Hostname: page-component-54dcc4c588-2bdfx Total loading time: 0 Render date: 2025-10-06T13:57:43.576Z Has data issue: false hasContentIssue false

Temperature-dependent life history and demographic traits of the invasive fall armyworm, Spodoptera frugiperda (J.E. Smith) on maize

Published online by Cambridge University Press:  06 October 2025

Oshin Bhargav*
Affiliation:
Department of Entomology, Punjab Agricultural University, Ludhiana, PB, India
Naveen Aggarwal
Affiliation:
Department of Entomology, Punjab Agricultural University, Ludhiana, PB, India
Jawala Jindal
Affiliation:
Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, PB, India
*
Corresponding author: Oshin Bhargav; Email: oshin.bhargav24@gmail.com

Abstract

The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a major invasive pest threatening maize production in India. Temperature strongly influences its development, reproduction and population dynamics. This study evaluated the biological performance of S. frugiperda on maize across seven constant temperature regimes (14 ± 1°C to 38 ± 1°C) under controlled laboratory conditions, using the age-stage, two-sex life table approach. Developmental time decreased significantly with rising temperatures, while survival and fecundity peaked at 26 ± 1°C and 30 ± 1°C. The highest values of net reproductive rate (R0 = 499.91 females/female), intrinsic rate of increase (rm = 0.25 females/female/day), and finite rate of increase (λ = 1.28 females/day) were recorded at 30 ± 1°C, followed by 26 ± 1°C (R0 = 467.32, rm = 0.24, and λ = 1.26, respectively). In contrast, thermal extremes delayed development and adversely affected both survival and reproduction. No development occurred at 38 ± 1°C. Population projections indicated rapid generational turnover at optimal temperatures, with up to nine generations annually at 26 ± 1°C. The temperature range of 26–30 ± 1°C was found to be optimal for both survival and reproduction of S. frugiperda, aligning with kharif season temperatures in North India, particularly Punjab. These conditions promote multiple generations annually, whereas extreme summer or winter temperatures may limit population development. The findings advocate for temperature-informed, location-specific pest control strategies. Intervening during critical developmental windows, especially at the egg and larval stages, can limit population buildup. Insights into the pest’s thermal adaptability contribute to the advancement of climate-resilient, sustainable pest management frameworks for maize systems in North India and similar agroclimatic regions.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adan, M, Tonnang, HE, Kassa, CE, Greve, K, Borgemeister, C and Goergen, G (2024) Combining temperature-dependent life table data into Insect Life Cycle Model to forecast fall armyworm Spodoptera frugiperda (JE Smith) distribution in maize agro-ecological zones in Africa. Plos One 19, e0299154.10.1371/journal.pone.0299154CrossRefGoogle Scholar
Aggarwal, N, Jindal, J, Singh, P, Bhargav, O and Sharma, KP (2023) Thermal indices of Spodoptera frugiperda (JE Smith) on maize in northern India. Indian Journal of Ecology 50, 20652070.Google Scholar
Akbar, SM, Pavani, T, Nagaraja, T and Sharma, HC (2016) Influence of CO2 and temperature on metabolism and development of Helicoverpa armigera (Noctuidae: Lepidoptera). Environmental Entomology 45, 229236.10.1093/ee/nvv144CrossRefGoogle ScholarPubMed
Ali, MP, Haque, SS, Hossain, MM, Bari, MN, Kabir, MMM, Roy, TK, Datta, J, Howlader, MTH, Alam, SN and Krupnik, TJ (2023) Development and demographic parameters of Fall Armyworm (Spodoptera frugiperda JE Smith) when feeding on rice (Oryza sativa). CABI Agriculture and Bioscience 4, 114.10.1186/s43170-023-00162-6CrossRefGoogle Scholar
Amarasekare, P and Sifuentes, R (2012) Elucidating the temperature response of survivorship in insects. Functional Ecology 26, 959968.10.1111/j.1365-2435.2012.02000.xCrossRefGoogle Scholar
Ankita, , Sharma, PK and Sharma, PC (2020) Fall armyworm Spodoptera frugiperda (J.E. Smith) on maize in Himachal Pradesh. Indian Journal of Entomology 82, 14.10.5958/0974-8172.2020.00130.3CrossRefGoogle Scholar
Ashok, K, Balasubramani, V, Kennedy, JS, Geethalakshmi, V, Jeyakumar, P and Sathiah, N (2021) Effect of elevated temperature on the population dynamics of fall armyworm, Spodoptera frugiperda. Journal of Environmental Biology 42, 10981105.10.22438/jeb/42/4(SI)/MRN-1525aCrossRefGoogle Scholar
Ashok, K, Kennedy, JS, Geethalakshmi, V, Jeyakumar, P, Sathiah, N and Balasubramani, V (2020) Lifetable study of fall army worm Spodoptera frugiperda (JE Smith) on maize. Indian Journal of Entomology 82, 574579.10.5958/0974-8172.2020.00143.1CrossRefGoogle Scholar
Bailey, DL, and Chadha, HL (1968) Effects of natural (sorghum) and artificial (wheat germ) diets on development of the corn earworm, fall armyworm, and southwestern corn borer. Journal of Economic Entomology 61, 257260.10.1093/jee/61.1.257CrossRefGoogle Scholar
Bale, JS, Masters, GJ, Hodkinson, ID, Awmack, C, Bezemer, TM, Brown, VK, Butterfield, J, Buse, A, Coulson, JC, Farrar, J and Good, JE (2002) Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Change Biology 8, 16.10.1046/j.1365-2486.2002.00451.xCrossRefGoogle Scholar
Bharadwaj, GS, Mutkule, DS, Thakre, BA, Ingale, AS and Jadhav, AS (2020) Extent of host range of fall armyworm, Spodoptera frugiperda (JE Smith) in Latur district (Maharashtra, India). Journal of Pharmacognosy and Phytochemistry 9, 608613.Google Scholar
Bonduriansky, R, Maklakov, A, Zajitschek, F and Brooks, R (2008) Sexual selection, sexual conflict and the evolution of ageing and life span. Functional Ecology 22, 443453.10.1111/j.1365-2435.2008.01417.xCrossRefGoogle Scholar
Busato, GR, Grützmacher, AD, Garcia, MS, Giolo, FP, Zotti, MJ and Bandeira, JDM (2005) Exigências térmicas e estimativa do número de gerações dos biótipos “milho” e “arroz” de Spodoptera frugiperda. Pesquisa Agropecuária Brasileira 40, 329335.10.1590/S0100-204X2005000400003CrossRefGoogle Scholar
Chen, Q, Li, N, Wang, X, Ma, L, Huang, JB and Huang, GH (2017) Age-stage, two-sex life table of Parapoynx crisonalis (Lepidoptera: Pyralidae) at different temperatures. PLoS One 12, e0173380.10.1371/journal.pone.0173380CrossRefGoogle ScholarPubMed
Chen, YC, Chen, DF, Yang, MF and Liu, JF (2022) The effect of temperatures and hosts on the life cycle of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 13, 211.10.3390/insects13020211CrossRefGoogle ScholarPubMed
Chi, H (2022a) Timing-MS Chart: Computer Program for Population Projection Based on Age-Stage, Two-Sex Life Table. Taichung, Taiwan: National Chung Hsing University, Available at http://140.120.197.173/Ecology/ (accessed 6 September 2023).Google Scholar
Chi, H (2022b) TWOSEX-MS Chart: A computer program for the age-stage, two-sex life table analysis. Taichung, Taiwan: National Chung Hsing University, Available at http://140.120.197.173/Ecology/Download/Twosex-MSChart. zip Accessed 06 September 2023Google Scholar
Chi, H and Liu, H (1985) Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica 24, 225240.Google Scholar
Chi, H and Su, HY (2006) Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental Entomology 35, 1021.10.1603/0046-225X-35.1.10CrossRefGoogle Scholar
Dalal, PK and Arora, R (2021) Fecundity and life-table parameters of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on tomato crop under alternating temperature regimes: Implications for pest monitoring in sub-tropical India. International Journal of Tropical Insect Science 41, 28512865.10.1007/s42690-021-00467-xCrossRefGoogle Scholar
Davidowitz, G and Nijhout, HF (2004) The physiological basis of reaction norms: The interaction among growth rate, the duration of growth and body size. Integrative and Comparative Biology 44, 443449.10.1093/icb/44.6.443CrossRefGoogle ScholarPubMed
Desk, KR (2020) Rare invasive crop pest reported in Jammu for first time. Available at https://kashmirreader.com/2020/11/29/rare-invasive-crop-pest-reported-in-jammu-for-first-time/.Google Scholar
Dhaliwal, NK (2019) Ecology and Management of Shoot and Fruit Borer, Leucinodes orbonalis Guenée in Brinjal. Ph.D Thesis. Punjab Agricultural University, Ludhiana.10.5958/0974-8172.2019.00174.3CrossRefGoogle Scholar
Díaz-Álvarez, EA, Martínez-Zavaleta, JP, López-Santiz, EE, Barrera, EDA, Larsen, J and Del-Val, E (2021) Climate change can trigger fall armyworm outbreaks: A developmental response experiment with two Mexican maize landraces. International Journal of Pest Management 69, 184192.10.1080/09670874.2020.1869347CrossRefGoogle Scholar
Dixon, AF, Honěk, A, Keil, P, Kotela, MA, Šizling, AL and Jarošík, V (2009) Relationship between the minimum and maximum temperature thresholds for development in insects. Functional Ecology 23, 257264.10.1111/j.1365-2435.2008.01489.xCrossRefGoogle Scholar
Du Plessis, H, Schlemmer, ML and Van den Berg, J (2020) The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 77, 165168.Google Scholar
Durak, R and Durak, T (2021) Metabolic response of aphid Cinara tujafilina to cold stress. Biology 10, 1288.10.3390/biology10121288CrossRefGoogle ScholarPubMed
Early, R, Moreno, G, Murphy, P, Murphy, ST and Day, R (2018) Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota 40, 2550.10.3897/neobiota.40.28165CrossRefGoogle Scholar
Edmands, S (2021) Sex ratios in a warming world: Thermal effects on sex-biased survival, sex determination, and sex reversal. Journal of Heredity 112, 155164.10.1093/jhered/esab006CrossRefGoogle Scholar
Efron, B and Tibshirani, RJ (1993) An Introduction to the Bootstrap. Chapman and Hall: NY.10.1007/978-1-4899-4541-9CrossRefGoogle Scholar
FAO (2008) Climate Related Transboundary Pests and Diseases. Available online http://www.fao.org/3/a-ai785e.pdf.Google Scholar
Ganiger, PC, Yeshwanth, HM, Muralimohan, K, Vinay, N, Kumar, ARV and Chandrashekara, K (2018) The occurrence of the new invasive pest, fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), in the maize fields of Karnataka. India. Current Science 115, 621623.10.18520/cs/v115/i4/621-623CrossRefGoogle Scholar
Gribble, KE, Moran, BM, Jones, S, Corey, EL and Welch, DBM (2018) Congeneric variability in lifespan extension and onset of senescence suggest active regulation of aging in response to low temperature. Experimental Gerontology 114, 99106.10.1016/j.exger.2018.10.023CrossRefGoogle ScholarPubMed
Haghani, MY, Fathipour, A, Talebi, A and Baniameri, V (2007) Thermal requirement and development of Liriomyza sativae (Diptera: Agromyzidae) on cucumber. Journal of Economic Entomology 100, 350356.10.1603/0022-0493(2007)100[350:TRADOL]2.0.CO;2CrossRefGoogle ScholarPubMed
Hruska, A (2019) Fall armyworm (Spodoptera frugiperda) management by smallholders. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 14, 111.10.1079/PAVSNNR201914043CrossRefGoogle Scholar
Huang, LL, Xue, FS, Chen, C, Guo, X, Tang, JJ, Zhong, L and He, HM (2021) Effects of temperature on life‐history traits of the newly invasive fall armyworm, Spodoptera frugiperda in Southeast China. Ecology and Evolution 11, 52555264.10.1002/ece3.7413CrossRefGoogle ScholarPubMed
Huang, YB and Chi, H (2012) Assessing the application of the jackknife and bootstrap techniques to the estimation of the variability of the net reproductive rate and gross reproductive rate: A case study in Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Journal of Agriculture and Culture 61, 3745.Google Scholar
ICAR-NBAIR (2018) Pest alert: Spodoptera frugiperda (J. E. Smith) (Insecta: Lepidoptera). Available at nbair.res.in/pest-alert.Google Scholar
Islam, T, Roknuzzaman, AHM, Hassan, K and Ullah, MS (2019) Temperature impacts on the eggplant shoot and fruit borer Leucinodes orbonalis: A life table approach. International Journal of Tropical Insect Science 40, 351360.10.1007/s42690-019-00086-7CrossRefGoogle Scholar
Jing, WAN, Huang, C, Li, CY, Zhou, HX, Ren, YL, Li, ZY, Xing, LS, Zhang, B, Xi, QIAO, Bo, LIU and Liu, CH (2021) Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Integrative Agriculture 20, 646663.Google Scholar
Kamel, AS, Gamil, WE and Dahi, HF (2018) Direct Effects of temperature changes on biochemical and enzymatic for cotton leafworm, Spodoptera littoralis (Boisd.). Egyptian Academic Journal of Biological Sciences. A, Entomology 11, 121136.10.21608/eajb.2018.11985CrossRefGoogle Scholar
Karimi-Malati, A, Fathipour, Y, Talebi, AA, and Bazoubandi, M (2014) Life table parameters and survivorship of Spodoptera exigua (Lepidoptera: Noctuidae) at constant temperatures. Environmental Entomology 43, 795803.10.1603/EN11272CrossRefGoogle ScholarPubMed
Khaliq, A, Attique, M and Sayyed, A (2007) Evidence for resistance to pyrethroids and organophosphates in Plutella xylostella (Lepidoptera: Plutellidae) from Pakistan. Bulletin of Entomological Research 97, 191200.10.1017/S0007485307004877CrossRefGoogle ScholarPubMed
Kroschel, J, Sporleder, M, Tonnang, HEZ, Juarez, H, Carhuapoma, P, Gonzales, JC and Simon, R (2013) Predicting climate-change-caused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping. Agricultural and Forest Meteorology 15, 228241.10.1016/j.agrformet.2012.06.017CrossRefGoogle Scholar
Kumara, NT, Muhandiram, AMKG, Ranaweera, GKMMK, Ayeshmanthi, MB, Sarathchandra, SR and Mubarak, ANM (2022) Association between temperature and life table development of Fall armyworm Spodoptera frugiperda under control condition. Research Square 115.Google Scholar
Lazarevic, J, Milanovic, S, Seslija Jovanovic, D and Jankovic-Tomanic, (2023) Temperature-and diet-induced plasticity of growth and digestive enzymes activity in spongy moth larvae. Biomolecules 13, 821.10.3390/biom13050821CrossRefGoogle ScholarPubMed
Leather, SR (2018) Factors affecting fecundity, fertility, oviposition, and larviposition in insects. In Insect Reproduction. UK: CRC Press, pp. 132.10.1201/9781351073608CrossRefGoogle Scholar
Li, GP, Feng, HQ, Huang, B, Zhong, J, Tian, CH, Qiu, F and Huang, JR (2017) Effects of short-term heat stress on survival and fecundity of two plant bugs: Apolygus lucorumm (Meyer-Dür) and Adelphocoris suturalis Jakovlev (Hemiptera: Miridae). Acta Ecologica Sinica 37, 39393945.Google Scholar
Lu, YH, Wu, KM, Wyckhuys, K and Cuo, YY (2009) Comparative study of temperature-dependent life histories of three economically important Adelphocoris spp. Physiological Entomology 34, 318324.10.1111/j.1365-3032.2009.00692.xCrossRefGoogle Scholar
Maharani, Y, Puspitaningrum, D, Istifadah, N, Hidayat, S and Ismail, A (2021) Biology and life table of fall armyworm, Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) on maize and rice. Serangga 26, 161174.Google Scholar
Maharjan, R, Hong, S, Ahn, J, Yoon, Y, Jang, Y, Kim, J and Yi, H (2023) Temperature and host plant impacts on the development of Spodoptera litura (Fabricius)(Lepidoptera: Noctuidae): Linear and nonlinear modeling. Insects 14, 412.10.3390/insects14050412CrossRefGoogle ScholarPubMed
Malekera, MJ, Acharya, R, Mostafiz, MM, Hwang, HS, Bhusal, N and Lee, KY (2022) Temperature-dependent development models describing the effects of temperature on the development of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Insects 13, 1084.10.3390/insects13121084CrossRefGoogle Scholar
Maruthadurai, R and Ramesh, R (2019) Occurrence, damage pattern and biology of fall armyworm, Spodoptera frugiperda (J.E. smith) (Lepidoptera:Noctuidae) on fodder crops and green amaranth in Goa, India. Phytoparasitica 48, 1523.10.1007/s12600-019-00771-wCrossRefGoogle Scholar
Molon, M, Dampc, J, Kula-Maximenko, M, Zebrowski, J, Mołoń, A, Dobler, R, Durak, R, and Skoczowski, A (2020) Effects of temperature on lifespan of Drosophila melanogaster from different genetic backgrounds: Links between metabolic rate and longevity. Insects 11, 470.10.3390/insects11080470CrossRefGoogle ScholarPubMed
Murua, MG, Vera, MT, Abraham, S, Juarçz, ML, Prieto, S, Head, GP and Willink, E (2008) Fitness and mating compatibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from different host plant species and regions in Argentina. Annals of the Entomological Society of America 101, 639649.10.1603/0013-8746(2008)101[639:FAMCOS]2.0.CO;2CrossRefGoogle Scholar
Negi, S, Sharma, PL, Verma, SC and Chandel, RS (2020) Thermal requirements of Tuta absoluta (Meyrick) and influence of temperature on its population growth on tomato. Journal of Biological Control 34, 7381.10.18311/jbc/2020/23249CrossRefGoogle Scholar
Nelson, WA, Bjornstad, ON and Yamanaka, T (2013) Recurrent insect outbreaks caused by temperature-driven changes in system stability. Science 341, 796799.10.1126/science.1238477CrossRefGoogle ScholarPubMed
Nitin, KS, Sridhar, V and Chakravarthy, AK (2018) Life table parameters of South American tomato moth, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under simulated temperatures and CO2 on potato. Potato Journal 45, 3444.Google Scholar
Osman, MA, Mandour, NS, Abd El-Hady, MA and Sarhan, AA (2015) Influence of temperature on some biological attributes and life table analysis of the tomato leaf miner, Tuta absoluta (Lepidoptera; Gelechiidae). Entomology and Applied Science Letters 2, 715.Google Scholar
PAU (2023) Package and Practices for Kharif Crops. Ludhiana, India: Punjab Agricultural University, 23-33Google Scholar
Phungula, SM, Kruger, K, Nofemela, RS and Weldon, CW (2023) Developmental diet, life stage and thermal acclimation affect thermal tolerance of the fall armyworm, Spodoptera frugiperda. Physiological Entomology 48, 122131.10.1111/phen.12414CrossRefGoogle Scholar
Pitre, H and Hogg, D (1983) Development of the fall armyworm on cotton, soybean and corn. Journal of the Entomological Research Society 18, 187194.Google Scholar
Prasad, TV, Rao, MS, Rao, KV, Bal, SK, Muttapa, Y, Choudhary, JS and Singh, VK (2021) Temperature-based phenology model for predicting the present and future establishment and distribution of recently invasive Spodoptera frugiperda (JE Smith) in India. Bulletin of Entomological Research 112, 271285.10.1017/S0007485321000882CrossRefGoogle Scholar
Praveen, T and Mallapur, CP (2019) Studies on host range of fall armyworm, Spodoptera frugiperda (JE Smith) under laboratory conditions. Journal of Entomology and Zoology Studies 7, 13851387.Google Scholar
Qin, JY, Liu, YQ, Zhang, L, Cheng, YX, Luo, LZ and Jiang, XF (2018) Effects of temperatures on the development and reproduction of the armyworm, Mythimna roseilinea: Analysis using an age-stage, two-sex life table. Journal of Integrative Agriculture 17, 15061515.10.1016/S2095-3119(17)61856-2CrossRefGoogle Scholar
Saeed, S, Jaleel, W, Naqqash, MN, Saeed, Q, Zaka, SM, Sarwar, ZM, Ishtiaq, M, Qayyum, MA, Sial, MU, Batool, M and Khan, KA (2019) Fitness parameters of Plutella xylostella (L.) (Lepidoptera; Plutellidae) at four constant temperatures by using age-stage, two-sex life tables. Saudi Journal of Biological Sciences 26, 16611667.10.1016/j.sjbs.2018.08.026CrossRefGoogle ScholarPubMed
Sarkar, S, More, SA, Tamboli, ND, Kulkarni, SR and Nimbalkar, CA (2021) Effect of temperature on the reproductive ability of Fall Armyworm-Spodoptera frugiperda (JE Smith) under laboratory condition. Journal of Pharmacognosy and Phytochemistry 10, 154158.Google Scholar
Savadatti, E, Ginnu, SA, Mariyanna, L, Hosamani, A, Desai, BRKR, Subbanna, AD and Jalamangala, A (2023) Temperature effects on the development of life stages of fall armyworm, Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) on maize. International Journal of Environment and Climate Change 13, 18841892.10.9734/ijecc/2023/v13i92419CrossRefGoogle Scholar
Schlemmer, M (2018) Effect of temperature on development and reproduction of Spodoptera frugiperda (Lepidoptera: Noctuidae). M.Sc. thesis, North West University, South Africa.Google Scholar
Seiler, J (1920) Geschlechtschromosomenuntersuchungenan Psychiden. I. Experimentelle Beeinflussung der geschlechtsbestimmenden Reifeteilung bei Talaeporia tubulosa Retz. Archiv Für Zellforschung 15, 249268.Google Scholar
Sharifloo, A, Zibaee, A, Sendi, JJ and Jahroumi, KT (2016) Characterization of a digestive α-amylase in the midgut of Pieris brassicae L. (Lepidoptera: Pieridae). Frontiers in Physiology 7, 96.10.3389/fphys.2016.00096CrossRefGoogle ScholarPubMed
Sharifloo, A, Zibaee, A, Sendi, JJ and Jahroumi, KT (2017) Biochemical characterization a digestive trypsin in the midgut of large cabbage white butterfly, Pieris brassicae L. (Lepidoptera: Pieridae). Bulletin of Entomological Research 108, 501509.10.1017/S0007485317001067CrossRefGoogle ScholarPubMed
Sharma, S, Sharma, PL, Sharma, P, Verma, SC, Sharma, N and Sharma, P (2024) Demographic analysis and biotic potential of Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) on pea. Bulletin of Entomological Research 114, 514523.10.1017/S0007485324000312CrossRefGoogle Scholar
Singh, SK and Yadav, DK (2009) Life table and biotic potential of Helicoverpa armigera (Hübner) on chick pea Pods. Annals of Plant Protection Sciences 17, 9093.Google Scholar
Supriya, GB, Sridevi, G, Uma, MT, Bharati, NB and Srinivasa, CD (2022a) Age-specific survivorship and life-fertility table study of invasive alien pest fall armyworm on castor. Journal of Research, Professor Jayashankar Telangana State Agricultural University 50, 2332.Google Scholar
Supriya, GB, Sridevi, G, Uma, MT, Bharati, NB and Srinivasa, CD (2022b) Life history traits of transcontinental pest, fall armyworm on artificial diet. Journal of Experimental Zoology, India 25, 14431451.Google Scholar
Vinogradov, AE (1998) Male reproductive strategy and decreased longevity. Acta Biotheoretica 46, 157160.10.1023/A:1001181921303CrossRefGoogle ScholarPubMed
Yan, YW, Wang, YC, Feng, CC, Wan, PHM and Chang, KTT (2017) Potential distributional changes of invasive crop pest species associated with global climate change. Applied Geography 82, 8392.10.1016/j.apgeog.2017.03.011CrossRefGoogle Scholar
Zahiri, B, Fathipour, Y, Khanjani, M, Moharramipour, S and Zalucki, M (2010) Modeling demographic response to constant temperature in Hypera postica (Coleoptera: Curculionidae). Journal of Economic Entomology 103, 292301.10.1603/EC09063CrossRefGoogle ScholarPubMed
Ziska, LH, Blumenthal, MD, Runion, CB, Hunt, Jr. ER and Diaz-Soltero, H (2011) Invasive species and climate change: An agronomic perspective. Climatic Change 105, 1342.10.1007/s10584-010-9879-5CrossRefGoogle Scholar