Hostname: page-component-54dcc4c588-trf7k Total loading time: 0 Render date: 2025-10-14T07:15:35.621Z Has data issue: false hasContentIssue false

Antioxidant and pro-oxidant dietary consumption patterns and their association with prostate cancer: a case–control study from Mexico City

Published online by Cambridge University Press:  03 September 2025

Angélica Martínez-Alonso
Affiliation:
Centro de Investigación en Nutrición y Salud, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Morelos, Mexico Escuela de Salud Pública de México, Instituto Nacional de Salud Pública, Av. Universidad 655, 62100 Cuernavaca, Morelos, Mexico
Jesús Gibran Hernández-Pérez
Affiliation:
Escuela de Salud Pública de México, Instituto Nacional de Salud Pública, Av. Universidad 655, 62100 Cuernavaca, Morelos, Mexico Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, 62100, Mexico
Marcia Galván-Portillo
Affiliation:
Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, 62100, Mexico
Francisco Rodríguez-Covarrubias
Affiliation:
Departamento de Urología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
Sonia Concepción Rodríguez-Ramírez
Affiliation:
Centro de Investigación en Nutrición y Salud, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Morelos, Mexico
Luisa Torres-Sánchez*
Affiliation:
Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, 62100, Mexico
*
Corresponding author: Luisa Torres-Sánchez; Email: ltorress@insp.mx

Abstract

To assess the association between dietary consumption patterns of antioxidant and pro-oxidant nutrients with prostate cancer (PC) and its histological differentiation, we analysed data from 394 histologically confirmed incident cases of PC and 793 age-matched population controls (±5 years), residents of Mexico City. Cases were classified by Gleason score into well-differentiated, moderately differentiated and poorly differentiated categories. Dietary nutrient intake over the 3 years preceding diagnosis for cases and before the interview for controls was estimated using a semi-quantitative FFQ. Using energy-adjusted residuals and a k-means approach, we identified three consumption patterns: (1) pro-oxidant, (2) moderate antioxidants/low pro-oxidants and (3) high antioxidants and pro-oxidants. Associations were evaluated using independent unconditional logistic regression models; stratified models were analysed based on smoking status. Although proportions differed, the main food contributors to the moderate antioxidants/low pro-oxidants and high antioxidants and pro-oxidants patterns included green vegetables, maize tortillas, seeds and fruits. Compared with the pro-oxidant pattern, the moderate antioxidants/low pro-oxidants (OR: 0·71; 95 % CI 0·53, 0·97) and high antioxidants and pro-oxidants (OR: 0·70; 95 % CI 0·50, 0·99) patterns were associated with lower odds of having PC. These associations were mainly observed with well-differentiated PC and among ever-smokers. Diets with a higher antioxidant content were associated with a reduced likelihood of PC. Further validation of these findings through prospective studies is needed.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of the Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Sung, H, Ferlay, J, Siegel, RL, et al. (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71, 209249.Google ScholarPubMed
Lee, J, Demissie, K, Lu, S-E, et al. (2007) Cancer incidence among Korean-American immigrants in the United States and Native Koreans in South Korea. Cancer Control 14, 7885.10.1177/107327480701400111CrossRefGoogle ScholarPubMed
Rawla, P (2019) Epidemiology of prostate cancer. World J Oncol 10, 6389.10.14740/wjon1191CrossRefGoogle ScholarPubMed
Federico, A, Morgillo, F, Tuccillo, C, et al. (2007) Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 121, 23812386.10.1002/ijc.23192CrossRefGoogle ScholarPubMed
De Marzo, AM, Marchi, VL, Epstein, JI, et al. (1999) Proliferative inflammatory atrophy of the prostate. Am J Pathol 155, 19851992.10.1016/S0002-9440(10)65517-4CrossRefGoogle ScholarPubMed
Galaris, D, Barbouti, A & Pantopoulos, K (2019) Iron homeostasis and oxidative stress: an intimate relationship. Biochim Biophys Acta (BBA) – Mol Cell Res 1866, 118535.10.1016/j.bbamcr.2019.118535CrossRefGoogle ScholarPubMed
Saleh, SAK, Adly, HM, Abdelkhaliq, AA, et al. (2020) Serum levels of selenium, zinc, copper, manganese, and iron in prostate cancer patients. Curr Urol 14, 4449.10.1159/000499261CrossRefGoogle ScholarPubMed
Vance, TM, Su, J, Fontham, ETH, et al. (2013) Dietary antioxidants and prostate cancer: a review. Nutr Cancer 65, 793801.10.1080/01635581.2013.806672CrossRefGoogle ScholarPubMed
Liu, J, Li, X, Hou, J, et al. (2021) Dietary intake of n-3 and n-6 polyunsaturated fatty acids and risk of cancer: meta-analysis of data from 32 studies. Nutr Cancer 73, 901913.10.1080/01635581.2020.1779321CrossRefGoogle ScholarPubMed
Li, N, Wu, X, Zhuang, W, et al. (2021) Tomato and lycopene and multiple health outcomes: umbrella review. Food Chem 343, 128396.10.1016/j.foodchem.2020.128396CrossRefGoogle ScholarPubMed
Bai, X-Y, Qu, X, Jiang, X, et al. (2015) Association between dietary vitamin C intake and risk of prostate cancer: a meta-analysis involving 103 658 subjects. J Cancer 6, 913921.10.7150/jca.12162CrossRefGoogle Scholar
Etminan, M, FitzGerald, JM, Gleave, M, et al. (2005) Intake of selenium in the prevention of prostate cancer: a systematic review and meta-analysis. Cancer Causes Control 16, 11251131.Google ScholarPubMed
Pascual-Geler, M, Robles-Fernandez, I, Monteagudo, C, et al. (2020) Impact of oxidative stress SNPs and dietary antioxidant quality score on prostate cancer. Int J Food Sci Nutr 71, 500508.10.1080/09637486.2019.1680958CrossRefGoogle ScholarPubMed
Russnes, KM, Wilson, KM, Epstein, MM, et al. (2014) Total antioxidant intake in relation to prostate cancer incidence in the Health Professionals Follow-Up Study. Int J Cancer 134, 11561165.10.1002/ijc.28438CrossRefGoogle ScholarPubMed
Russnes, KM, Möller, E, Wilson, KM, et al. (2016) Total antioxidant intake and prostate cancer in the Cancer of the Prostate in Sweden (CAPS) study. A case control study. BMC Cancer 16, 438.10.1186/s12885-016-2486-8CrossRefGoogle ScholarPubMed
Ghanavati, M, Clark, CCT, Bahrami, A, et al. (2021) Dietary intake of polyphenols and total antioxidant capacity and risk of prostate cancer: a case-control study in Iranian men. Eur J Cancer Care (Engl) 30, e13364.Google ScholarPubMed
Vance, TM, Wang, Y, Su, LJ, et al. (2016) Dietary total antioxidant capacity is inversely associated with prostate cancer aggressiveness in a population-based study. Nutr Cancer 68, 214224.10.1080/01635581.2016.1134596CrossRefGoogle ScholarPubMed
Carlsen, MH, Halvorsen, BL, Holte, K, et al. (2010) The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J 9, 3.10.1186/1475-2891-9-3CrossRefGoogle ScholarPubMed
Aburto, TC, Pedraza, LS, Sánchez-Pimienta, TG, et al. (2016) Discretionary foods have a high contribution and fruit, vegetables, and legumes have a low contribution to the total energy intake of the Mexican population. J Nutr 146, 1881S1887S.10.3945/jn.115.219121CrossRefGoogle Scholar
Gaona-Pineda, EB, Martínez-Tapia, B, Arango-Angarita, A, et al. (2018) Food groups consumption and sociodemographic characteristics in Mexican population. Salud Publica Mex 60, 272282.10.21149/8803CrossRefGoogle ScholarPubMed
Pedroza-Tobías, A, Hernández-Barrera, L, López-Olmedo, N, et al. (2016) Usual vitamin intakes by Mexican populations. J Nutr 146, 1866S1873S.10.3945/jn.115.219162CrossRefGoogle ScholarPubMed
Vázquez-Salas, RA, Torres-Sánchez, L, López-Carrillo, L, et al. (2016) History of gonorrhea and prostate cancer in a population-based case-control study in Mexico. Cancer Epidemiol 40, 95101.10.1016/j.canep.2015.12.001CrossRefGoogle Scholar
Hernández-Ramírez, RU, Galván-Portillo, MV, Ward, MH, et al. (2009) Dietary intake of polyphenols, nitrate and nitrite and gastric cancer risk in Mexico City. Int J Cancer 125, 14241430.10.1002/ijc.24454CrossRefGoogle Scholar
Galván-Portillo, M, Vázquez-Salas, RA, Hernández-Pérez, JG, et al. (2021) Dietary flavonoid patterns and prostate cancer: evidence from a Mexican population-based case-control study. Br J Nutr 127, 16951703.10.1017/S0007114521002646CrossRefGoogle Scholar
Fang, Y-Z, Yang, S & Wu, G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18, 872879.10.1016/S0899-9007(02)00916-4CrossRefGoogle ScholarPubMed
Gonzalez, MJ, Schemmel, RA, Dugan, L, et al. (1993) Dietary fish oil inhibits human breast carcinoma growth: a function of increased lipid peroxidation. Lipids 28, 827832.10.1007/BF02536237CrossRefGoogle ScholarPubMed
Li, Y, Du, Y, Zhou, Y, et al. (2023) Iron and copper: critical executioners of ferroptosis, cuproptosis and other forms of cell death. Cell Commun Signal 21, 327.10.1186/s12964-023-01267-1CrossRefGoogle ScholarPubMed
Procházková, D, Boušová, I & Wilhelmová, N (2011) Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82, 513523.10.1016/j.fitote.2011.01.018CrossRefGoogle ScholarPubMed
Willett, W & Stampfer, MJ (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124, 1727.10.1093/oxfordjournals.aje.a114366CrossRefGoogle ScholarPubMed
Institute of Medicine (US) Panel on Micronutrients (2001) Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (Internet). Washington, DC: National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK222310/ (accessed July 2024).Google Scholar
Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds (2020) Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington, DC: National Academies Press. https://www.ncbi.nlm.nih.gov/books/NBK225483/ (accessed July 2024).Google Scholar
Vázquez-Salas, RA, Torres-Sánchez, L, Galván-Portillo, M, et al. (2022) Association between life-course leisure-time physical activity and prostate cancer. Salud Publica Mex 64, 169178.10.21149/12540CrossRefGoogle ScholarPubMed
Jiménez-Mendoza, E, Vázquez-Salas, RA, Barrientos-Gutierrez, T, et al. (2018) Smoking and prostate cancer: a life course analysis. BMC Cancer 18, 160.10.1186/s12885-018-4065-7CrossRefGoogle ScholarPubMed
Hernández-Pérez, JG, Torres-Sánchez, L, Hernández-Alcaráz, C, et al. (2022) Metabolic syndrome and prostate cancer risk in Mexican men: a population case-control study. Arch Med Res 53, 594602.10.1016/j.arcmed.2022.07.003CrossRefGoogle Scholar
Willett, W (1998) Implications of Total Energy Intake for Epidemiologic Analyses. Nutritional Epidemiology, pp. 273301. New York: Oxford University Press.Google Scholar
Geybels, MS, Verhage, BAJ, van Schooten, FJ, et al. (2012) Measures of combined antioxidant and pro-oxidant exposures and risk of overall and advanced stage prostate cancer. Ann Epidemiol 22, 814820.10.1016/j.annepidem.2012.07.010CrossRefGoogle ScholarPubMed
Goodman, M, Bostick, RM, Dash, C, et al. (2007) Hypothesis: oxidative stress score as a combined measure of pro-oxidant and antioxidant exposures. Ann Epidemiol 17, 394399.10.1016/j.annepidem.2007.01.034CrossRefGoogle ScholarPubMed
Agalliu, I, Kirsh, VA, Kreiger, N, et al. (2011) Oxidative balance score and risk of prostate cancer: results from a case-cohort study. Cancer Epidemiol 35, 353361.10.1016/j.canep.2010.11.002CrossRefGoogle ScholarPubMed
Lakkur, S, Goodman, M, Bostick, RM, et al. (2014) Oxidative balance score and risk for incident prostate cancer in a prospective U.S. cohort study. Ann Epidemiol 24, 475478.e4.10.1016/j.annepidem.2014.02.015CrossRefGoogle Scholar
Fahmy, O, Alhakamy, NA, Rizg, WY, et al. (2021) Updates on molecular and biochemical development and progression of prostate cancer. J Clin Med 10, 5127.10.3390/jcm10215127CrossRefGoogle ScholarPubMed
Astori, E, Garavaglia, ML, Colombo, G, et al. (2022) Antioxidants in smokers. Nutr Res Rev 35, 7097.10.1017/S0954422421000093CrossRefGoogle ScholarPubMed
Kirsh, VA, Hayes, RB, Mayne, ST, et al. (2006) Supplemental and dietary vitamin E, beta-carotene, and vitamin C intakes and prostate cancer risk. J Natl Cancer Inst 98, 245254.10.1093/jnci/djj050CrossRefGoogle ScholarPubMed
Puentes-Rosas, E, Sesma, S & Gómez-Dantés, O (2005) Estimación de la población con seguro de salud en México mediante una encuesta nacional [Medical insurance coverage in Mexico]. Salud Pública de México 47, 2226.Google Scholar
Torres-Sánchez, L, Hernández-Pérez, JG, Escamilla-Nuñez, C, et al. (2023) Disparities on prostate cancer survival in Mexico: a retrospective cohort study. Salud Publica Mex 65, 236244.10.21149/14266CrossRefGoogle Scholar
Sánchez-Pimienta, TG, López-Olmedo, N, Rodríguez-Ramírez, S, et al. (2016) High prevalence of inadequate calcium and iron intakes by Mexican population groups as assessed by 24-hour recalls. J Nutr 146, 1874S1880S.10.3945/jn.115.227074CrossRefGoogle ScholarPubMed
Willett, W, Rockström, J, Loken, B, et al. (2019) Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447492.10.1016/S0140-6736(18)31788-4CrossRefGoogle ScholarPubMed
Supplementary material: File

Martínez-Alonso et al. supplementary material

Martínez-Alonso et al. supplementary material
Download Martínez-Alonso et al. supplementary material(File)
File 254.8 KB