Hostname: page-component-54dcc4c588-xh45t Total loading time: 0 Render date: 2025-10-13T05:57:07.735Z Has data issue: false hasContentIssue false

Biparental care and reproductive success in reintroduced and captive populations of the Critically Endangered Puerto Rican Parrot Amazona vittata

Published online by Cambridge University Press:  15 September 2025

Brian Ramos-Güivas*
Affiliation:
Puerto Rico Department of Natural and Environmental Resources, San Juan, Puerto Rico 00917 Department of Biology, New Mexico State University , Las Cruces, NM, USA
Timothy F. Wright
Affiliation:
Department of Biology, New Mexico State University , Las Cruces, NM, USA
*
Corresponding author: Brian Ramos-Güivas; Email: brianrg@nmsu.edu

Summary

Parental care is a fundamental aspect of bird behaviour and is crucial for offspring survival. In species exhibiting biparental care, the differing strategies employed by each parent can significantly influence the reproductive success of the breeding pair. For threatened species in captive breeding programmes, the impact of captive conditions adds further complexity and importance to understanding the dynamics of parental care and their effects on reproduction. Our study examines the relationship between parental care behaviours and reproductive success in the Critically Endangered Puerto Rican Parrot Amazona vittata, specifically investigating how these behaviours may differ between captive and reintroduced populations and female and male parents. We hypothesised that parental care behaviours influence reproductive success and predicted differences based on sex and population. Using video recordings, we quantified key metrics, including the number of feeding bouts per visit, the mean feeding bout duration per visit, and the duration of a nest visit. We examined the relationship between parental care behaviours and reproductive success and analysed factors that affect parental care behaviours. Our findings indicate that parental care behaviours are independently influenced by both sex and population, with no evidence of an interaction between these factors. Furthermore, parental care behaviours are associated with reproductive success. Males spent less time inside the nest than females, while captive birds exhibited fewer and shorter feeding bouts, suggesting that captivity influences parental care strategies. With multiple factors impacting wild populations, captivity may become a resource to avoid extinction for many species. By documenting potential challenges for species with biparental care, video monitoring could help to refine captive breeding programmes and conservation efforts for other threatened bird populations.

Resumen

Resumen

El cuidado parental es un aspecto fundamental del comportamiento de las aves que es crucial para la supervivencia de las crías. En las especies que exhiben cuidado biparental, las diferentes estrategias empleadas por cada padre pueden influir significativamente en el éxito reproductivo de la pareja. Para las especies en peligro de extinción con programas de cría en cautiverio, el impacto de las condiciones de cautiverio agrega mayor complejidad e importancia a la comprensión de la dinámica del cuidado parental y sus efectos en la reproducción. Nuestro estudio examina la relación entre las conductas de cuidado parental y el éxito reproductivo en la amenazada Amazona de Puerto Rico Amazona vittata, con un énfasis específico en comprender cómo estas conductas pueden diferir según el sexo y la población. Utilizando grabaciones de video obtenidas de poblaciones silvestres y cautivas, cuantificamos métricas claves, incluido el número de eventos de alimentación en una visita al nido, la duración promedio de cada evento de alimentación y la duración de una visita al nido, y examinamos la relación de estos comportamientos de cuidado de los padres con la producción de volantones. Planteamos la hipótesis de que las conductas de cuidado de los padres influirían en el éxito reproductivo y predijimos diferencias basadas en el sexo y las poblaciones. Nuestros hallazgos indican que los comportamientos de cuidado parental están influenciados por el sexo y la población, y se relacionan con el éxito reproductivo. Encontramos que las poblaciones y el sexo parental influyen en el comportamiento de cuidado de los padres. Los individuos en cautiverio muestran un menor número de eventos de alimentación y un promedio de duración de alimentación más corto que los individuos silvestres. Las machos muestran una mayor tendencia a pasar menos tiempo dentro del nido en comparación con las hembras. También encontramos que la edad promedio de los polluelos influyeron en ciertos aspectos de las conductas de cuidado parental. Anticipar los posibles desafíos al cuidado biparental a través de programas similares de monitoreo por video podría contribuir a perfeccionar los programas de cría en cautiverio y los esfuerzos de conservación de otras poblaciones de aves en peligro de extinción.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Angelier, F., Holberton, R.L. and Marra, P.P. (2009). Does stress response predict return rate in a migratory bird species? A study of American redstarts and their non-breeding habitat. Proceedings of the Royal Society B: Biological Sciences 276, 35453551.10.1098/rspb.2009.0868CrossRefGoogle Scholar
Angelier, F., Wingfield, J.C., Tartu, S. and Chastel, O. (2016). Does prolactin mediate parental and life-history decisions in response to environmental conditions in birds? A review. Hormones and Behavior 77, 1829.10.1016/j.yhbeh.2015.07.014CrossRefGoogle ScholarPubMed
Bart, J. and Tornes, A. (1989). Importance of monogamous male birds in determining reproductive success: Evidence for house wrens and a review of male-removal studies. Behavioral Ecology and Sociobiology 24, 109116.10.1007/BF00299642CrossRefGoogle Scholar
Beissinger, S.R., Wunderle, J.M., Meyers, J.M., Saether, B.E. and Engen, S. (2008). Anatomy of a bottleneck: Diagnosing factors limiting population growth in the Puerto Rican parrot. Ecological Monographs 78, 185203.10.1890/07-0018.1CrossRefGoogle Scholar
Berkunsky, I., Quillfeldt, P., Brightsmith, D.J., Abbudd, M.C., Aguilare, J.M.R.E., Alemán-Zelayaf, U. et al. (2017). Current threats faced by Neotropical parrot populations. Biological Conservation 214, 278287.10.1016/j.biocon.2017.08.016CrossRefGoogle Scholar
Bowkett, A.E. (2009). Recent captive-breeding proposals and the return of the ark concept to global species conservation. Conservation Biology 23, 773776.10.1111/j.1523-1739.2008.01157.xCrossRefGoogle ScholarPubMed
Brooke, M.D.L. (1978). Some factors affecting the laying date, incubation and breeding success of the manx shearwater, Puffinus puffinus. Journal of Animal Ecology 47, 477495.10.2307/3795CrossRefGoogle Scholar
Budden, A.E. and Beissinger, S.R. (2009). Resource allocation varies with parental sex and brood size in the asynchronously hatching green-rumped parrotlet (Forpus passerinus). Behavioral Ecology and Sociobiology 63, 637647.10.1007/s00265-008-0698-xCrossRefGoogle Scholar
Cabezas, S., Carrete, M., Tella, J.L., Marchant, T.A. and Bortolotti, G.R. (2013). Differences in acute stress responses between wild-caught and captive-bred birds: A physiological mechanism contributing to current avian invasions? Biological Invasions 15, 521527.10.1007/s10530-012-0304-zCrossRefGoogle Scholar
Cockburn, A. (2006). Prevalence of different modes of parental care in birds. Proceedings of the Royal Society B: Biological Sciences 273, 13751383.10.1098/rspb.2005.3458CrossRefGoogle ScholarPubMed
Cooke, F., Bousfield, M.A. and Sadura, A. (1981). Mate change and reproductive success in the Lesser Snow Goose. The Condor: Ornithological Applications 83, 322327. https://doi.org/10.2307/1367500CrossRefGoogle Scholar
Faust, L., Bergstrom, Y., Thompson, S.D. and Bier, L. (2019). PopLink Version 2.5.2. Chicago: Lincoln Park Zoo.Google Scholar
Forshaw, J.M. and Knight, F. (2010). Parrots of the World. Vol. 70. Oxford: Princeton University Press.10.1515/9781400836208CrossRefGoogle Scholar
Fowler, G.S. (1993). Ecological and Endocrinological Aspects of Long-term Pair Bonds in the Magellanic Penguin (Spheniscus magellanicus). PhD dissertation, University of Washington.Google Scholar
Gilby, A.J., Mainwaring, M.C., Rollins, L.A. and Griffith, S.C. (2011). Parental care in wild and captive zebra finches: measuring food delivery to quantify parental effort. Animal Behaviour 81, 289295.10.1016/j.anbehav.2010.10.020CrossRefGoogle Scholar
Grissot, A., Araya-Salas, M., Jakubas, D., Kidawa, D., Boehnke, R., Błachowiak-Samołyk, K. et al. (2019). Parental coordination of chick provisioning in a planktivorous Arctic seabird under divergent conditions on foraging grounds. Frontiers in Ecology and Evolution 7, 113.10.3389/fevo.2019.00349CrossRefGoogle Scholar
Hemmings, N.L., Slate, J. and Birkhead, T.R. (2012). Inbreeding causes early death in a passerine bird. Nature Communications 3, 863. https://doi.org/10.1038/ncomms1870CrossRefGoogle Scholar
International Union for Conservation of Nature (IUCN) (2022). The IUCN Red List of Threatened Species. Available at https://www.iucnredlist.org (accessed 9 August 2020).Google Scholar
Karasov, W.H. and Wright, J. (2002). Nestling digestive physiology and begging. In Wright, J. and Leonard, M.L. (eds), The Evolution of Begging: Competition, Cooperation and Communication. Dordrecht: Springer, pp. 199219.10.1007/0-306-47660-6_11CrossRefGoogle Scholar
Ketterson, E. and Nolan, V. Jr (1994). Male parental behavior in birds. Annual Review of Ecology and Systematics 25, 601628.10.1146/annurev.es.25.110194.003125CrossRefGoogle Scholar
Krebs, E.A., Cunningham, R.B. and Donnelly, C.F. (1999). Complex patterns of food allocation in asynchronously hatching broods of crimson rosellas. Animal Behaviour 57, 753763.10.1006/anbe.1998.1029CrossRefGoogle ScholarPubMed
Leus, K. (2011). Captive breeding and conservation. Zoology in the Middle East 54, 151158.10.1080/09397140.2011.10648906CrossRefGoogle Scholar
Mason, G.J. (2010). Species differences in responses to captivity: stress, welfare and the comparative method. Trends in Ecology and Evolution 25, 713721.10.1016/j.tree.2010.08.011CrossRefGoogle ScholarPubMed
Møller, A.P. (2000). Male parental care, female reproductive success, and extrapair paternity. Behavioral Ecology 11, 161168.10.1093/beheco/11.2.161CrossRefGoogle Scholar
Møller, A.P. and Birkhead, T.R. (1993). Certainty of paternity covaries with paternal care in birds. Behavioral Ecology and Sociobiology 33, 261268.10.1007/BF02027123CrossRefGoogle Scholar
Ollason, J.C. and Dunnet, G.M. (1986). Relative effects of parental performance and egg quality on breeding success of Fulmars Fulmarus glacialis. Ibis 128, 290296. https://doi.org/10.1111/j.1474-919X.1986.tb02678.xCrossRefGoogle Scholar
Ramos-Güivas, B., Jawor, J.M. and Wright, T.F. (2021). Seasonal variation in fecal glucocorticoid levels and their relationship to reproductive success in captive populations of an endangered parrot. Diversity 13, 617.10.3390/d13120617CrossRefGoogle Scholar
Rodriguez-Vidal, J.A. (1959). Puerto Rican Parrot Study, vol. 1. San Juan: Agricultural Commission.Google Scholar
Royle, N.J., Hartley, I.R. and Parker, G.A. (2006). Consequences of biparental care for begging and growth in zebra finches, Taeniopygia guttata. Animal Behaviour 72, 123130. https://doi.org/10.1016/j.anbehav.2005.09.023CrossRefGoogle Scholar
Seal, U.S., Foose, T.J. and Ellis, S. (1994). Conservation Assessment and Management Plans (CAMPs) and Global Captive Action Plans (GCAPs). In Olney, P.J.S., Mace, G.M. and Feistner, A.T.C. (eds), Creative Conservation. Dordrecht: Springer, pp. 312325.10.1007/978-94-011-0721-1_16CrossRefGoogle Scholar
Slagsvold, T. and Wiebe, K.L. (2007). Hatching asynchrony and early nestling mortality: the feeding constraint hypothesis. Animal Behaviour 73, 691700.10.1016/j.anbehav.2006.05.021CrossRefGoogle Scholar
Snyder, N.F.R., McGowan, P., Gilardi, J. and Grajal, A. (eds) (2000). Parrots: Status Survey and Conservation Action Plan 2000-2004. IUCN/SSC Action Plans for the Conservation of Biological Diversity . Gland/Cambridge: International Union for Conservation of Nature (IUCN).Google Scholar
Snyder, N.F.R., Wiley, J.W. and Kepler, C.B. (1987). The Parrots of Luquillo: Natural History and Conservation of the Puerto Rican Parrot. Los Angeles: Western Foundation of Vertebrate Zoology.Google Scholar
Spoon, T.R., Millam, J.R. and Owings, D.H. (2006). The importance of mate behavioural compatibility in parenting and reproductive success by cockatiels, Nymphicus hollandicus. Animal Behaviour 71, 315326.10.1016/j.anbehav.2005.03.034CrossRefGoogle Scholar
Stamps, J., Clark, A., Arrowood, P.A.T. and Kus, B. (1985). Parent-offspring conflict in budgerigars. Behaviour 94, 140.10.1163/156853985X00253CrossRefGoogle Scholar
Stoleson, S.H. and Beissinger, S.R. (1997). Hatching asynchrony, brood reduction, and food limitation in a Neotropical parrot. Ecological Monographs 67, 131154.10.1890/0012-9615(1997)067[0131:HABRAF]2.0.CO;2CrossRefGoogle Scholar
Vergara-Tabares, D.L., Cordier, J. M., Landi, M.A., Olah, G. and Nori, J. (2020). Global trends of habitat destruction and consequences for parrot conservation. Global Change Biology 26, 42514262.10.1111/gcb.15135CrossRefGoogle ScholarPubMed
Vigo-Trauco, G., Martínez-Sovero, G. and Brightsmith, D.J. (2024). Age difference, not food scarcity or sibling interactions, may drive brood reduction in wild Scarlet Macaws in Southeastern Peru. Diversity 16, 657.10.3390/d16110657CrossRefGoogle Scholar
Waltman, J.R. and Beissinger, S.R. (1992). Breeding behavior of the Green-rumped Parrotlet. The Wilson Bulletin 104, 6584.Google Scholar
White, T.H., Collazo, J.A., Dinsmore, S.J. and Llerandi-Román, I. (2014). Niche restriction and conservatism in a neotropical psittacine: The case of the Puerto Rican parrot. In Devore, B. (ed.), Habitat Loss: Causes, Impacts on Biodiversity and Reduction Strategies. New York: Nova Science Publishers, pp. 183.Google Scholar
Wilson, K.A., Field, R. and Wilson, M.H. (1995). Successful nesting behavior of Puerto Rican parrots. The Wilson Bulletin 107, 518529.Google Scholar
Wilson, K.A., Wilson, M.H. and Field, R. (1997). Behavior of Puerto Rican parrots during failed nesting attempts. The Wilson Bulletin 109, 490503.Google Scholar
Wright, T.F., Lewis, T.C., Lezama-López, M., Smith-Vidaurre, G. and Dahlin, C.R. (2018). Yellow-naped Amazon Amazona auropalliata populations are markedly low and rapidly declining in Costa Rica and Nicaragua. Bird Conservation International 29, 291307. https://doi.org/10.1017/S0959270918000114CrossRefGoogle Scholar
Wright, T.F., Toft, C.A., Enkerlin-Hoeflich, E., Gonzalez-Elizondo, J., Albornoz, M., Rodríguez-Ferraro, A. et al. (2001). Nest poaching in Neotropical parrots. Conservation Biology 15, 710720.10.1046/j.1523-1739.2001.015003710.xCrossRefGoogle Scholar
Supplementary material: File

Ramos-Güivas and Wright supplementary material

Ramos-Güivas and Wright supplementary material
Download Ramos-Güivas and Wright supplementary material(File)
File 148.2 KB