13, . doi:10.3390/insects12050425Google ScholarPubMed
Zhang, HG, Lv, MH, Yi, WB, Zhu, WB and Bu, WJ (2017) Species diversity can be overestimated by a fixed empirical threshold: Insights from DNA barcoding of the genus Cletus (Hemiptera: Coreidae) and the meta‐analysis of COI data from previous phylogeographical studies. Molecular Ecology Resources 17, 314323. doi:10.1111/1755-0998.12571CrossRefGoogle ScholarPubMed
Zhu, J, Chen, R, Liu, J, Lin, W, Liang, J, Nauen, R, Li, L and Gao, Y (2024) Presence of multiple genetic mutations related to insecticide resistance in Chinese field samples of two Phthorimaea pest species. Insects 15, . doi:10.3390/insects15030194CrossRefGoogle ScholarPubMed
Supplementary material: File

Paladini et al. supplementary material

Paladini et al. supplementary material
Download Paladini et al. supplementary material(File)
File 11.9 KB