Hostname: page-component-54dcc4c588-42vt5 Total loading time: 0 Render date: 2025-10-10T16:06:30.842Z Has data issue: false hasContentIssue false

Performance of four major egg parasitoids as biocontrol agents against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) eggs

Published online by Cambridge University Press:  06 October 2025

Veena K.*
Affiliation:
Department of Agricultural Entomology, College of Agriculture, University of Agricultural Sciences, Raichur, KA, India
Arunkumar Hosamani
Affiliation:
Department of Agricultural Entomology, College of Agriculture, University of Agricultural Sciences, Raichur, KA, India
Prabhuraj A.
Affiliation:
Department of Agricultural Entomology, College of Agriculture, University of Agricultural Sciences, Raichur, KA, India
Shivanand Hanchinal
Affiliation:
Department of Agricultural Entomology, College of Agriculture, University of Agricultural Sciences, Raichur, KA, India
Sharanabasappa S. Deshmukh
Affiliation:
Department of Entomology, College of Agriculture, Keladi Shivappa Nayak University of Agricultural and Horticultural Sciences, Shivamogga, KA, India
Adeney de Freitas Bueno
Affiliation:
Research and Development, Embrapa Soja, Rodovia Carlos Joao Strass, Distrito de Warta, Londrina, PR, Brazil
Deeksha M. G.
Affiliation:
Scientist (Entomology), ICAR - Directorate of Weed Research, Jabalpur, MP, India
*
Corresponding author: Veena K.; Email: veenack1996@gmail.com

Abstract

Parasitoids are effective biocontrol agents against Spodoptera frugiperda. Here, we studied four egg parasitoids (Trichogramma chilonis, Trichogramma pretiosum, Trichogrammatoidea bactrae, and Telenomus remus) on S. frugiperda eggs under laboratory conditions [25 ± 1 °C, 70 ± 5% RH, 14/10-h (L:D) photoperiod]. Then, Tr. chilonis (the best trichogrammatid species in the laboratory) was studied inside cages (1 m × 1 m) under maize-field conditions. Egg-to-adult periods (days) were recorded among different species, with Te. remus having the longest (10.00 ± 0.89 days) and Tr. bactrae the shortest (7.80 ± 0.66 days) periods. Furthermore, Te. remus exhibited the greatest adult longevity (days) for both males and females, with and without food. Lifespan parasitism under laboratory conditions was the highest for Te. remus (73.60 ± 7.23 eggs), followed by Tr. chilonis (45.40 ± 2.56 eggs) and Tr. pretiosum (42.00 ± 3.70 eggs). Adult emergence (%) was always higher than 90% and the sex ratio was higher than 0.60 for the studied egg parasitoid species. In the cage experiments set up in uncontrolled field conditions, different release densities of Tr. chilonis (50,000, 100,000, and 150,000 parasitoids/ha) were studied. Release densities of 100,000 and 150,0000 parasitoids per hectare were the most effective rates for managing S. frugiperda, with recorded egg parasitism of 71.36% and 72.88%, respectively. These findings provide crucial insights into the biological attributes and parasitism potential of these parasitoids, indicating the optimal release density of 100,000 Tr. chilonis/ha as an integrated pest management strategy against S. frugiperda in maize ecosystems.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abbas, A, Ullah, F, Hafeez, M, Han, X, Dara, MZN, Gul, H and Zhao, CR (2022) Biological control of fall armyworm, Spodoptera frugiperda. Agronomy 12, 2704. https://doi.org/10.3390/agronomy12112704CrossRefGoogle Scholar
Adjaoke, AM, Yotto, GT and Adandonon, A (2023) Diet source-dependent functional response of key parasitoids of Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera, Noctuidae). Journal of Biological Control 36(4), 187198. https://doi.org/10.18311/jbc/2022/30873CrossRefGoogle Scholar
Aggarwal, N and Jindal, J (2013) Validation of biocontrol technology for suppression of Chilo partellus (Swinhoe) on kharif maize in Punjab. Journal of Biological Control 27(4), 278284.Google Scholar
Ayvaz, A and Karaborklu, S (2008) Effect of cold storage and different diets on Ephestia kuehniella Zeller (Lep: Pyralidae). Journal of Pest Science 81, 5762.10.1007/s10340-008-0192-2CrossRefGoogle Scholar
Benelli, G, Giunti, G, Tena, A, Desneux, N, Caselli, A and Canale, A (2017) The impact of adult diet on parasitoid reproductive performance. Journal of Pest Science 90, 807823.10.1007/s10340-017-0835-2CrossRefGoogle Scholar
Bueno, AF, Colmenarez, YC, Carnevalli, RA and Sutil, WP (2023b) Benefits and perspectives of adopting soybean-IPM: The success of a Brazilian programme. Plant Health Cases 2023, 116. https://doi.org/10.1079/planthealthcases.2023.0006Google Scholar
Bueno, AF, Panizzi, AR, Hunt, TE, Dourado, PM, Pitta, RM and Gonçalves, J (2021) Challenges for adoption of integrated pest management (IPM): The soybean example. Neotropical Entomology 50, 520. https://doi.org/10.1007/s13744-020-00792-9CrossRefGoogle ScholarPubMed
Bueno, AF, Sutil, WP, Cingolani, MF and Colmenarez, YC (2024) Using egg parasitoids to manage caterpillars in soybean and maize: Benefits, challenges, and major recommendations. Insects 15, 869. https://doi.org/10.3390/insects15110869CrossRefGoogle ScholarPubMed
Bueno, AF, Sutil, WP, Maciel, RMA, Roswadoski, L, Colmenarez, YC and Colombo, FC (2023a) Challenges and opportunities of using egg parasitoids in FAW Augmentative Biological Control in Brazil. Biological Control 186, 105344.10.1016/j.biocontrol.2023.105344CrossRefGoogle Scholar
Bueno, RCOF, Bueno, AF, Parra, JRP, Vieira, SS and Oliveira, LJD (2010) Biological characteristics and parasitism capacity of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) on eggs of Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae). Revista Brasileira de Entomologia 54(2), 322327.10.1590/S0085-56262010000200016CrossRefGoogle Scholar
Bueno, RCOF, Carneiro, TR, Pratissoli, D, Bueno, AF and Fernandes, OA (2008) Biology and thermal requirements of Telenomus remus reared on fall armyworm, Spodoptera frugiperda eggs. Ciencia Rural 38(1), 16.10.1590/S0103-84782008000100001CrossRefGoogle Scholar
Cohen, JE, Jonsson, T, Müller, CB, Godfray, HCJ and Savage, VM (2005) Body sizes of hosts and parasitoids in individual feeding relationships. Proceedings of the National Academy of Sciences 102(3), 684689. https://doi.org/10.1073/pnas.0408780102CrossRefGoogle ScholarPubMed
Colmenarez, YC, Babendreier, D, Wurst, F, Vasquez, C and Bueno, AF (2022) The use of Telenomus remus (Nixon, 1937) (Hymenoptera: Scelionidae) in the management of Spodoptera spp.: Potential, challenges and major benefits. CABI Agriculture and Bioscience 3, 5. https://doi.org/10.1186/s43170-021-00071-6CrossRefGoogle Scholar
Consoli, F, Kitajima, E and Parra, J (1999) Ultrastructure of the natural and factitious host eggs of Trichogramma galloi Zucchi and Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). International Journal of Insect Morphology and Embryology 28, 211231.10.1016/S0020-7322(99)00026-4CrossRefGoogle Scholar
Denis, D, Pierre, JS, van Baaren, J and van Alphen, JJM (2011) How temperature and habitat quality affect parasitoid lifetime reproductive success – A simulation study. Ecological Modelling 222, 16041613.10.1016/j.ecolmodel.2011.02.023CrossRefGoogle Scholar
Deshmukh, SS, Kalleshwaraswamy, CM, Prasanna, BM, Sannathimmappa, HG, Kavyashree, BA, Sharath, KN, Pradeep, P and Kiran Kumar, RP (2021a) Economic analysis of pesticide expenditure for managing the invasive fall armyworm, Spodoptera frugiperda (J.E. Smith) by maize farmers in Karnataka, India. Current Science 121, 14871492.10.18520/cs/v121/i11/1487-1492CrossRefGoogle Scholar
Deshmukh, SS, Prasanna, BM, Kalleshwaraswamy, CM, Jaba, J and Choudhary, B (2021b) Fall Armyworm (Spodoptera frugiperda). In Omkar, (ed.), Polyphagous Pests of Crops, 349372. Singapore: Springer. https://doi.org/10.1007/978-981-15-8075-8_8CrossRefGoogle Scholar
Figueiredo, MDLC, Lucia, TMCD and Cruz, I (2002) Effect of Telenomus remus Nixon (Hymenoptera: Scelionidae) density on control of Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) egg masses upon release in a maize field. Revista Brasileira de Milho e Sorgo 1(02), 1219.10.18512/1980-6477/rbms.v1n2p12-19CrossRefGoogle Scholar
Geerinck, MWJ, Stockmans, I, Wackers, F, Cusumano, A, Jacquemyn, H and Lievens, B (2025) Effects of sugars on the gustatory response, longevity and realized fecundity of the egg parasitoid Trissolcus basalis. Annals of Applied Biology 187(1), . https://doi.org/10.1111/aab.1297CrossRefGoogle Scholar
Grande, MLM, Queiroz, AP, Gonçalves, J, Hayashida, R, Ventura, MU and Bueno, AF (2021) Impact of environmental variables on parasitism and emergence of Trichogramma pretiosum, Telenomus remus and Telenomus podisi. Neotropical Entomology 50, 110. https://doi.org/10.1007/s13744-021-00874-2CrossRefGoogle ScholarPubMed
Hajek, AE and Eilenberg, J (2018) Natural enemies: An introduction to biological control. Cambridge, UK: Cambridge University Press.10.1017/9781107280267CrossRefGoogle Scholar
Jaba, J, Sathish, K and Mishra, SP (2020) Biology of fall army worm Spodoptera frugiperda (JE Smith) on artificial diets. Indian Journal of Entomology 82(3), 543.10.5958/0974-8172.2020.00135.2CrossRefGoogle Scholar
Jalali, SK and Singh, SP (1989) A new method of Corcyra cephalonica Stainton moth collection. Entomon 14(3-4), 281282.Google Scholar
Jalali, SK and Singh, SP (2003) Determination of release rates of natural enemies for evolving bio-intensive management of Chilo partellus (Swinhoe) (Lepidoptera: Pyralidae). Shashpa 10(2), 151154.Google Scholar
Jaraleño-Teniente, J, Lomeli-Flores, JR, Rodríguez-Leyva, E, Bujanos-Muñiz, R and Rodríguez-Rodríguez, SE (2020) Egg Parasitoids Survey of Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) in Maize and Sorghum in Central Mexico. Insects 11(3), 157. https://doi.org/10.3390/insects11030157CrossRefGoogle ScholarPubMed
Kaur, R and Brar, KS (2008) Evaluation of different doses of Trichogramma species for the management of leaf folder and stem borer on Basmati rice. Journal of Biological Control 22(1), 131135.Google Scholar
Kenis, M, Benelli, G, Biondi, A, Calatayud, P-A, Day, R, Desneux, N, Harrison, RD, Kriticos, D, Rwomushana, I, van den Berg, J, Verheggen, F, Zhang, Y-J, Agboyi, LK, Ahissou, RB, Ba, M, Bernal, J, Bueno, AF, Carriere, Y, Carvalho, GA, Chen, -X-X, Cicero, L, Plessis, HD, Early, R, Fallet, P, Fiaboe, KKM, Firake, DM, Goergen, G, Groot, AT, Gupta, A, Hu, G, Huang, F, Jaber, LR, Malo, E, Meagher, RJJ, Mohamed, S, Sanchez, DM, Nagoshi, RN, Negre, N, Niassy, S, Noboru, O, Nyamukondiwa, C, Omoto, C, Palli, RS, Pavela, R, Ramirez-Romero, R, Rojas, J, Subramanian, S, Tabashnik, BE, Tay, WT, Virla, EG, Wang, S, Williams, T, Zang, L-S, Zhang, L and Wu, K (2022) Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. Entomologia Generalis 43(2), 187241. https://doi.org/10.1127/entomologia/2022/1659CrossRefGoogle Scholar
Kumar, R, Shera, PS, Sharma, S and Sangha, KS (2017) Standardization of release rate of Trichogramma chilonis (Ishii) in bio-intensive management of Chilo partellus (Swinhoe) in fodder maize. Journal of Biological Control 31(4), 253256.10.18311/jbc/2017/16285CrossRefGoogle Scholar
Laurentis, VL, Ramalho, DG, Santos, NA, Carvalho, VFP, Vacari, AM, De Bortoli, SA, Veneziani, RCS, da Costa Inacio, G and Dami, BG (2019) Performance of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) on eggs of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Scientific Reports 9(1), 18.10.1038/s41598-018-37797-9CrossRefGoogle ScholarPubMed
Li, TH, Bueno, AF, Desneux, N, Zhang, L, Wang, Z, Dong, H and Zang, LS (2023) Current status of the biological control of the fall armyworm Spodoptera frugiperda by egg parasitoids. Journal of Pest Science 96, 119.10.1007/s10340-023-01639-zCrossRefGoogle Scholar
Mahajan, RS and Bhamare, VK (2023) Egg parasitoids: Biology and parasitic efficiency on Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae). Journal of the Entomological Research Society 47(suppl), 860865.10.5958/0974-4576.2023.00159.7CrossRefGoogle Scholar
Nadeem, S and Hamed, M (2008) Comparative development and parasitization of Trichogramma chilonis Ishii and Trichogrammatoidea bactrae Nagaraja under different temperature conditions. Pakistan Journal of Zoology 40(6), 431434.Google Scholar
Navik, O, Dsilva, LS, Patil, J and Sushil, SN (2024) Influence of fall armyworm Spodoptera frugiperda egg mass scales and layers on the performance of three species of egg parasitoid Trichogramma with different ovipositor lengths. Egyptian Journal of Biological Pest Control 34(1), 2.10.1186/s41938-023-00764-2CrossRefGoogle Scholar
Ngegba, PM, Khalid, MZ, Jiang, W and Zhong, G (2025) An overview of insecticide resistance mechanisms, challenges, and management strategies in Spodoptera frugiperda. Crop Protection 197, 107322. https://doi.org/10.1016/j.cropro.2025.107322CrossRefGoogle Scholar
Oktaviani, , Maryana, N and Pudjianto, (2021) Telenomus remus (Nixon) (Hymenoptera: Scelionidae) Biology and Life Table on Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) eggs. IOP Conference Series: Earth and Environmental Science 950(1), 012024.Google Scholar
Pak, GA, Van Dalen, A, Kaashoek, N and Dijkman, H (1990) Host egg chorion structure influencing host suitability for the egg parasitoid Trichogramma Westwood. Journal of Insect Physiology 36, 869875.10.1016/0022-1910(90)90174-ECrossRefGoogle Scholar
Paredes-Sánchez, FA, Rivera, G, Bocanegra-García, V, Martínez-Padrón, HY, Berrones-Morales, M, Niño-García, N and Herrera-Mayorga, V (2021) Advances in control strategies against Spodoptera frugiperda. A review. Molecules 26(18), 5587. https://doi.org/10.3390/molecules26185587CrossRefGoogle ScholarPubMed
Parra, JRP (2014) Biological control in Brazil: An overview. Scientia Agricola 71, 345355. https://doi.org/10.1590/0103-9016-2014-0167CrossRefGoogle Scholar
Ramya, (2019) Studies on Trichogrammatoidea bactrae Nagaraja (Hymenoptera: Trichogrammatidae) on cotton bollworms in particular pink bollworm, Pectinophora gossypiella (Saunders). M. Sc thesis, University of Agricultural Sciences, Raichur, India.Google Scholar
Rawat, US, Pawar, AD and Joshi, V (1994) Impact of inundative releases of Trichogramma chilonis in control of maize stem borer, Chilo partellus (Swinhoe) in Himachal Pradesh. Plant Protection Bulletin 46, 2830.Google Scholar
Renou, M, Nagnan, P, Berthier, A and Durier, C (1992) Identification of compounds from the eggs of Ostrinia nubilalis and Mamestra brassicae having kairomone activity on Trichogramma brassicae. Entomologia Experimentalis Et Applicata 63, 291303.10.1111/j.1570-7458.1992.tb01586.xCrossRefGoogle Scholar
Segoli, M and Rosenheim, JA (2013) Spatial and temporal variation in sugar availability for insect parasitoids in agricultural fields and consequences for reproductive success. Biological Control 67(2), 163169. https://doi.org/10.1016/j.biocontrol.2013.07.013CrossRefGoogle Scholar
Sharanabasappa, SD, Kalleshwaraswamy, CM, Asokan, R, Mahadevaswamy, HM, Maruthi, MS, Pavithra, HB, Kavita, H, Shivaray, N, Prabhu, ST and Georg, G (2018a) First report of the fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae) an alien invasive pest on Maize in India. Pest Management in Horticultural Ecosystems 24, 2329.Google Scholar
Sharanabasappa, SD, Kalleshwaraswamy, CM, Maruthi, MS and Pavithra, HB (2018b) Biology of invasive fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) on maize. Indian Journal of Entomology 80, 540543.10.5958/0974-8172.2018.00238.9CrossRefGoogle Scholar
Silva, CSBD and Parra, JRP (2013) New method for rearing Spodoptera frugiperda in laboratory shows that larval cannibalism is not obligatory. Revista Brasileira de Entomologia 57(3), 347349.10.1590/S0085-56262013005000029CrossRefGoogle Scholar
Tefera, T, Goftishu, M, Ba, M and Muniappan, R (2019) A Guide to Biological Control of Fall Armyworm in Africa Using Egg Parasitoids, 1st Edn. Nairobi: Kenya. http://34.250.91.188:8080/xmlui/handle/123456789/1001.Google Scholar
Unmole, L (2010) Study of the biology of Trichogramma chilonis Ishii (Hymenoptera: Trichogrammatidae) in Mauritius. University of Mauritius Research Journal 16, 8499.Google Scholar
Veena, K, Hosamani, A, Prabhuraj, A and Shivanand, G Hanchinal, Mallikarjun Kenganal and Sharanabasappa S Deshmukh (2023) Efficiency of female age of egg parasitoids on parasitism of Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) eggs of various ages. Journal of Plant Diseases and Protection 131, 471478. https://doi.org/10.1007/s41348-023-00845-2CrossRefGoogle Scholar
Wajnberg, E and Hassan, SA (1994) Biological Control with Egg Parasitoids. Wallingford (UK): British Library, 286.Google Scholar
Yuan, X, Guo, Y and Li, D (2024) Field control effect of Telenomus remus Nixon and Trichogramma chilonis Ishii compound parasitoid balls against Spodoptera frugiperda (J. E. Smith). Insects 15, 28. https://doi.org/10.3390/insects15010028CrossRefGoogle ScholarPubMed
Zhang, YH, Xue, JZ, Tariq, T, Li, TH, Qian, HY, Cui, WH, Tian, H, Monticelli, LS, Desneux, N and Zang, LS (2024) Parasitism and suitability of Trichogramma chilonis on large eggs of two factitious hosts: Samia cynthiaricini and Antheraea pernyi. Insects 15(1), 2. https://doi.org/10.3390/insects15010002CrossRefGoogle Scholar