Hostname: page-component-54dcc4c588-mz6gc Total loading time: 0 Render date: 2025-10-06T23:49:39.477Z Has data issue: false hasContentIssue false

An interdisciplinary approach to brain evolution: A long due debate

Published online by Cambridge University Press:  12 April 2004

Francisco Aboitiz*
Affiliation:
Departamento de Psiquiatría and Centro de Investigaciones Médicas, Facultad de Medicina, Pontificia Universidad Católica de Chile; and Millennium Nucleus for Integrative Neuroscience, Marcoleta 387, 2° piso, Casilla 114-D, Santiago 1, Chile
Daniver Morales*
Affiliation:
Developmental Neurobiology Laboratory, The Rockefeller University, New York, NY 10021
Juan Montiel*
Affiliation:
Departamento de Psiquiatría and Centro de Investigaciones Médicas, Facultad de Medicina, Pontificia Universidad Católica de Chile; and Millennium Nucleus for Integrative Neuroscience, Marcoleta 387, 2° piso, Casilla 114-D, Santiago 1, Chile

Abstract:

A dorsalization mechanism is a good candidate for the evolutionary origin of the isocortex, producing a radial and tangential expansion of the dorsal pallium (and perhaps other structures that acquired a cortical phenotype). Evidence suggests that a large part of the dorsal ventricular ridge (DVR) of reptiles and birds derives from the embryonic ventral pallium, whereas the isocortex possibly derives mostly from the dorsal pallium. In early mammals, the development of olfactory-hippocampal associative networks may have been pivotal in facilitating the selection of a larger and more complex dorsal pallium which received both collothalamic and lemnothalamic sensory information. Finally, although it is not clear exactly when mammalian brain expansion began, fossil evidence indicates that this was a late event in mammaliaform evolution.

Information

Type
Authors' Response
Copyright
Copyright © Cambridge University Press 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abbie, A. A. (1940) Cortical lamination in the monotremata. Journal of Comparative Neurology 72:428–67. [ABB]Google Scholar
Aboitiz, F. (1988) Homology: A comparative or a historical concept? Acta Biotheoretica 37:2729. [rFA]10.1007/BF00050805CrossRefGoogle ScholarPubMed
Aboitiz, F. (1990) Behavior, body types and the irreversibility of evolution. Acta Biotheoretica 38:91101. [rFA]CrossRefGoogle ScholarPubMed
Aboitiz, F. (1992) The evolutionary origin of the mammalian cerebral cortex. Biological Research 25:4149. [arFA]Google ScholarPubMed
Aboitiz, F. (1995) Homology in the evolution of the cerebral hemispheres: The case of reptilian dorsal ventricular ridge and its possible correspondence with mammalian neocortex. Journal of Brain Research 4:461–72. [arFA]Google Scholar
Aboitiz, F. (1999a) Evolution of isocortical organization. A tentative scenario including roles of reelin, p35/cdk5 and the subplate zone. Cerebral Cortex 9:655–61. [arFA]10.1093/cercor/9.7.655CrossRefGoogle Scholar
Aboitiz, F. (1999b) Comparative development of the mammalian isocortex and the reptilian dorsal ventricular ridge. Evolutionary considerations. Cerebral Cortex 9:783–91. [aFA]10.1093/cercor/9.8.783CrossRefGoogle Scholar
Aboitiz, F. (2001) The evolution of cortical development. Trends in Neurosciences 24:202203. [aFA]CrossRefGoogle Scholar
Aboitiz, F. & Montiel, J. (2001) Anatomy of “mesencephalic” dopaminergic cell groups in the central nervous system. In: Mechanisms of degeneration and protection of the dopaminergic system, ed. Segura-Aguilar, J. Graham, F. P.. [aFA]Google Scholar
Aboitiz, F., Montiel, J. & López, J. (2001a) An hypothesis on the early evolution of the develoment of the isocortex. Brain Research Bulletin 57:481–83. [aFA]10.1016/S0361-9230(01)00681-5CrossRefGoogle Scholar
Aboitiz, F., Montiel, J., Morales, D. & Concha, M. (2002) Evolutionary divergence of the reptilian and the mammalian brains. Considerations on connectivity and development. Brain Research Reviews 39:141–53. [rFA]10.1016/S0165-0173(02)00180-7CrossRefGoogle ScholarPubMed
Aboitiz, F., Morales, D. & Montiel, J. (2001b) The inverted neurogenetic gradient of the mammalian isocortex: Development and evolution. Brain Research Reviews 38:129–39. [arFA]CrossRefGoogle Scholar
Abramson, B. P. & Chalupa, L. M. (1988) Multiple pathways from the superior colliculus to the extrageniculate visual thalamus of the cat. Journal of Comparative Neurology 271:397418. [OG]10.1002/cne.902710308CrossRefGoogle Scholar
Acámpora, D. & Simeone, A. (1999) Understanding the roles of Otx1 and Otx2 in the control of brain morphogenesis. Trends in Neuroscience 22:116–22. [aFA]Google ScholarPubMed
Adams, M. M., Hof, P. R., Gattass, R., Webster, M. J. & Ungerleider, L. G. (2000) Visual cortical projections and chemoarchitecture of macaque monkey pulvinar. Journal of Comparative Neurology 419:377–93. [OG]10.1002/(SICI)1096-9861(20000410)419:3<377::AID-CNE9>3.0.CO;2-E3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Ahissar, E. (1998) Temporal-code to rate-code conversion by neuronal phaselocked loops. Neural Computation 10:597650. [H-V]CrossRefGoogle ScholarPubMed
Allendoerfer, K. L. & Shatz, C. J. (1994) The subplate, a transient neocortical structure: Its role in the development of connections between thalamus and cortex. Annual Review of Neuroscience 17:185218. [aFA, HS]10.1146/annurev.ne.17.030194.001153CrossRefGoogle ScholarPubMed
Allman, J. (1977) Evolution of the visual system in the early primates. In: Progress in psychobiology and physiological psychology, vol. VII, ed. Sprague, J. M. & Epstein, A. N. Academic Press. [ABB]Google Scholar
Altman, J. & Bayer, S. A. (1981) Time of origin of neurons of the rat superior colliculus in relation to other components of the visual and visuomotor pathways. Experimental Brain Research 42:424–34. [OG, AR]Google ScholarPubMed
Alvarez, P., Lipton, P. A., Melrose, R. & Eichenbaum, H. (2001) Differential effects of damage within the hippocampal region on memory for a natural, nonspatial odor-odor association. Learning and Memory 8:7986. [aFA]10.1101/lm.38201CrossRefGoogle ScholarPubMed
Alvarez, P., Zola-Morgan, S. & Squire, L. R. (1995) Damage limited to the hippocampal region produces long-lasting impairment in monkeys. Journal of Neuroscience 15:3796–807. [MC]CrossRefGoogle Scholar
Anderson, S. A., Eisenstat, D. D., Shi, L. & Rubenstein, J. L. R. (1997a) Interneuron migration from basal forebrain to neocortex: Dependence on Dlx genes. Science 278:474–76. [aFA]CrossRefGoogle Scholar
Anderson, S. A. Marín, O., Horn, C., Jennings, K. & Rubenstein, J. L. R. (2001) Distinct cortical migrations from the medial and the lateral ganglionis eminences. Development 128:353–63. [aFA, DAF]CrossRefGoogle ScholarPubMed
Anderson, S. A., Mione, M., Yun, K. & Rubenstein, J. L. R. (1999) Differential origins of neocortical projection and local circuit neurons: Role of Dlx genes in neocortical interneuronogenesis. Cerebral Cortex 9:646–54. [aFA]10.1093/cercor/9.6.646CrossRefGoogle ScholarPubMed
Anderson, S. A., Qiu, M., Bulfone, A., Eisenstat, D. D., Meneses, J., Pedersen, R. & Rubenstein, J. L. R. (1997b) Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19:2737. [aFA]CrossRefGoogle Scholar
Angevine, J. B. & Sidman, R. L. (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192:766–68. [aFA]10.1038/192766b0CrossRefGoogle ScholarPubMed
Ariëns Kappers, C. V., Huber, C. G. & Crosby, E. C. (1936) The comparative anatomy of the nervous system of vertebrates, including man. Hafner. [aFA]Google Scholar
Avigan, M. R. & Powers, A. S. (1995) The effects of MK-801 injections and dorsal cortex lesions on maze learning in turtles (Chrysemys picta). Psychobiology 23:6368. [ASP]CrossRefGoogle Scholar
Bach, M. E., Hawkins, R. D., Osman, M., Kandel, E. R. & Mayford, M. (1995) Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal LTP in the range of the theta frequency. Cell 81:905–15. [H-V]10.1016/0092-8674(95)90010-1CrossRefGoogle Scholar
Bannerman, D. M., Yee, B. K., Lemaire, M., Wilbrecht, L., Jarrard, L., Iversen, S. D., Rawlins, J. N. & Good, M. A. (2001) The role of the entorhinal cortex in two forms of spatial learning and memory. Experimental Brain Research 141:281303. [ASP]Google ScholarPubMed
Bar, I., Lambert De Rouvroit, C. & Goffinet, A. (2000) Reelin mRNA expression during embryonic brain development in the turtle Emys orbicularis. Journal of Comparative Neurology 413:463–79. [aFA]Google Scholar
Barkai, E. & Hasselmo, M. H. (1997) Acetylcholine and associative memory in the piriform cortex. Molecular Neurobiology 15:1729. [H-V]10.1007/BF02740613CrossRefGoogle ScholarPubMed
Behan, M. & Haberly, L. B. (1999) Intrinsic and efferent connections of the endopiriform nucleus of the rat. Journal of Comparative Neurology 408:532–48. [aFA]3.0.CO;2-S>CrossRefGoogle Scholar
Belekhova, M. G. & Ivazov, N. I. (1983) Analysis of the conduction of visual, somatic and audiovibrational sensory information of the hippocampal cortex in the lizard. Neurofiziologiia 15:153–60. [FM-G]Google ScholarPubMed
Bellion, A., Wassef, M. & Metin, C.(2003) Early differences in axonal outgrowth, cell migration and GABAergic differentiation properties between the dorsal and lateral cortex. Cerebral Cortex 13:203–14. [rFA]10.1093/cercor/13.2.203CrossRefGoogle ScholarPubMed
Benjamin, R. M., Jackson, J. C., Golden, G. T. & West, C. H. K. (1982) Sources of olfactory input to opossum mediodorsal nucleus identified by horseradish peroxidase and autoradiographic methods. Journal of Comparative Neurology 207: 358–68. [aFA]10.1002/cne.902070407CrossRefGoogle ScholarPubMed
Berkley, K. J. (1973) Response properties of cells in ventrobasal and posterior group nuclei of the cat. Journal of Neurophysiology 36:940–52. [OG]10.1152/jn.1973.36.5.940CrossRefGoogle ScholarPubMed
Berkley, K. J., Budell, R. J., Blomquist, A. & Bull, M. (1986) Output systems of dorsal column nuclei in cat. Brain Research Bulletin 11:199225. [OG]10.1016/0165-0173(86)90012-3CrossRefGoogle Scholar
Bernier, B., Bar, I., Pieau, C., Lambert De Rouvroit, C. & Goffinet, A. M. (1999) Reelin mRNA expression during embryonic brain development in the turtle Emys orbicularis. Journal of Comparative Neurology 413:463–79. [rFA]10.1002/(SICI)1096-9861(19991025)413:3<463::AID-CNE8>3.0.CO;2-F3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Bishop, K. M., Garel, S., Nakagawa, Y., Rubenstein, J. L. R. & O’Leary, D. D. M. (2003) Emx1 and Emx2 cooperate to regulate cortical size, lamination, neuronal differentiation, development of cortical efferents, and thalamocortical pathfinding. Journal of Comparative Neurology 457:345–60. [rFA, LM]10.1002/cne.10550CrossRefGoogle ScholarPubMed
Bishop, K. M., Goudreau, G. & O’Leary, D. D. M. (2000) Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288:344–49. [aFA, FM-G, LM]10.1126/science.288.5464.344CrossRefGoogle ScholarPubMed
Blau, A. & Powers, A. S. (1989) Discrimination learning in turtles after lesions of the dorsal cortex or basal forebrain. Psychobiology 17:445–49. [ASP]10.3758/BF03337806CrossRefGoogle Scholar
Bond, J., Roberts, E., Mochida, G. H., Hampshire, D. J., Scott, S., Askham, J. M., Springell, K., Mahadevan, M., Crow, Y. J., Markham, A. F., Walsh, C. A., & Woods, C. G. (2002) ASPM is a major determinant of cerebral cortical size. Nature Genetics 32:316–20. [aFA]10.1038/ng995CrossRefGoogle Scholar
Braford, M. R. Jr., ed. (1995) Evolution of the forebrain. Sixth Annual Karger Workshop. Brain, Behaviour and Evolution 46:185338. [RGN]Google Scholar
Brauth, S. E. (1990) Histochemical strategies in the study of neural evolution. Brain, Behaviour and Evolution 36:100–15. [aFA]10.1159/000115301CrossRefGoogle Scholar
Bressler, S. L., Coppola, R. & Nakamura, R. (1993) Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366:153–56. [H-V]CrossRefGoogle ScholarPubMed
Bruce, L. L. & Butler, A. B. (1984a) Telencephalic connections in lizards: I. Projections to cortex. Journal of Comparative Neurology 229:585601. [FM-G, ASP]10.1002/cne.902290411CrossRefGoogle Scholar
Bruce, L. L. & Butler, A. B. (1984b) Telencephalic connections in lizards: II. Projections to anterior dorsal ventricular ridge. Journal of Comparative Neurology 229:602–15. [DAF]10.1002/cne.902290412CrossRefGoogle Scholar
Bruce, L. L., Kornblum, H. I. & Seroogy, K. B. (2002) Comparison of thalamic populations in mammals and birds: Expression of ErbB4 mRNA. Brain Research Bulletin 57:455–61. [AR]10.1016/S0361-9230(01)00678-5CrossRefGoogle ScholarPubMed
Bruce, L. L. & Neary, T. J. (1995) The limbic system of tetrapods: A comparative analysis of cortical and amygdalar populations. Brain, Behavior and Evolution 46:224–34. [aFA, OG, TS]10.1159/000113276CrossRefGoogle ScholarPubMed
Bullock, T. H. & Heiligenberg, W., eds. (1986) Electroreception. Wiley. [RGN]Google Scholar
Bunsey, M. & Eichenbaum, H. (1996) Conservation of hippocampal memory function in rats and humans. Nature 379:255–57. [aFA]10.1038/379255a0CrossRefGoogle ScholarPubMed
Burton, S., Murphy, D., Qureshi, U., Sutton, P. & O’Keefe, J. (2000) Combined lesions of hippocampus and subiculum do not produce deficits in a nonspatial social olfactory memory task. Journal of Neuroscience 20:5468 –75. [aFA]10.1523/JNEUROSCI.20-14-05468.2000CrossRefGoogle ScholarPubMed
Bussey, T. J., Saksida, L. M. & Murray, E. A. (2003) Impairments in visual discrimination after perirhinal cortex lesions: Testing “declarative” vs. “perceptual-mnemonic” views of perirhinal cortex function. European Journal of Neuroscience 17:649–60. [H-V]10.1046/j.1460-9568.2003.02475.xCrossRefGoogle ScholarPubMed
Butler, A. B. (1994a) The evolution of the dorsal pallium in the telencephalon of amniotes: Cladistic analysis and a new hypothesis. Brain Research. Brain Research Reviews 19:66101. [arFA, ABB, DAF, ASP, AR, CS, TS]10.1016/0165-0173(94)90004-3CrossRefGoogle Scholar
Butler, A. B. (1994b) The evolution of the dorsal thalamus of jawed vertebrates, including mammals: A cladistic analysis and a new hypothesis. Brain Research. Brain Research Reviews 19:2965. [arFA, ABB, DAF, TS]10.1016/0165-0173(94)90003-5CrossRefGoogle Scholar
Butler, A. B. (1995) The dorsal thalamus of jawed vertebrates: A comparative viewpoint. Brain, Behavior and Evolution 46:209–23. [ABB]10.1159/000113275CrossRefGoogle ScholarPubMed
Butler, A. B. & Hodos, W. (1996) Comparative vertebrate neuroanatomy: Evolution and adaptation. Wiley-Liss. [ASP]Google Scholar
Butler, A. B. & Molnár, Z. (2002) Development and evolution of the collopallium in amniotes: A new hypothesis of field homology. Brain Research Bulletin 57:475–79. [aFA, ABB, OG, RGN, TS]10.1016/S0361-9230(01)00679-7CrossRefGoogle ScholarPubMed
Butler, A. B., Molnár, Z. & Manger, P. R. (2002) Apparent absence of claustrum in monotremes: Implications for forebrain evolution in amniotes. Brain, Behavior and Evolution 60:230–40. [ABB, AR]10.1159/000066698CrossRefGoogle ScholarPubMed
Butler, A. B. & Saidel, W. M. (2000) Defining sameness: Historical, biological and generative homology. Bioessays 22:846–53. [rFA]10.1002/1521-1878(200009)22:9<846::AID-BIES10>3.0.CO;2-R3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Cairney, J. (1926) A general survey of the forebrain of Sphenodon punctatum. Journal of Comparative Neurology 42:255348. [RGN]10.1002/cne.900420204CrossRefGoogle Scholar
Canteras, N. S. & Swanson, L. W. (1992) Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: A PHAL anterograde tract-tracing study in the rat. Journal of Comparative Neurology 324:180–94. [MB]10.1002/cne.903240204CrossRefGoogle Scholar
Caric, D., Gooday, D., Hill, R. E., McConnell, S. K., Price, D. J. (1997) Determination of the migratory capacity of embryonic cortical cells lacking the transcription factor Pax-6. Development 124:5087–96. [aFA]10.1242/dev.124.24.5087CrossRefGoogle ScholarPubMed
Carpenter, M. B. (1991) Core text of neuroanatomy, 4th edition. Williams & Wilkins. [GO]Google Scholar
Carroll, R. L. (1988) Vertebrate paleontology and evolution. Freeman Press. [aFA, DAF]Google Scholar
Carvalho, I. S. (2000) Paleontologia. Interciência Edition. [DAF]Google Scholar
Casanova, C., Merabet, L., Desautels, A. & Minville, K. (2001) Higher-order motion processing in the pulvinar. Progress in Brain Research 134:7182. [OG]CrossRefGoogle ScholarPubMed
Cassim, F., Labyt, E., Devos, D., Defebvre, L., Destee, A. & Derambure, P. (2002) Relationship between oscillations in the basal ganglia and synchronization of cortical activity. Epileptic Disorders 4(Suppl 3):3145. [H-V]10.1684/j.1950-6945.2002.tb00544.xCrossRefGoogle ScholarPubMed
Catalano, S. M., Robertson, R. T. & Killackey, H. P. (1996) Individual axon morphology and thalamocortical topography in developing rat somatosensory cortex. Journal of Comparative Neurology 366:3653. [HS]10.1002/(SICI)1096-9861(19960325)367:1<36::AID-CNE4>3.0.CO;2-K3.0.CO;2-K>CrossRefGoogle Scholar
Catalano, S. M. & Shatz, C. J. (1998) Activity-dependent cortical target selection by thalamic axons. Nature 281:559–62. [HS]Google ScholarPubMed
Catania, K. C. (2000) Cortical organization in insectivora: The parallel evolution of the sensory periphery and the brain. Brain, Behaviour and Evolution 55:311–21. [EG]10.1159/000006666CrossRefGoogle ScholarPubMed
Chae, T., Kwon, Y. T., Bronson, R., Dikkes, P., Li, E. & Tsai, L. H. (1997) Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18:2942. [aFA]10.1016/S0896-6273(01)80044-1CrossRefGoogle ScholarPubMed
Chapouton, P., Gärtner, A. & Götz, M. (1999) The role of Pax6 in restricting cell migration between developing cortex and basal ganglia. Development 126:5569–79. [aFA]10.1242/dev.126.24.5569CrossRefGoogle ScholarPubMed
Chenn, A. & Walsh, C. A. (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297:365–69. [aFA]10.1126/science.1074192CrossRefGoogle ScholarPubMed
Cobos, I., Puelles, L. & Martínez, S. (2001) The avian telencephalic subpallium originates inhibitory neurons that invade tangentially the pallium (dorsal ventricular ridge and cortical areas). Developmental Biology 239:3045. [aFA]10.1006/dbio.2001.0422CrossRefGoogle ScholarPubMed
Colombo, M. & Broadbent, N. (2000) Is the avian hippocampus a functional homologue of the mammalian hippocampus? Neuroscience and Biobehavioral Reviews 24:465–84. [MC]10.1016/S0149-7634(00)00016-6CrossRefGoogle Scholar
Colombo, M., Cawley, S. & Broadbent, N. (1997a) The effects of hippocampal and area parahippocampalis lesions in pigeons: II. Concurrent discrimination and spatial memory. Quarterly Journal of Experimental Psychology 50B:172–89. [MC]Google Scholar
Colombo, M., Swain, N., Harper, D. & Alsop, B. (1997b) The effects of hippocampal and area parahippocampalis lesions in pigeons: I. Delayed matching to sample. Quarterly Journal of Experimental Psychology 50B:149–71. [MC]Google Scholar
Cookson, K. (2001) Field homology: A meaningful definition. European Journal of Morphology 39:3945. [RGN]10.1076/ejom.39.1.39.7985CrossRefGoogle ScholarPubMed
Cordery, P. & Molnár, Z. (1999) Embryonic development of connections in turtle pallium. Journal of Comparative Neurology 413:2654. [arFA]10.1002/(SICI)1096-9861(19991011)413:1<26::AID-CNE2>3.0.CO;2-N3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Corwin, J. V., Fussinger, M., Meyer, R. C., King, V. R. & Reep, R. L. (1994) Bilateral destruction of the ventrolateral orbital cortex produces allocentric but not egocentric spatial deficits in rats. Behavioral Brain Research 61:7986. [MB]10.1016/0166-4328(94)90010-8CrossRefGoogle Scholar
Cranney, J. & Powers, A. S. (1983) The effects of core nucleus and cortical lesions in turtles on reversal and dimensional shifting. Physiological Psychology 11:103–11. [ASP]10.3758/BF03326779CrossRefGoogle Scholar
Cruce, W. L. R. & Cruce, J. A. F. (1975) Projections from the retina to the lateral geniculate nucleus and mesencephalic tectum in a reptile (Tupinambis nigropunctatus): A comparison of anterograde transport and anterograde degeneration. Brain Research 85:221–28. [FM-G]10.1016/0006-8993(75)90073-6CrossRefGoogle Scholar
Curran, T. & D’Arcangelo, G. (1998) Role of reelin in the control of brain development. Brain Research Reviews 26:285–94. [aFA]CrossRefGoogle ScholarPubMed
Davidson, E. H. (2001) Genomic regulatory systems: Development and evolution. Academic Press. [DAF]Google Scholar
Dávila, J. C., Andreu, M. J., Real, M. A., Puelles, L. & Guirado, S. (2002) Mesencephalic and diencephalic afferent connections to the thalamic nucleus rotundus in the lizard, Psammodromus algirus. European Journal of Neuroscience 16:267–82. [aFA, OG]10.1046/j.1460-9568.2002.02091.xCrossRefGoogle Scholar
Dávila, J. C., Guirado, S. & Puelles, L. (2000) Expression of calcium-binding proteins in the diencephalon of the lizard Psammodromus algirus. Journal of Comparative Neurology 427:6792. [aFA, ABB, FM-G, OG, AR]10.1002/1096-9861(20001106)427:1<67::AID-CNE5>3.0.CO;2-23.0.CO;2-2>CrossRefGoogle ScholarPubMed
Day, L. B., Crews, D. & Wilczynski, W. (1999) Relative medial and dorsal cortex volume in relation to foraging ecology in congeneric lizards. Brain, Behaviour and Evolution 54:314–22. [aFA]Google Scholar
Day, L. B., Crews, D. & Wilczynski, W. (2001) Effects of medial and dorsal cortex lesions on spatial memory in lizards. Behavioural Brain Research 118:2742. [aFA, ASP]Google ScholarPubMed
Deacon, T. W., Eichenbaum, H., Rosenberg, P. & Eckmann, K. W. (1983) Afferent connections of the perirhinal cortex in the rat. Journal of Comparative Neurology 220:168–90. [MB]10.1002/cne.902200205CrossRefGoogle ScholarPubMed
Dehay, C., Savatier, P., Cortay, V. & Kennedy, H. (2001) Cell cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons. Journal of Neuroscience 21:201–14. [LM]10.1523/JNEUROSCI.21-01-00201.2001CrossRefGoogle ScholarPubMed
Desan, P. H. (1988) Organization of the cerebral cortex in turtle. In: The forebrain of reptiles. Current concepts on structure and function, ed. Schwerdtfeger, W. K. & Smeets, W. J. A. J. Karger. [FM-G]Google Scholar
Donoghue, J. P. & Parham, C. (1983) Afferent connections of the lateral agranular field of the rat motor cortex. Journal of Comparative Neurology 217:390404. [H-V]CrossRefGoogle ScholarPubMed
Dulabon, L., Olson, E. C., Taglienti, M. G., Eisenhuth, S., McGrath, B., Walsh, C. A., Kreidberg, J. A. & Anton, E. S. (2000) Reelin binds alpha3 beta1 integrin and inhibits neuronal migration. Neuron 27:3344. [aFA]CrossRefGoogle Scholar
Dumbrava, D., Faubert, J. & Casanova, C. (2001) Global motion integration in the cat's lateral posterior-pulvinar complex. European Journal of Neuroscience 13:2218–26. [OG]10.1046/j.0953-816x.2001.01598.xCrossRefGoogle ScholarPubMed
Dusek, J. A. & Eichenbaum, H. (1997) The hippocampus and memory for orderly stimulus relations. Proceedings of the National Academy of Sciences USA 94:7109–14. [aFA]CrossRefGoogle ScholarPubMed
Ebbesson, S. O. E. (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell and Tissue Research 213:179212. [FM-G]10.1007/BF00234781CrossRefGoogle ScholarPubMed
Ebbesson, S. O. E. (1984) Evolution and ontogeny of neural circuits. Behavioral Brain Science 7:321–66. [HS]10.1017/S0140525X00018379CrossRefGoogle Scholar
Ebbesson, S. O. E. & Heimer, L. (1970) Projections of the olfactory tract fibers in the nurse shark (Ginglymostoma cirratum). Brain Research 17:4755. [aFA]CrossRefGoogle ScholarPubMed
Ebner, F. F. (1969) A comparison of primitive forebrain organization in metatherian and eutherian mammals. Annals of the New York Academy of Sciences 167:241–57. [aFA]10.1111/j.1749-6632.1969.tb20447.xCrossRefGoogle Scholar
Egorov, A. V., Hamam, B. N., Fransen, E., Hasselmo, M. E. & Alonso, A. A. (2002) Graded persistent activity in entorhinal cortex neurons. Nature 420:173–78. [H-V]10.1038/nature01171CrossRefGoogle ScholarPubMed
Eichenbaum, H. (1998) Using olfaction to study memory. Annals of the New York Academy of Sciences 855:657–69. [aFA]10.1111/j.1749-6632.1998.tb10642.xCrossRefGoogle ScholarPubMed
Eichenbaum, H. (1999) The hippocampus and mechanisms of declarative memory. Behavioural Brain Research 103:123–33. [aFA]10.1016/S0166-4328(99)00044-3CrossRefGoogle ScholarPubMed
Eichenbaum, H. (2000a) A cortical-hippocampal system for declarative memory, Nature Reviews Neuroscience 1:4150. [MB]10.1038/35036213CrossRefGoogle Scholar
Eichenbaum, H. (2000b) Hippocampus: Mapping or memory? Current Biology 10:R785R787. [arFA]10.1016/S0960-9822(00)00763-6CrossRefGoogle Scholar
Eichenbaum, H., Dudchenko, P., Wood, E. R., Shapiro, M. & Tanila, H. (1999) The hippocampus, place cells, and memory: Is it spatial memory or a memory space? Neuron 23:209–26. [aFA]10.1016/S0896-6273(00)80773-4CrossRefGoogle ScholarPubMed
Eisthen, H. L. (1997) Evolution of vertebrate olfactory systems. Brain, Behaviour and Evolution 50:222–33. [CS]10.1159/000113336CrossRefGoogle ScholarPubMed
Feldman, S. G. & Kruger, L. (1980) Axonal transport study of ascending projection of medial lemniscal neurons in rat. The Journal of Comparative Neurology 192:427–54. [OG]10.1002/cne.901920305CrossRefGoogle Scholar
Fernández, A., Pieau, C., Repérant, J., Boncinelli, E. & Wassef, M. (1998) Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: Implications for the evolution of telencephalic subdivisions in amniotes. Development 125:2099–111. [TS]CrossRefGoogle ScholarPubMed
Finlay, B. L. & Darlington, R. B. (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–84. [aFA]10.1126/science.7777856CrossRefGoogle ScholarPubMed
Finlay, B. L., Hersman, M. N. & Darlington, R. B. (1998) Patterns of vertebrate neurogenesis and the paths of vertebrate evolution. Brain, Behavior and Evolution 52:232–42. [aFA]10.1159/000006566CrossRefGoogle ScholarPubMed
Frahm, H. D. & Zilles, K. (1994) Volumetric comparison of hippocampal regions in 44 primate species. Journal of Brain Research 3:343–54. [HS]Google Scholar
Frank, L., Brown, E. N. & Wilson, M. (2000) Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27:169–78. [aFA]10.1016/S0896-6273(00)00018-0CrossRefGoogle ScholarPubMed
Fremouw, T., Jackson-Smith, P. & Kesner, R. P. (1997) Impaired place learning and unimpaired cue learning in hippocampal-lesioned pigeons. Behavioral Neuroscience 111:963–75. [MC]10.1037/0735-7044.111.5.955CrossRefGoogle ScholarPubMed
Frost, B. J., Wylie, D. R. & Want, Y.-C. (1990) The processing of object and self-motion in the tectofugal and accessory optic pathway of birds. Vision Research 30:1677–88. [OG]10.1016/0042-6989(90)90152-BCrossRefGoogle ScholarPubMed
Frotscher, M. (1998) Cajal-Retzius cells, Reelin, and the formation of layers. Current Opinion in Neurobiology 8:570–75. [aFA]10.1016/S0959-4388(98)80082-2CrossRefGoogle ScholarPubMed
Fukuda, T., Kawano, H., Osumi, N., Eto, K. & Kawamura, K. (2000) Histogenesis of the cerebral cortex in rat fetuses with a mutation in the Pax-6 gene. Developmental Brain Research 120:6575. [aFA]10.1016/S0165-3806(99)00187-XCrossRefGoogle ScholarPubMed
Gagliardo, A., Ioalé, P. & Bingman, V. P. (1999) Homing pigeons: The role of the hippocampal formation in the representation of landmarks used for navigation. Journal of Neuroscience 19:311–15. [CS]10.1523/JNEUROSCI.19-01-00311.1999CrossRefGoogle ScholarPubMed
Gagliardo, A., Mazzotto, M. & Bingman, V. P. (1996) Hippocampal lesion effects on learning strategies in homing pigeons. Proceedings of the Royal Society of London B 263:529–34. [aFA]Google Scholar
Galef, B. G. (1990) An adaptionist perspective on social learning, social feeding and social foraging in Norway rats. In: Contemporary issues in comparative psychology, ed. Dewsbury, D. A. Jr. Sinauer. [aFA]Google Scholar
Garda, A. L., Puelles, L., Rubenstein, J. L. R. & Medina, L. (2002) Expression patterns of Wnt8b and Wnt7b in the chicken embryonic brain suggest a correlation with forebrain organizers. Neuroscience 113:689–98. [LM]10.1016/S0306-4522(02)00171-9CrossRefGoogle Scholar
Garstang, W. (1922) The theory of recapitulation: A critical restatement of the biogenetic law. Journal of the Linnaean Society (Zoology) London 35:81101. [aFA, RGN]10.1111/j.1096-3642.1922.tb00464.xCrossRefGoogle Scholar
Gellon, G. & McGinnis, W. (1998) Shaping animal body plans in development and evolution by modulation of Hox expression patterns. BioEssays 20:116–25. [aFA]10.1002/(SICI)1521-1878(199802)20:2<116::AID-BIES4>3.0.CO;2-R3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Gilmore, E. C. & Herrup, K. (2001) Neocortical cell migration: GABAergic neurons and cells in layers I and VI move in a cyclin-dependent kinase 5-independent manner. Journal of Neuroscience 21(24):9690–700. [aFA]10.1523/JNEUROSCI.21-24-09690.2001CrossRefGoogle Scholar
Goffinet, A. M., Bar, I., Bernier, B., Trujillo, C., Raynaud, A. & Meyer, G. (1999) Reelin expression during embryonic brain development in lacertilian lizards. Journal of Comparative Neurology 414:533–50. [rFA]10.1002/(SICI)1096-9861(19991129)414:4<533::AID-CNE8>3.0.CO;2-V3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Goffinet, A. M., Daumerie, C., Langerwerf, B. & Pieau, C. (1986) Neurogenesis in reptilian cortical structures: 3H-thymidine autoradiographic analysis. Journal of Comparative Neurology 243:106–16. [aFA]10.1002/cne.902430109CrossRefGoogle ScholarPubMed
Gonzalez, A., Russchen, F. T. & Lohman, A. H. M. (1990) Afferent connections of the striatum and the nucleus accumbens in the lizard Gekko gecko. Brain, Behavior and Evolution 36:3958. [SG]10.1159/000115296CrossRefGoogle ScholarPubMed
González, G., Puelles, L. & Medina, L. (2002) Organization of the mouse dorsal thalamus based on topology, calretinin immunostaining, and gene expression. Brain Research Bulletin 57:439–42. [ABB]10.1016/S0361-9230(01)00720-1CrossRefGoogle Scholar
Good, M. & Honey, R. C. (1991) Conditioning and contextual retrieval in hippocampal rats. Behavioral Neuroscience 105:499509. [MC]10.1037/0735-7044.105.4.499CrossRefGoogle ScholarPubMed
Gorski, J. A., Talley, T., Qiu, M., Puelles, L., Rubenstein, J. L. R. & Jones, K. R. (2002) Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the emx1-expressing lineage. Journal of Neuroscience 22:6309–14. [rFA, ABB, AR]10.1523/JNEUROSCI.22-15-06309.2002CrossRefGoogle Scholar
Götz, M., Stoykova, A. & Gruss, P. (1998) Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21:1031–44. [DAF]10.1016/S0896-6273(00)80621-2CrossRefGoogle ScholarPubMed
Graham, J., Pearson, H. E., Berman, N. & Murphy, E. H. (1981) Laminar organization of superior colliculus in the rabbit: A study of receptive field properties of single units. Journal of Neurophysiology 45:915–32. [OG]10.1152/jn.1981.45.5.915CrossRefGoogle ScholarPubMed
Grisham, W. & Powers, A. S. (1989) Function of the dorsal and medial cortex of turtles in learning. Behavioral Neuroscience 103:991–97. [ASP]10.1037/0735-7044.103.5.991CrossRefGoogle ScholarPubMed
Grisham, W. & Powers, A. S. (1990) Effects of dorsal and medial cortex lesions on reversals in turtles. Physiology and Behavior 47:4349. [ASP]10.1016/0031-9384(90)90040-BCrossRefGoogle ScholarPubMed
Grossberg, S. (1999) How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex. Spatial Vision 12:163–85. [AT]10.1163/156856899X00102CrossRefGoogle ScholarPubMed
Guirado, S. & Dávila, J. C. (2002) Thalamo-telencephalic connections: New insights on the cortical organization in reptiles. Brain Research Bulletin 57:451–54. [FM-G]10.1016/S0361-9230(01)00677-3CrossRefGoogle ScholarPubMed
Guirado, S., Dávila, J. C., Real, M. A. & Medina, L. (2000) Light and electron microscopic evidence for projections from the thalamic nucleus rotundus to targets in the basal ganglia, the dorsal ventricular ridge, and the amygdaloid complex in a lizard. Journal of Comparative Neurology 424:216–32. [arFA, DAF, SG, OG]10.1002/1096-9861(20000821)424:2<216::AID-CNE3>3.0.CO;2-83.0.CO;2-8>CrossRefGoogle Scholar
Gulisano, M., Broccoli, V., Pardini, C. & Boncinelli, E. (1996) Emx1 and Emx2 show different patterns of expression during proliferation and differentiation of the developing cerebral cortex. European Journal of Neuroscience 8:1037–50. [aFA]10.1111/j.1460-9568.1996.tb01590.xCrossRefGoogle ScholarPubMed
Guo, H., Hong, S., Jin, X. L., Chen, R. S., Avasthi, P. P., Tu, Y. T., Ivanco, T. L. & Li, Y. (2000) Specificity and efficiency of cre-mediated recombination in emx1-cre knock-in mice. Biochemical and Biophysical Research Communication 273:661–65. [AR]10.1006/bbrc.2000.2870CrossRefGoogle ScholarPubMed
Gupta, A., Tsai, L. H. & Wynshaw-Boris, A. (2002) Life is a journey: A genetic look at neocortical development. Nature Reviews Genetics. 3:342–55. [aFA]10.1038/nrg799CrossRefGoogle Scholar
Haberly, L. B. (1990) Comparative aspects of olfactory cortex. In: Cerebral cortex, vol. 8 (Parts A and B), ed. Jones, E. G. & Peters, A. Plenum Press. [aFA]Google Scholar
Haberly, L. B. & Price, J. L. (1978) Association and commissural fiber systems of the olfactory cortex of the rat. I. Systems originating in the pyriform cortex and adjacent areas. Journal of Comparative Neurology 178:711–40. [aFA]10.1002/cne.901780408CrossRefGoogle Scholar
Hack, I., Bancilla, M., Loulier, K., Carroll, P. & Cremer, H. (2002) Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nature Neuroscience 5:939–45.10.1038/nn923CrossRefGoogle ScholarPubMed
Hagevik, A. & McClellan, A. D. (1994) Coupling of spinal locomotor networks in larval lamprey revealed by receptor blockers for inhibitory amino acids: Neurophysiology and computer modeling. Journal of Neurophysiology 72:1810–29. [H-V]10.1152/jn.1994.72.4.1810CrossRefGoogle ScholarPubMed
Hall, J. A., Foster, R. E., Ebner, F. F. & Hall, W. C. (1977) Visual cortex in a reptile, the turtle (Pseudemys scripta and Chrysemys picta). Brain Research 130:197216. [ASP]10.1016/0006-8993(77)90270-0CrossRefGoogle Scholar
Hall, W. C. & Ebner, F. F. (1970) Thalamotelencephalic projections in the turtle (Pseudemys scripta). Journal of Comparative Neurology 140:101–22. [FMG, ASP]10.1002/cne.901400107CrossRefGoogle ScholarPubMed
Hampson, R. E., Simeral, J. D. & Deadwyler, S. A. (1999) Distribution of spatial and nonspatial information in dorsal hippocampus. Nature 402:610–14. [aFA]10.1038/45154CrossRefGoogle ScholarPubMed
Hasselmo, M. E. (1999) Neuromodulation: Acetylcholine and memory consolidation. Trends in Cognitive Science 3:351–59. [H-V]10.1016/S1364-6613(99)01365-0CrossRefGoogle ScholarPubMed
Hasselmo, M. E., Hay, J., Ilyn, M. & Gorchetchnikov, A. (2002) Neuromodulation, theta rhythm and rat spatial navigation. Neural Networks 15(4–6):689707. [H-V]10.1016/S0893-6080(02)00057-6CrossRefGoogle ScholarPubMed
Haug, H. (1987) Brain sizes, surfaces and neuronal sizes of the cortex cerebri: A stereological investigation of man and his variability and a comparison with some mammals. American Journal of Anatomy 180:126–42. [rFA]10.1002/aja.1001800203CrossRefGoogle Scholar
Hedin-Pereira, C., De Moraes, E. C. P., Santiago, M. F., Méndez-Otero, R. & Lent, R. (2000) Migrating neurons cross a reelin-rich territory to form an organized tissue out of embryonic cortical slices. European Journal of Neuroscience 12:4536–40. [aFA]10.1046/j.0953-816X.2000.01332.xCrossRefGoogle Scholar
Heimer, L. (1970) Selective silver-impregnation of degenerating axons and their terminals. In: Contemporary research methods in neuroanatomy, ed. Nauta, W. J. H. & Ebbesson, S. O. E. Springer. [aFA]Google Scholar
Heins, N., Malatesta, P., Cecconi, F., Nakafuku, M., Tucker, K. L., Hack, M. A., Chapouton, P., Barde, Y. A. & Gotz, M. (2002) Glial cells generate neurons: The role of the transcription factor Pax6. Nature Neuroscience 5:308–15. [aFA]10.1038/nn828CrossRefGoogle ScholarPubMed
Hellmann, B. & Güntürkün, O. (2001) The structural organization of parallel information processing within the tectofugal visual system of the pigeon. Journal of Comparative Neurology 429:94112. [OG]10.1002/1096-9861(20000101)429:1<94::AID-CNE8>3.0.CO;2-53.0.CO;2-5>CrossRefGoogle ScholarPubMed
Hermer-Vazquez, R., Hermer-Vazquez, L. & Chapin, J. K. (in press) Olfactomotor coupling during skilled reaching in rats. Proceedings of the National Academy of Sciences USA. [H-V]Google Scholar
Herrick, T. M., Cooper, J. A. (2002) A hypomorphic allele of dab1 reveals regional differences in reelin-Dab1 signaling during brain development. Development 129:787–96. [aFA]10.1242/dev.129.3.787CrossRefGoogle ScholarPubMed
Hetzel, W. (1974) Die Ontogenese des Telencephalons bei Lacerta sicula (Rafinesque) mit besonderer Berücksichtigung der pallialen Entwicklung. Zoologische Beiträge, Neue Folge 20:361458. [RGN]Google Scholar
Hevner, R. F., Miyashita-Lin, E. & Rubenstein, J. L. R. (2002) Cortical and thalamic axon pathfinding defects in Tbr1, Gbx2, and Emx1 mutant mice: Evidence that cortical and thalamic axons interact and guide each other. Journal of Comparative Neurology 447:817. [LM]10.1002/cne.10219CrossRefGoogle Scholar
Hevner, R. F., Shi, L., Justice, N., Hsueh, Y. P., Sheng, M., Smiga, S., Bulfone, A., Goffinet, A. M. Campagnoni, A. T. & Rubenstein, J. L. R. (2001) Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29:353–66. [aFA]10.1016/S0896-6273(01)00211-2CrossRefGoogle ScholarPubMed
Hicks, T. P., Stark, C. A. & Fletcher, W. A. (1986) Origins of afferents to visual suprageniculate nucleus of the cat. The Journal of Comparative Neurology 246:544–54. [OG]10.1002/cne.902460410CrossRefGoogle ScholarPubMed
Hoffmann, K. P. (1973) Conduction velocity in pathways from retina to superior colliculus in the cat: A correlation with receptive field properties. Journal of Neurophysiology 36:409–24. [OG]10.1152/jn.1973.36.3.409CrossRefGoogle Scholar
Hohmann, C. F. & Berger-Sweeney, J. (1998) Cholinergic regulation of cortical development and plasticity. New twists to an old story. Perspectives in Developmental Neurobiology, 5(4):401–25. [H-V]Google Scholar
Holland, L. Z. & Holland, N. D. (2001) Evolution of neural crest and placodes: Amphioxus as a model for the ancestral vertebrate? Journal of Anatomy 199(Pt. 1–2):8598. [H-V]10.1046/j.1469-7580.199.parts1-2.8.xCrossRefGoogle Scholar
Hoogland, P. V. (1981) Spinothalamic projections in a lizard, Varanus exanthematicus: An HRP study. The Journal of Comparative Neurology 198:712. [FM-G]10.1002/cne.901980103CrossRefGoogle Scholar
Hoogland, P. V. & Vermeulen-Vanderzee, E. (1989) Efferent connections of the dorsal cortex of the lizard Gekko gecko studied with Phaseolus vulgaris-leucoagglutinin. Journal of Comparative Neurology 285:289303. [FM-G]10.1002/cne.902850302CrossRefGoogle ScholarPubMed
Hopson, J. A. (1979) Paleoneurology. In: Biology of the reptilia, vol. 4, ed. Gans, C. C., Northcutt, R. G. & Ulinski, P. S. Academic Press.Google Scholar
Hunt, M. E., Kesner, R. P. & Evans, R. B. (1994) Memory for spatial location: Functional dissociation of entorhinal cortex and hippocampus. Psychobiology 22:186–94. [ASP]10.3758/BF03327098CrossRefGoogle Scholar
Husband, S. A. & Shimizu, T. (1999) Efferent projections of the ectostriatum in the pigeon (Columba livia). The Journal of Comparative Neurology 406:329– 45. [OG]10.1002/(SICI)1096-9861(19990412)406:3<329::AID-CNE3>3.0.CO;2-A3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Insausti, R. (1993) Comparative anatomy of the entorhinal cortex and hippocampus in mammals. Hippocampus 3:1926. [aFA]10.1002/hipo.1993.4500030705CrossRefGoogle ScholarPubMed
Ivazov, N. I. & Belekhova, M. G. (1982) Electrophysiological studies on afferent organization of the thalamus in the lizard Ophisaurus apodus. (Russian) Journal of Evolutionary Biochemistry and Physiology 18:7686. [FM-G]Google Scholar
Jassik-Gerschenfeld, D., Minos, F. & Cond-Courtine, F. (1970) Receptive field properties of directionally selective units in the pigeon's optic tectum. Brain Research 24:407–21. [OG]10.1016/0006-8993(70)90182-4CrossRefGoogle ScholarPubMed
Jay, T. M. & Witter, M. P. (1991) Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. Journal of Comparative Neurology 313: 574–86. [MB]10.1002/cne.903130404CrossRefGoogle ScholarPubMed
Jerison, H. J. (1973) Evolution of the brain and intelligence. Academic Press. [arFA]Google Scholar
Jerison, H. J. (1990) Fossil evidence on the evolution of the neocortex. In: Cerebral cortex, vol. 8A, ed. Jones, E. G. & Peters, A. Plenum Press. [aFA]Google Scholar
Johnson, D. M., Illig, K. R., Behan, M. & Haberly, L. B. (2000) New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that “primary” olfactory cortex functions like “association” cortex in other sensory systems. Journal of Neuroscience 20:6974–82. [H-V]10.1523/JNEUROSCI.20-18-06974.2000CrossRefGoogle ScholarPubMed
Johnston, J. B. (1916) Evidence of a motor pallium in the forebrain of reptiles. The Journal of Comparative Neurology 22:475–79. [FM-G]10.1002/cne.900260503CrossRefGoogle Scholar
Kaas, J. H. (1980) A comparative survey of visual cortex organization in mammals. In: Comparative neurology of the telencephalon, ed. Ebbesson, S. O. E. Plenum Press. [FM-G]Google Scholar
Kaas, J. H. (1982) The segregation of function in the nervous system: Why do sensory systems have so many subdivisions? Contributions to Sensory Physiology 7:201–40. [ABB]10.1016/B978-0-12-151807-3.50012-4CrossRefGoogle Scholar
Kaas, J. H. (1995) The evolution of isocortex. Brain, Behaviour and Evolution 46:187–96. [ABB]10.1159/000113273CrossRefGoogle ScholarPubMed
Kaas, J. H. & Collins, C. E. (2001) Variability in the sizes of brain parts. Behavioral and Brain Sciences 24:288–90. [EG]10.1017/S0140525X01333952CrossRefGoogle Scholar
Källén, B. (1951) On the ontogeny of the reptilian forebrain. Nuclear structures and ventricular sulci. Journal of Comparative of Neurology 95:307–47. [aFA, RGN]10.1002/cne.900950204CrossRefGoogle ScholarPubMed
Karten, H. J. (1968) The ascending auditory pathway in the pigeon (Columba livia). II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Research 11:134–53. [arFA]10.1016/0006-8993(68)90078-4CrossRefGoogle ScholarPubMed
Karten, H. J. (1969) The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Annals of the New York Academy of Science 167:164–79. [arFA, ABB, TS]10.1111/j.1749-6632.1969.tb20442.xCrossRefGoogle Scholar
Karten, H. J. (1991) Homology and the evolutionary origins of the “neocortex.” Brain, Behavior and Evolution 38:264–72. [DAF, AR, CS, TS]10.1159/000114393CrossRefGoogle ScholarPubMed
Karten, H. J. (1997) Evolutionary developmental biology meets the brain: The origins of mammalian neocortex. Proceedings of the National Academy of Sciences (USA) 94:2800–04. [aFA]10.1073/pnas.94.7.2800CrossRefGoogle Scholar
Karten, H. J., Hodos, W., Nauta, W. J. H. & Revzin, A. M. (1973) Neural connections of the “Visual Wulst” of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). The Journal of Comparative Neurology 150:253–78. [FM-G]10.1002/cne.901500303CrossRefGoogle ScholarPubMed
Katoh, Y. Y., Arai, R. & Benedek, G. (2000) Bifurcating projections from the cerebellar fastigial neurons to the thalamic suprageniculate nucleus and to the superior colliculus. Brain Research 864:308–11. [OG]10.1016/S0006-8993(00)02156-9CrossRefGoogle Scholar
Katoh, Y. Y. & Benedek, G. (1995) Organization of the colliculo-suprageniculate pathway in the cat: A wheat germ agglutinin-horseradish peroxidase study. The Journal of Comparative Neurology 352:381–97. [OG]10.1002/cne.903520306CrossRefGoogle Scholar
Kayser, A. S. & Miller, K. D. (2002) Opponent inhibition: A developmental model of layer 4 of the neocortical circuit. Neuron 33:131–42. [AT]10.1016/S0896-6273(01)00570-0CrossRefGoogle ScholarPubMed
Kemp, T. S. (1982) Mammal-like reptiles and the origin of mammals. Academic Press.Google Scholar
Kenigfest, N., Martinez-Marcos, A., Belekhova, M., Font, C., Lanuza, E., Desfilis, E. & Martinez-Garcia, F. (1997) A lacertilian dorsal retinorecipient thalamus: A re-investigation in the old-world lizard Podarcis hispanica. Brain, Behavior and Evolution 50:313–34. [FM-G]10.1159/000113344CrossRefGoogle ScholarPubMed
Kielan-Jaworowska, Z. (1986) Brain evolution in Mesozoic mammals. Contributions to Geology, University of Wyoming [Special Paper] 3:2134. [EG]Google Scholar
Kielan-Jaworowska, Z. (1997) Characters of multituberculates neglected in phylogenetic analyses of early mammals. Lethaia 29:249–66. [EG]10.1111/j.1502-3931.1996.tb01658.xCrossRefGoogle Scholar
Kilgard, M. P. & Merzenich, M. M. (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–18. [H-V]10.1126/science.279.5357.1714CrossRefGoogle ScholarPubMed
Kim, A. S., Lowenstein, D. H. & Pleasure, S. J. (2001) Wnt receptors and Wnt inhibitors are expressed in gradients in the developing telencephalon. Mechanisms of Development 103:167–72. [aFA]10.1016/S0925-4773(01)00342-2CrossRefGoogle ScholarPubMed
Kim, H. M., Qu, T., Kriho, V., Lacor, P., Smalheiser, N., Pappas, G. D., Guidotti, A., Costa, E., Sugaya, K. (2002) Reelin function in neural stem cell biology. Proceedings of the National Academy of Sciences (USA) 99:4020–25. [aFA]10.1073/pnas.062698299CrossRefGoogle ScholarPubMed
King, V., Corwin, J. V. & Reep, R. L. (1989) Production and characterization of neglect in rats with unilateral lesions of ventrolateral orbital cortex. Experimental Neurology 105:287–99. [MB]10.1016/0014-4886(89)90132-5CrossRefGoogle ScholarPubMed
Kirsche, W. (1972) Die Entwicklung des Telencephalon der Reptilien und deren Beziehung zur Hirn-Bauplanlehre. Nova Acta Leopoldina 36:178. [RGN]Google Scholar
Korzeniewska, E., Brinkhus, H. B. & Zimmermann, M. (1986) Activities of single neurons in midbrain and thalamus of cats during conditioned nocifensive behavior. Pain 26:313–27. [OG]10.1016/0304-3959(86)90060-6CrossRefGoogle ScholarPubMed
Kostovic, I. & Rakic, P. (1990) Developmental history of the transitional subplate zone in visual and somatosensory cortex of macaque monkey and human brain. Journal of Comparative Neurology 297:441–70. [aFA]10.1002/cne.902970309CrossRefGoogle Scholar
Krubitzer, L. A. (1995) The organization of neocortex in mammals: Are species differences really so different? Trends in Neuroscience 18:408–17. [FM-G, HS]10.1016/0166-2236(95)93938-TCrossRefGoogle ScholarPubMed
Krubitzer, L. A. (2000) How does evolution build a complex brain? Novartis Foundation Symposium 228:206–20. [ABB]10.1002/0470846631.ch14CrossRefGoogle ScholarPubMed
Künzle, H. & Radke-Schuller, S. (2001) Cortical connections of the claustrum and subjacent cell groups in the hedgehog tenrec. Anatomy and Embryology 203:403–15. [aFA]Google ScholarPubMed
Kwon, Y. T., Gupta, A., Zhou, Y., Nikolic, M. & Tsai, L. H. (2000) Regulation of N-cadherin-mediated adhesion by the p35-Cdk5 kinase. Current Biology 10:363–72. [aFA]10.1016/S0960-9822(00)00411-5CrossRefGoogle ScholarPubMed
Kwon, Y. T. & Tsai, L. H. (1998) A novel disruption of cortical development in p35(–/–) mice distinct from reeler. Journal of Comparative Neurology 395:510–22. [aFA]10.1002/(SICI)1096-9861(19980615)395:4<510::AID-CNE7>3.0.CO;2-43.0.CO;2-4>CrossRefGoogle ScholarPubMed
Lacalli, T. C. (2001) New perspectives on the evolution of protochordate sensory and locomotory systems, and the origin of brains and heads. Philosophy Transactions of the Royal Society of London B, Biological Science 356:1565–72. [H-V]10.1098/rstb.2001.0974CrossRefGoogle ScholarPubMed
Lanuza, E., Belekhova, M., Martínez-Marcos, A., Font, C. & Martínez-García, F. (1998) Identification of the reptilian basolateral amygdala: An anatomical investigation of the afferents to the posterior dorsal ventricular ridge of the lizard Podarcis hispanica. European Journal of Neuroscience 10:3517–34. [aFA]10.1046/j.1460-9568.1998.00363.xCrossRefGoogle Scholar
Lanuza, E., Martínez-Marcos, A. & Martínez-García, F. (1999) What is the amygdala? A comparative approach. Trends in Neuroscience 22:207. [arFA]10.1016/S0166-2236(99)01395-8CrossRefGoogle Scholar
Lauder, G. (1994) Homology: Form and function. In: Homology: The hierarchical basis of comparative biology, ed. Hall, B. K. Academic Press. [RGN]Google Scholar
Lavdas, A. A., Grigoriou, M., Pachnis, V., Parnavelas, J. G. (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. Journal of Neuroscience 19:7881–88. [aFA]10.1523/JNEUROSCI.19-18-07881.1999CrossRefGoogle ScholarPubMed
Laverghetta, A. V. & Shimizu, T. (2003) Organization of the ectostriatum based on afferent connections in the zebra finch (Taeniopygia guttata). Brain Research 963:101–12. [OG]10.1016/S0006-8993(02)03949-5CrossRefGoogle ScholarPubMed
Lestienne, R., Herve-Minvielle, A., Robinson, D., Briois, L. & Sara, S. J. (1997) Slow oscillations as a probe of the dynamics of the locus coeruleus-frontal cortex interaction in anesthetized rats. Journal of Physiology Paris 91:273–84. [H-V]10.1016/S0928-4257(97)82407-2CrossRefGoogle ScholarPubMed
Linster, C. & Hasselmo, M. E. (2001) Neuromodulation and the functional dynamics of piriform cortex. Chemical Senses 26:585–94. [H-V]10.1093/chemse/26.5.585CrossRefGoogle ScholarPubMed
Lohman, A. H. M. & Van Woerden-Verkley, I. (1978) Ascending connections to the forebrain in the tegu lizard. The Journal of Comparative Neurology 182:555–94. [FM-G]10.1002/cne.901820309CrossRefGoogle Scholar
Luksch, H., Cox, K. & Karten, H. J. (1998) Bottlebrush dendritic endings and large dendritic fields: Motion detecting neurons in the tectofugal pathway. Journal of Comparative Neurology 396:399414. [OG, AR]10.1002/(SICI)1096-9861(19980706)396:3<399::AID-CNE9>3.0.CO;2-Y3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Luo, Z.-X., Crompton, A. W. & Sun, A. L. (2001) A new mammaliaform from the early Jurassic and evolution of mammalian characteristics. Science 292:1535–40. [aFA, DAF]10.1126/science.1058476CrossRefGoogle ScholarPubMed
Luo, Z.-X., Kielan-Jaworowska, Z. & Cifelli, R. L. (2002) In quest for a phylogeny of Mesozoic mammals. Acta Palaeontologica Polonica 47:178. [EG]Google Scholar
Lynch, G. (1986) Synapses, circuits, and the beginnings of memory. MIT Press. [arFA]Google Scholar
Macphail, E. M. (2001) Conservation in the neurology and psychology of cognition in vertebrates. In: Brain Evolution and Cognition, ed. Roth, G. & Wulliman, M. F. Wiley. [CS]Google Scholar
Magdaleno, S., Keshvara, L. & Curran, T. (2002) Rescue of ataxia and preplate splitting by ectopic expression of Reelin in reeler mice. Neuron 33:573–86. [aFA]10.1016/S0896-6273(02)00582-2CrossRefGoogle ScholarPubMed
Major, D. E., Luksch, H. & Karten, H. J. (2000) Bottlebrush dendritic endings and large dendritic fields: Motion-detecting neurons in the mammalian tectum. Journal of Comparative Neurology 423:243–60. [aFA, OG, AR]10.1002/1096-9861(20000724)423:2<243::AID-CNE5>3.0.CO;2-53.0.CO;2-5>CrossRefGoogle ScholarPubMed
Malatesta, P., Hack, M. A., Hartfuss, E., Kattenmann, H., Klinkert, W., Kirchhoff, F. & Götz, M. (2003) Neuronal or glial progeny: Regional differences in radial glia fate. Neuron 37:751–64. [DAF]10.1016/S0896-6273(03)00116-8CrossRefGoogle ScholarPubMed
Mallamaci, A., Iannone, R., Briata, P., Pintonello, L., Mercurio, S., Boncinelli, E. & Corte, G. (1998) EMX2 protein in the developing mouse brain and olfactory area. Mechanisms of Development 77:165–72. [aFA]10.1016/S0925-4773(98)00141-5CrossRefGoogle ScholarPubMed
Mallamaci, A., Muzio, L., Chan, C. H., Parnavelas, J. & Boncinelli, E. (2000) Area identity shifts in the early cerebral cortex of Emx 2-/- mutant mice. Nature Neuroscience 3:679–86. [aFA]10.1038/76630CrossRefGoogle Scholar
Manger, P. R., Elston, G. N. & Pettigrew, J. D. (2002) Multiple maps and activitydependent representational plasticity in the anterior Wulst of the adult barn owl (Tyto alba). European Journal of Neuroscience 16:743–50. [CS]10.1046/j.1460-9568.2002.02119.xCrossRefGoogle ScholarPubMed
Mannen, H. &. Li, S. S. L. (1999) Molecular evidence for a clade of turtles. Molecular Phylogenetics and Evolution 13:144–48. [aFA]10.1006/mpev.1999.0640CrossRefGoogle ScholarPubMed
Manns, I. D., Alonso, A. & Jones, B. E. (2003) Rhythmically discharging Basal forebrain units comprise cholinergic, GABAergic, and putative glutamatergic cells. Journal of Neurophysiology 89:1057–66. [H-V]10.1152/jn.00938.2002CrossRefGoogle ScholarPubMed
Maren, S. (1999) Long-term potentiation in the amygdala: A mechanism for emotional learning and memory. Trends in Neurosciences 22:561–66. [aFA]10.1016/S0166-2236(99)01465-4CrossRefGoogle ScholarPubMed
Margrie, T. W., Rostas, J. A. P. & Sah, P. (2000) Inhibition of transmitter release and long-term depression in the avian hippocampus. Neuroscience Letters 284:1720. [CS]10.1016/S0304-3940(00)00992-7CrossRefGoogle ScholarPubMed
Marín, O. & Rubenstein, J. L. (2001) A long, remarkable journey: Tangential migration in the telencephalon. Nature Reviews Neuroscience. 2:780–90. [aFA]10.1038/35097509CrossRefGoogle ScholarPubMed
Marín, O., Smeets, W. J. A. J. & González, A. (1998) Evolution of the basal ganglia in tetrapods: A new perspective based on recent studies in amphibians. Trends in Neurosciences 21:487–94. [aFA]10.1016/S0166-2236(98)01297-1CrossRefGoogle ScholarPubMed
Marín-Padilla, M. (1971) Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization. Zeitschrift für Anatomie und Entwicklungsgeschichte 134:117–45. [MM-P]10.1007/BF00519296CrossRefGoogle Scholar
Marín-Padilla, M. (1972) Prenatal ontogenetic history of the principal neurons of the neocortex of the cat (Felis domestica). A Golgi study: II. Developmental differences and their significance. Zeitschrift für Anatomie und Entwicklungsgeschichte 136:125–42. [MM-P]10.1007/BF00519174CrossRefGoogle Scholar
Marín-Padilla, M. (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anatomy and Embryology 152:109–26. [aFA, MM-P]10.1007/BF00315920CrossRefGoogle ScholarPubMed
Marín-Padilla, M. (1990) Three-dimensional structural organization of layer I of the human cerebral cortex. A Golgi study. Journal of Comparative Neurology 229:89105. [MM-P]10.1002/cne.902990107CrossRefGoogle Scholar
Marín-Padilla, M. (1992) Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: A unifying theory. Journal of Comparative Neurology 321:223–40. [MM-P]10.1002/cne.903210205CrossRefGoogle ScholarPubMed
Marín-Padilla, M. (1998) Cajal-Retzius cell and the development of the neocortex. Trends in Neurociences 21:6471. [MM-P]10.1016/S0166-2236(97)01164-8CrossRefGoogle ScholarPubMed
Marín-Padilla, M. & Marín-Padilla, T. M. (1982) Origin, prenatal development and structural organization of layer I of the human motor cortex. A Golgi study. Anatomy and Embryology 164:161206. [MM-P]10.1007/BF00318504CrossRefGoogle ScholarPubMed
Martínez-de-la-Torre, M., Garda, A.-L., Puelles, E. & Puelles, L. (2002) Gbx2 expression in the late embryonic chick dorsal thalamus. Brain Research Bulletin 57:435–38. [ABB]10.1016/S0361-9230(01)00721-3CrossRefGoogle ScholarPubMed
Martinez-Garcia, F., Amiguet, M., Olucha, F. & Lopez-Garcia, C. (1986) Connections of the lateral cortex in the lizard Podarcis hispanica. Neuroscience Letter 63:3944. [H-V]10.1016/0304-3940(86)90009-1CrossRefGoogle ScholarPubMed
Martinez-Garcia, F. & Lorente, M. J. (1990) Thalamo-cortical projections in the lizard Podarcis hispanica. In: The forebrain in nonmammals. New aspects of structure and development, ed. Schwerdtfeger, W. K. & Germroth, P. Springer-Verlag. [FM-G]Google Scholar
Martinez-Marcos, A., Lanuza, E., Font, C. & Martinez-Garcia, F. (1999) Afferents to the red nucleus in the lizard Podarcis hispanica: Putative pathways for visuomotor integration. The Journal of Comparative Neurology 411:3555. [FM-G]10.1002/(SICI)1096-9861(19990816)411:1<35::AID-CNE4>3.0.CO;2-B3.0.CO;2-B>CrossRefGoogle Scholar
McDonald, A. J. (1991) Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience 44:144. [aFA]10.1016/0306-4522(91)90247-LCrossRefGoogle Scholar
Medina, L. & Reiner, A. (1995) Neurotransmitter organization and connectivity of the basal ganglia in vertebrates: Implications for the evolution of basal ganglia. Brain, Behavior and Evolution 46:235–58. [aFA]10.1159/000113277CrossRefGoogle Scholar
Medina, L. & Reiner, A. (2000) Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends in Neurosciences 23:112. [aFA, FM-G, CS]10.1016/S0166-2236(99)01486-1CrossRefGoogle ScholarPubMed
Mehta, M. R., Lee, A. K. & Wilson, M. A. (2002) Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417:741–46. [H-V]10.1038/nature00807CrossRefGoogle ScholarPubMed
Merabet, L., Desautels, A., Minville, K. & Casanova, C. (1998) Motion integration in a thalamic visual nucleus, Nature 396:265–68. [OG]10.1038/24382CrossRefGoogle Scholar
Michael, C. R. (1972) Functional organization of cells in superior colliculus of the ground squirrel. Journal of Neurophysiology 35:833–46. [OG]10.1152/jn.1972.35.6.833CrossRefGoogle ScholarPubMed
Mickle, W. A. & Ades, H. W. (1954) Rostral projection pathway of the vestibular system. American Journal of Physiology 176:243–46. [OG]10.1152/ajplegacy.1954.176.2.243CrossRefGoogle ScholarPubMed
Miltner, W. H., Braun, C., Arnold, M., Witte, H. & Taub, E. (1999) Coherence of gamma-band EEG activity as a basis for associative learning. Nature 397:434–36. [H-V]10.1038/17126CrossRefGoogle ScholarPubMed
Miyashita-Lin, E. M., Hevner, R., Wassarman, K. M., Martinez, S. & Rubenstein, J. L. R. (1999) Early neocortical regionalization in the absence of thalamic innervation. Science 285:906909. [LM]10.1126/science.285.5429.906CrossRefGoogle ScholarPubMed
Moens, C. B., Cordes, S. P., Giorgianni, M. W., Barsh, G. S. & Kimmel, C. B. (1998) Equivalence in the genetic control of hindbrain segmentation in fish and mouse. Development 125:381–91. [aFA]10.1242/dev.125.3.381CrossRefGoogle ScholarPubMed
Molnár, Z. & Blakemore, C. (1995) How do thalamic axons find their way to the cortex? Trends in Neurosciences 18:389–97. [aFA, FM-G]10.1016/0166-2236(95)93935-QCrossRefGoogle ScholarPubMed
Molnár, Z. & Butler, A. B. (2002a) Neuronal changes during forebrain evolution in amniotes: An evolutionary developmental perspective. In: Progress in brain research, vol. 136, ed. Azmitia, E. C., DeFelipe, J., Jones, E. G., Rakic, P. & Ribak, C. E. Elsevier. [ABB]Google Scholar
Molnár, Z. & Butler, A. B. (2002b) The corticostriatal junction: A crucial region for forebrain development and evolution. BioEssays 24:530–41. [ABB]10.1002/bies.10100CrossRefGoogle Scholar
Molnár, Z., Higashi, S. & López-Bendito, G. (2003) Choreography of early thalamocortical development. Cerebral Cortex 13:661–69. [rFA]10.1093/cercor/13.6.661CrossRefGoogle ScholarPubMed
Montagnini, A. & Treves, A. (2003) The evolution of the mammalian cortex: From lamination to arealization. Brain Research Bulletin 60:387–93. [AT]10.1016/S0361-9230(03)00057-1CrossRefGoogle ScholarPubMed
Montero, V. (1993) Retinotopy of cortical connections between the striate cortex and extrastriate visual areas in the rat. Experimental Brain Research 94:115. [aFA]10.1007/BF00230466CrossRefGoogle ScholarPubMed
Monuki, E. S. & Walsh, C. A. (2001) Mechanisms of cerebral cortical patterning in mice and humans. Nature Neuroscience 4:1199–206. [aFA]10.1038/nn752CrossRefGoogle ScholarPubMed
Mooney, R. D., Klein, B. G. & Rhoades, R. W. (1985) Correlations between the structural and functional characteristics of neurons in the superficial laminae and the hamster's superior colliculus. Journal of Neuroscience 5:29893009. [OG]10.1523/JNEUROSCI.05-11-02989.1985CrossRefGoogle ScholarPubMed
Moran, A., Wojcik, L., Cangiane, L. & Powers, A. S. (1998) Dorsal cortex lesions impair habituation in turtles (Chrysemys picta). Brain, Behavior and Evolution 51:4047. [ASP]10.1159/000006528CrossRefGoogle ScholarPubMed
Morris, R. G. M., Garrud, P., Rawlins, J. N. P. & O’Keefe, J. (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–83. [MC]10.1038/297681a0CrossRefGoogle ScholarPubMed
Morriss-Kay, G. M. (2001) Derivation of the mammalian skull vault. Journal of Anatomy 199:143–51. [GO]10.1046/j.1469-7580.2001.19910143.xCrossRefGoogle ScholarPubMed
Moss, M. L. (1960) Inhibition and stimulation of sutural fusion in the rat calvaria. Anatomical Record 136:457–67. [GO]10.1002/ar.1091360405CrossRefGoogle ScholarPubMed
Muñoz, M. D., Gaztelu, J. M. & García-Austt, E. (1998) Homo- and heterosynaptic long-term potentiation in the medial cortex of the turtle brain in vitro. Brain Research 807:155–59. [CS]10.1016/S0006-8993(98)00807-5CrossRefGoogle ScholarPubMed
Murray, E. A. & Richmond, B. J. (2001) Role of perirhinal cortex in object perception, memory, and associations. Current Opinions in Neurobiology 11:188–93. [H-V]10.1016/S0959-4388(00)00195-1CrossRefGoogle ScholarPubMed
Muzio, L., DiBenedetto, B., Stoykova, A., Boncinelli, E., Gruss, P. & Mallamaci, A. (2002a) Conversion of cerebral cortex into basal ganglia in Emx2(–/–) Pax6(Sey/Sey) double-mutant mice. Nature Neuroscience. 5:737–45. [aFA, ABB, LM]10.1038/nn892CrossRefGoogle Scholar
Muzio, L., DiBenedetto, B., Stoykova, A., Boncinelli, E., Gruss, P. & Mallamaci, A. (2002b) Emx2 and Emx1 control regionalization of the pre-neuronogenic cortical primordium. Cerebral Cortex 12:129–39. [LM]10.1093/cercor/12.2.129CrossRefGoogle Scholar
Myojin, M., Ueki, T., Sugahara, F., Murakami, Y., Shigetani, Y., Aizawa, S., Hirano, S. & Kuratani, S. (2001) Isolation of Dlx and Emx gene cognates in an agnathan species, Lampetra japonica, and their expression patterns during embryonic and larval development: Conserved and diversified regulatory patterns of homeobox genes in vertebrate head evolution. Journal of Experimental Zoology 291:6484. [aFA]Google Scholar
Nacher, J., Ramírez, C., Molowny, A. & López-García, C. (1996) Ontogeny of somatostatin immunoreactive neurons in the medial cerebral cortex and other cortical areas of the lizard Podarcis hispanica. Journal of Comparative Neurology 374:118–35. [arFA]10.1002/(SICI)1096-9861(19961007)374:1<118::AID-CNE9>3.0.CO;2-63.0.CO;2-6>CrossRefGoogle ScholarPubMed
Nadarajah, B., Brunstrom, J. E., Grutzendler, J., Wong, R. O. & Pearlman, A. L. (2001) Two modes of radial migration in early development of the cerebral cortex. Nature Neuroscience 4:143–50. [aFA]10.1038/83967CrossRefGoogle ScholarPubMed
Nadarajah, B. & Parnavelas, J. G. (2002) Modes of neuronal migration in the developing cerebral cortex. Nature Reviews Neuroscience 3:423–32. [aFA]10.1038/nrn845CrossRefGoogle ScholarPubMed
Nauta, W. J. H. & Gygax, P. A. (1951) Silver impregnation of degenerating axon terminals in the central nervous system. Stain Technology 26:511. [aFA]10.3109/10520295109113170CrossRefGoogle ScholarPubMed
Nauta, W. J. H. & Gygax, P. A. (1954) Silver impregnation of degenerating axon terminals in the central nervous system: A modified technique. Stain Technology 29:9193. [aFA]10.3109/10520295409115448CrossRefGoogle Scholar
Nauta, W. H. J. & Karten, H. J. (1970) A general profile of the vertebrate brain, with sidelights on the ancestry of the cerebral cortex. In: The Neurosciences, Second Study Program, ed. Schmitt, F. O. Rockefeller University Press. [aFA]Google Scholar
Neary, T. J. (1990) The pallium of anuran amphibians. In: Cerebral cortex, vol. 8B, ed. Jones, E. G. & Peters, A. Plenum Press. [aFA]Google Scholar
Neary, T. J. & Wilczynski, W. (1977) Ascending thalamic projections from the obex region in ranid frogs. Brain Research 138:529–33. [FM-G]10.1016/0006-8993(77)90688-6CrossRefGoogle ScholarPubMed
Nery, S., Fishell, G. & Corbin, J. G. (2002) The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nature Neuroscience 15:12791287.10.1038/nn971CrossRefGoogle Scholar
Northcutt, R. G. (1969) Discussion of the preceding paper. Annals of the New York Academy of Sciences 167:180–85. [aFA]10.1111/j.1749-6632.1969.tb20443.xCrossRefGoogle Scholar
Northcutt, R. G. (1970) The telencephalon of the western painted turtle (Chrysemys picta belli). Illinois Biological Monograph. University of Illinois Press. [RGN]Google Scholar
Northcutt, R. G. (1981) Evolution of the telencephalon in nonmammals. Annual Review of Neuroscience 4:301–50. [aFA]10.1146/annurev.ne.04.030181.001505CrossRefGoogle ScholarPubMed
Northcutt, R. G. (1984) Evolution of the vertebrate central nervous system: Patterns and processes. American Zoologist 24:701–16. [RGN]10.1093/icb/24.3.701CrossRefGoogle Scholar
Northcutt, R. G. (1990) Ontogeny and phylogeny: A re-evaluation of conceptual relationships and some applications. Brain, Behavior and Evolution 36:116–40. [RGN]10.1159/000115302CrossRefGoogle ScholarPubMed
Northcutt, R. G. (1995) The forebrain of gnathostomes: In search of a morphotype. Brain, Behavior and Evolution 46:275318. [CS]10.1159/000113279CrossRefGoogle ScholarPubMed
Northcutt, R. G. (1996a) The Agnathan ark: The origin of craniate brains. Brain, Behavior and Evolution 48:237–47. [aFA]10.1159/000113203CrossRefGoogle Scholar
Northcutt, R. G. (1996b) The origin of craniates: Neural crest, neurogenic placodes, and homeobox genes. Israel Journal of Zoology (supplement) 42:273313. [aFA]Google Scholar
Northcutt, R. G. (1999) Field homology: A meaningless concept. European Journal of Morphology 37: 9599. [arFA, RGN]10.1076/ejom.37.2.95.4755CrossRefGoogle ScholarPubMed
Northcutt, R. G. (2002) Understanding vertebrate brain evolution. Integrative and Comparative Biology 42:743–56. [RGN]10.1093/icb/42.4.743CrossRefGoogle ScholarPubMed
Northcutt, R. G. & Kaas, J. H. (1995) The emergence and evolution of mammalian neocortex. Trends in Neurosciences 18:373–79. [aFA, DAF, AR, HS]10.1016/0166-2236(95)93932-NCrossRefGoogle ScholarPubMed
Northcutt, R. G. & Kicliter, E. (1980) Organization of the amphibian telencephalon. In: Comparative neurology of the telencephalon, ed. Ebbesson, S. O. E. Plenum Press. [AR]Google Scholar
Northcutt, R. G. & Puzdrowski, R. L. (1988) Projections of the olfactory bulb and nervus terminalis in the silver lamprey. Brain, Behavior and Evolution 32:96107. [aFA]10.1159/000116537CrossRefGoogle ScholarPubMed
Northcutt, R. G. & Ronan, M. (1992) Afferent and efferent connections of the bullfrog medial pallium. Brain, Behaviour and Evolution 40:116. [FM-G]10.1159/000113898CrossRefGoogle ScholarPubMed
Nothias, F., Fishell, G. & Altaba, A. (1998) Cooperation of intrinsic and extrinsic signals in the elaboration of regional identity in the posterior cerebral cortex. Current Biology 8:459–62. [FM-G]10.1016/S0960-9822(98)70189-7CrossRefGoogle ScholarPubMed
Ohkubo, Y., Chiang, C. & Rubenstein, J. L. R. (2002) Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles. Neuroscience 111:117. [FM-G]10.1016/S0306-4522(01)00616-9CrossRefGoogle ScholarPubMed
Ohshima, T., Ward, J. M., Huh, C. G., Longenecker, G., Veeranna, , Pant, H. C., Brady, R. O., Martin, L. J. & Kulkarni, A. B. (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proceedings of the National Academy of Sciences (USA) 93:11173–78. [aFA]10.1073/pnas.93.20.11173CrossRefGoogle ScholarPubMed
O’Keefe, J. A. (1999) Do hippocampal pyramidal cells signal non-spatial as well as spatial information? Hippocampus 9:352–64. [aFA]10.1002/(SICI)1098-1063(1999)9:4<352::AID-HIPO3>3.0.CO;2-13.0.CO;2-1>CrossRefGoogle ScholarPubMed
O’Keefe, J. & Dostrowsky, J. (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research 34:171–75. [aFA]10.1016/0006-8993(71)90358-1CrossRefGoogle ScholarPubMed
O’Keefe, J. A. & Nadel, L. (1978) The hippocampus as a cognitive map. Oxford University Press. [aFA]Google Scholar
Olton, D. S., Becker, J. T. & Handelmann, G. E. (1979) Hippocampus, space, and memory. Behavioral and Brain Sciences 2:313–65. [MC]10.1017/S0140525X00062713CrossRefGoogle Scholar
Opperman, L. A., Passarelli, R. W., Morgan, E. P., Reintjes, M. & Ogle, R. C. (1995) Cranial sutures require tissue interactions with dura mater to resist osseous obliteration in vitro. Journal of Bone and Mineral Research 10:1978–87. [GO]10.1002/jbmr.5650101218CrossRefGoogle ScholarPubMed
Opperman, L. A., Sweeney, T. M., Redmon, J., Persing, J. A. & Ogle, R. C. (1993) Tissue interactions with underlying dura mater inhibit osseous obliteration of developing cranial sutures. Developmental Dynamics 198:312–22. [GO]10.1002/aja.1001980408CrossRefGoogle ScholarPubMed
Osumi, N. (2001) The role of Pax6 in brain patterning. Tohoku. Journal of Experimental Medicine 193:163–74. [aFA]Google Scholar
Pallas, S. L. (2001) Intrinsic and extrinsic factors that shape neocortical specification. Trends in Neurosciences 24:417–23. [aFA]10.1016/S0166-2236(00)01853-1CrossRefGoogle ScholarPubMed
Pannese, M., Lupo, G., Kablar, B., Boncinelli, E., Barsacchi, G. & Vignali, R. (1998) The Xenopus Emx genes identify presumptive dorsal telencephalon and are induced by head organizer signals. Mechanisms of Development 73:7383. [aFA]10.1016/S0925-4773(98)00034-3CrossRefGoogle ScholarPubMed
Parent, A. & Olivier, A. (1970) Comparative histochemical study of the corpus striatum. Journal Für Hirnforschung 12:7381. [aFA]Google ScholarPubMed
Parnavelas, J. G. (2000) The origin and migration of cortical neurones: New vistas. Trends in Neurosciences 23:126–31. [aFA]10.1016/S0166-2236(00)01553-8CrossRefGoogle ScholarPubMed
Pearce, J. M., Robert, A. D. L. & Good, M. (1998) Hippocampal lesions disrupt navigation based on cognitive maps but not heading vectors. Nature 396:7577. [MC]10.1038/23941CrossRefGoogle Scholar
Peterson, E. (1980) Behavioral studies of telencephalic functions in reptiles. In: Comparative neurology of the telencephalon, ed. Ebbesson, S. O. E. Plenum. [ASP]Google Scholar
Petrillo, M., Ritter, C. A. & Powers, A. S. (1994) A role for acetylcholine in spatial memory in turtles. Physiology and Behavior 56:135–41. [ASP]10.1016/0031-9384(94)90271-2CrossRefGoogle ScholarPubMed
Pettigrew, J. D. (1979) Neurons selective for orientation and binocular disparity in the visual wulst of the barn owl (Tyto alba). Science 193:675–78. [CS]10.1126/science.948741CrossRefGoogle Scholar
Pinto-Lord, M. C., Evrard, P. & Caviness, V. S. (1982) Obstructed neuronal migration along radial glial fibers and young neurons migrating to the neocortex of the reeler mouse: A Golgi-EM analysis. Brain Research 256:379–93. [aFA]10.1016/0165-3806(82)90181-XCrossRefGoogle Scholar
Polleux, F., Whitford, K. L., Dijkhuizen, P. A., Vitalis, T. & Ghosh, A. (2002) Control of cortical interneuron migration by neurotrophins and PI3-kinase signaling. Development 129:3147–60. [rFA]10.1242/dev.129.13.3147CrossRefGoogle ScholarPubMed
Poschel, B., Draguhn, A. & Heinemann, U. (2002) Glutamate-induced gamma oscillations in the dentate gyrus of rat hippocampal slices. Brain Research 938:2228. [H-V]10.1016/S0006-8993(02)02477-0CrossRefGoogle ScholarPubMed
Powers, A. S. (1990) Brain mechanisms of learning in reptiles. In: Neurobiology of comparative cognition, ed. Kesner, R. P. & Olton, D. S. Erlbaum. [ASP, CS]Google Scholar
Pretchl, J. C. (1994) Visual motion induces synchronous oscillations in turtle visual cortex. Proceedings of the National Academy of Sciences USA 91:12467–71. [CS]Google Scholar
Pretchl, J. C. & Bullock, T. H. (1994) Event-related potentials to omitted visual stimuli in a reptile. Electroencephalography and Clinical Neurophysiology 91:5466. [CS]Google Scholar
Puelles, L. (2001a) Brain segmentation and forebrain development in amniotes. Brain Research Bulletin 55:695710. [LM]10.1016/S0361-9230(01)00588-3CrossRefGoogle Scholar
Puelles, L. (2001b) Thoughts on the development, structure and evolution of the mammalian and avian telencephalic pallium. Philosophical Transactions of the Royal Society of London B Biological Sciences 356:1583–98. [rFA]10.1098/rstb.2001.0973CrossRefGoogle Scholar
Puelles, L., Kuwana, E., Puelles, E., Bulfone, A., Shimamura, K., Keleher, J., Smiga, S. & Rubenstein, J. L. R. (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6 and Tbr-1. Journal of Comparative Neurology 424:409–38. [arFA, ABB, DAF, LM, AR, TS]10.1002/1096-9861(20000828)424:3<409::AID-CNE3>3.0.CO;2-73.0.CO;2-7>CrossRefGoogle ScholarPubMed
Puelles, L., Kuwana, E., Puelles, E. & Rubenstein, J. L. R. (1999) Comparison of the mammalian and avian telencephalon from the perspective of gene expression data. European Journal of Morphology 37:139–50. [aFA]10.1076/ejom.37.2.139.4756CrossRefGoogle ScholarPubMed
Puelles, L. & Medina, L. (2002) Field homology as a way to reconcile genetic and developmental variability with adult homology. Brain Research Bulletin 57:243–55. [rFA, LM, RGN, CS]10.1016/S0361-9230(01)00693-1CrossRefGoogle ScholarPubMed
Puelles, L. & Rubenstein, J. L. R. (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggests neuromeric organization. Trends in Neuroscience 16:472–79. [aFA]10.1016/0166-2236(93)90080-6CrossRefGoogle ScholarPubMed
Quiroga, J. (1980) The brain of the mammal-like reptile Probainognathus jenseni (Therapsida, Cynodontia), A correlative paleo-neurological approach to the neocortex at the reptile-mammal transition. Journal furHirnforschung 21:299336. [aFA]Google Scholar
Radke-Schuller, S. & Künzle, H. (2000) Olfactory bulb and retrobulbar regions in the hedgehog tenrec: Organization and interconnections. Journal of Comparative Neurology 423: 687795. [MB]10.1002/1096-9861(20000807)423:4<687::AID-CNE12>3.0.CO;2-F3.0.CO;2-F>CrossRefGoogle Scholar
Ragsdale, C. W. & Grove, E. A. (2001) Patterning the mammalian cerebral cortex. Current Opinion in Neurobiology 11:5058. [LM]10.1016/S0959-4388(00)00173-2CrossRefGoogle ScholarPubMed
Rakic, P. (1974) Neurons in rhesus monkey: Systematic relation between time of origin and eventual disposition. Science 183:425–27. [aFA]10.1126/science.183.4123.425CrossRefGoogle ScholarPubMed
Rakic, P. (1988) Specification of cerebral cortical areas. Science 241:170–76. [aFA]10.1126/science.3291116CrossRefGoogle ScholarPubMed
Rakic, P. (1995) A small step for the cell, a giant leap for mankind: A hypothesis of neocortical expansion during evolution. Trends in Neuroscience 18:383–88. [aFA, HS]10.1016/0166-2236(95)93934-PCrossRefGoogle ScholarPubMed
Ramón y Cajal, S. (1995) Histology of the nervous system. Oxford University Press. [aFA]10.1093/oso/9780195074017.001.0001CrossRefGoogle Scholar
Ramus, S. J. & Eichenbaum, H. (2000) Neural correlates of olfactory recognition memory in the rat orbitofrontal cortex. Journal of Neuroscience 20:81998208. [aFA, MB]10.1523/JNEUROSCI.20-21-08199.2000CrossRefGoogle ScholarPubMed
Redies, C., Ast, M., Nakagawa, S., Takeichi, M., Martínez-de-la-Torre, M. & Puelles, L. (2000) Morphologic fate of diencephalic prosomeres and their subdivisions revealed by mapping cadherin expression. Journal of Comparative Neurology 421:481514. [aFA, OG, AR]10.1002/(SICI)1096-9861(20000612)421:4<481::AID-CNE3>3.0.CO;2-H3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Redies, C., Medina, L. & Puelles, L. (2001) Cadherin expression by embryonic divisions and derived gray matter structures in the telencephalon of the chicken. Journal of Comparative Neurology 438:253–85. [ABB]10.1002/cne.1315CrossRefGoogle ScholarPubMed
Reep, R. L. (2000) Cortical layer VII and persistent subplate cells in mammalian brains. Brain, Behaviour and Evolution 56:212–34. [aFA]10.1159/000047206CrossRefGoogle ScholarPubMed
Reilly, S. & Good, M. (1989) Hippocampal lesions and associative learning in the pigeon. Behavioral Neuroscience 103:731–42. [MC]10.1037/0735-7044.103.4.731CrossRefGoogle ScholarPubMed
Reiner, A. (1991) A comparison of neurotransmitter-specific and neuropeptidespecific neuronal cell types present in the dorsal cortex of reptiles with those present in the isocortex of mammals. Brain, Behaviour and Evolution 38:5391. [aFA]10.1159/000114379CrossRefGoogle ScholarPubMed
Reiner, A. (1993) Neurotransmitter organization and connections of turtle cortex:implications for the evolution of mammalian isocortex. Comparative Biochemistry and Physiology 104A:735–48. [arFA, ABB, AR, TS]10.1016/0300-9629(93)90149-XCrossRefGoogle Scholar
Reiner, A. (1994) Laminar distribution of the cells of origin of the ascending and descending tectofugal pathways in turtles: Implications for the evolution of tectal lamination. Brain, Behaviour and Evolution 43:254–92. [AR]10.1159/000113639CrossRefGoogle ScholarPubMed
Reiner, A. (1996) Levels of organization and the evolution of isocortex: Homology, nonhomology or parallel homoplasy. Trends in Neurosciences 19:8991. [AR]10.1016/S0166-2236(96)80034-8CrossRefGoogle Scholar
Reiner, A. (2000) A hypothesis as to the organization of cerebral cortex in the common amniote ancestor of modern reptiles and mammals. In: Evolutionary developmental biology of the cerebral cortex, ed. Bock, G. A. & Cardew, G. Novartis. [Novartis Foundation Symposium 228:83–108.] [aFA, ABB, OG, AR]Google Scholar
Reiner, A. & Northcutt, R. G. (2000) Succinic dehydrogenase histochemistry reveals the location of the putative primary visual and auditory areas within the dorsal ventricular ridge of Sphenodon punctatus. Brain, Behavior and Evolution 55:2636. [aFA]10.1159/000006639CrossRefGoogle ScholarPubMed
Reiner, A. & Powers, A. S. (1978) Intensity and pattern discrimination in turtles following lesions of nucleus rotundus. Journal of Comparative and Physiological Psychology 92:1156–68. [ASP]10.1037/h0077521CrossRefGoogle Scholar
Reiner, A. & Powers, A. S. (1983) The effects of lesions of telencephalic structures on the visual discriminative performance of turtles (Chrysemys picta). Journal of Comparative Neurology 218:124. [ASP]10.1002/cne.902180102CrossRefGoogle ScholarPubMed
Rice, D. S. & Curran, T. (1999) Mutant mice with scrambled brains: Understanding the signalling pathways that control cell positioning in the CNS. Genes and Development 13:2758–73. [CS]10.1101/gad.13.21.2758CrossRefGoogle ScholarPubMed
Richmond, J. & Colombo, M. (2002) Hippocampal lesions, contextual retrieval, and autoshaping in pigeons. Brain Research 928:6068. [MC]10.1016/S0006-8993(01)03355-8CrossRefGoogle ScholarPubMed
Rieppel, O. & Reisz, R. R. (1999) The origin and early evolution of turtles. Annual Review of Ecology and Systematics 30:122. [aFA]10.1146/annurev.ecolsys.30.1.1CrossRefGoogle Scholar
Rockel, A. J., Hiorns, R. W. & Powell, T. P. (1980) The basic uniformity in structure of the neocortex. Brain 103:221–44. [HS]10.1093/brain/103.2.221CrossRefGoogle ScholarPubMed
Rodríguez, F., López, J. C., Vargas, J. P., Broglio, C., Gómez, Y. & Salas, C. (2002a) Spatial memory and hippocampal pallium through vertebrate evolution: Insights from reptiles and teleost fish. Brain Research Bulletin 57:499503. [aFA, ASP, CS]10.1016/S0361-9230(01)00682-7CrossRefGoogle Scholar
Rodríguez, F., López, J. C., Vargas, J. P., Gómez, Y., Broglio, C. & Salas, C. (2002b) Conservation of spatial memory function in the pallial forebrain of amniotes and ray finned fishes. Journal of Neuroscience 22:2894–903. [ASP, CS]10.1523/JNEUROSCI.22-07-02894.2002CrossRefGoogle Scholar
Rolls, E. T. (2000) The orbitofrontal cortex and reward. Cerebral Cortex 10:284–94. [MB]10.1093/cercor/10.3.284CrossRefGoogle ScholarPubMed
Rosa, M. G. P. & Krubitzer, L. A. (1999) The evolution of visual cortex: Where is V2? Trends in Neuroscience 22:242–48. [aFA]10.1016/S0166-2236(99)01398-3CrossRefGoogle ScholarPubMed
Rosene, D. L. & Van Hoesen, G. W. (1987) The hippocampal formation of the primate brain. In: Cerebral cortex, vol. 6, ed. Jones, E. G. & Peters, A. Plenum Press. [aFA]Google Scholar
Rosin, J. F., Datiche, F. & Cattarelli, M. (1999) Modulation of the piriform cortex activity by the basal forebrain: An optical recording study in the rat. Brain Research 820:105–11. [H-V]10.1016/S0006-8993(98)01369-9CrossRefGoogle ScholarPubMed
Rowe, T. (1996a) Brain heterochrony and origin of the mammalian middle ear. Memoirs of the California Academy of Sciences 20:7195. [aFA]Google Scholar
Rowe, T. (1996b) Coevolution of the mammalian middle ear and neocortex. Science 273:651–54. [aFA, EG]10.1126/science.273.5275.651CrossRefGoogle Scholar
Rubaschkin, W. (1903) Zur morphologie des Gehirns der Amphibien. Archiv für mikroskopische Anatomie. 63:207323. [FM-G]10.1007/BF02985547CrossRefGoogle Scholar
Rubenstein, J. L. R. (2000) Intrinsic and extrinsic control of cortical development. In: Evolutionary developmental biology of the cerebral cortex, ed. Bock, G. R. & Cardew, G. Novartis Foundation Symposium. Wiley. [LM]Google Scholar
Ruiz i Atalba, A., Palma, V. & Dahmane, N. (2002) Hedgehog-Gli signalling and the growth of the brain. Nature Reviews Neuroscience 3:2433. [rFA]10.1038/nrn704CrossRefGoogle Scholar
Russel, E. S. (1916/1982) Form and function: A contribution to the history of animal morphology. University of Chicago Press. (Original work published 1916, reprinted 1982). [aFA]Google Scholar
Saban, R. (1995) Image of the human fossil brain: Endocranial casts and meningeal vessels in young and adult subjects. In: Origins of the human brain, ed. Changeux, J.-P. & Chavaillon, J. Oxford University Press. [GO]Google Scholar
Sagan, C. (1977) The dragons of Eden: Speculations on the evolution of human intelligence. Random House. [arFA]Google Scholar
Salas, C., Broglio, C. & Rodríguez, F. (2003) Evolution of forebrain and spatial cognition in vertebrates: Conservation across diversity. Brain, Behavior and Evolution 62:7282. [CS]10.1159/000072438CrossRefGoogle Scholar
Sanides, F. (1970) Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution. In: The primate brain: Advances in primatology, vol. 1, ed. Noback, C. R. & Montagna, W. Appleton-Century-Crofts. [ABB]Google Scholar
Satoh, G., Takeuchi, J. K., Yasui, K., Tagawa, K., Saiga, H., Zhang, P. & Satoh, N. (2002) Amphi-Eomes/Tbr1: An amphioxus cognate of vertebrate Eomesodermin and T-Brain1 genes whose expression reveals evolutionarily distinct domain in amphioxus development. Journal of Experimental Zoology 294:136–45. [H-V]10.1002/jez.10149CrossRefGoogle ScholarPubMed
Save, E., Nerad, L. & Poucet, B. (2000) Contribution of multiple sensory information to place field stability in hippocampal place cells. Hippocampus 10:6476. [aFA]10.1002/(SICI)1098-1063(2000)10:1<64::AID-HIPO7>3.0.CO;2-Y3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Scalia, F. & Gregory, K. (1970) Retinofugal projections in the frog: Location of the postsynaptic neurons. Brain, Behavior and Evolution 3:1629. [FM-G]10.1159/000125460CrossRefGoogle ScholarPubMed
Schmidt, A. & Bischof, H. J. (2001) Neurons with complex receptive fields in the stratum griseum centrale of the zebra finch (Taeniopygia guffata castanotis Gould) optic tectum. The Journal of Comparative Physiology A 187:913–24. [OG]Google ScholarPubMed
Schoenbaum, G., Chiba, A. A. & Gallagher, M. (1998) Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature Neuroscience 1:155–59. [aFA]10.1038/407CrossRefGoogle ScholarPubMed
Schoenbaum, G., Chiba, A. A. & Gallagher, M. (1999) Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. Journal of Neuroscience 19:1876–84. [aFA]10.1523/JNEUROSCI.19-05-01876.1999CrossRefGoogle ScholarPubMed
Schoenbaum, G. & Eichenbaum, H. (1995) Information coding in the rodent prefrontal cortex. I. Single-neuron activity in orbitofrontal cortex compared with that in pyriform cortex. Journal of Neurophysiology 74(2):733–50. [MB]10.1152/jn.1995.74.2.733CrossRefGoogle ScholarPubMed
Schultz, W., Trembay, L. & Hollerman, J. R. (2000) Reward processing in primate orbitofrontal cortex and basal ganglia. Cerebral Cortex 10:272–83. [MB]10.1093/cercor/10.3.272CrossRefGoogle ScholarPubMed
Senzaki, K., Ogawa, M. & Yagi, T. (1999) Proteins of the CNR family are multiple receptors for Reelin. Cell 99:635–47. [aFA]10.1016/S0092-8674(00)81552-4CrossRefGoogle ScholarPubMed
Seo, H. C., Sætre, B. O., Håvik, B., Ellingse, S. & Fjose, A. (1998) The zebrafish Pax3 and Pax7 homologues are highly conserved, encode multiple isoforms and show dynamic segment-like expression in the developing brain. Mechanisms of Development 70:4963. [aFA]10.1016/S0925-4773(97)00175-5CrossRefGoogle ScholarPubMed
Shapiro, E. & Wieraszko, A. (1996) Comparative in vitro studies of hippocampal tissue from homing and non-homing pigeon. Brain Research 725:199206. [CS]10.1016/0006-8993(96)00247-8CrossRefGoogle ScholarPubMed
Shimizu, T. (2001) Evolution of the forebrain in tetrapods. In: Brain evolution and cognition, ed. Roth, G. & Wulliman, M. F. Wiley/Spektrum. [TS]Google Scholar
Shimizu, T. & Karten, H. J. (1993) Multiple origins of neocortex: Contributions of the dorsal ventricular ridge. In: Vision, brain and behavior in birds, ed. Zeigler, H. P. & Bischof, J. H. MIT Press. [aFA]Google Scholar
Shipley, M. T. & Ennis, M. (1996) Functional organization of olfactory system. Journal of Neurobiology 30:123–76. [aFA]10.1002/(SICI)1097-4695(199605)30:1<123::AID-NEU11>3.0.CO;2-N3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Shulz, D. E., Sosnik, R., Ego, V., Haidarliu, S. & Ahissar, E. (2000) A neuronal analogue of state-dependent learning. Nature 403:549–53. [H-V]10.1038/35000586CrossRefGoogle ScholarPubMed
Siegel, J. J., Nitz, D. & Bingman, V. P. (2000) Hippocampal theta rhythm in awake, freely moving homing pigeons. Hippocampus 10:627–31. [CS]10.1002/1098-1063(2000)10:6<627::AID-HIPO1000>3.0.CO;2-W3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Siegel, J. J., Nitz, D. & Bingman, V. P. (2002) Electrophysiological profile of avian hippocampal unit activity: A basis for regional subdivisions. Journal of Comparative Neurology 445:256–68. [CS]10.1002/cne.10167CrossRefGoogle ScholarPubMed
Simeone, A., Gulisano, M., Acampora, D., Stornaiuolo, A., Rambaldi, M. & Boncinelli, E. (1992) Two vertebrate homeobox genes related to the Drosophila empty spiracles gene are expressed in the embryonic cerebral cortex. European Molecular Biology Organization Journal 11:2541–50. [aFA]10.1002/j.1460-2075.1992.tb05319.xCrossRefGoogle Scholar
Smeets, W. J. A. J. (1983) The secondary olfactory connections in two chondrichthians, the shark Scyliorhinus canicula and the ray Raja clavata. Journal of Comparative Neurology 10:334–44. [aFA]10.1002/cne.902180309CrossRefGoogle Scholar
Smeets, W. J. A. J., Marín, O. & González, A. (2000) Evolution of the basal ganglia: New perspectives through a comparative approach. Journal of Anatomy 196:501–17. [aFA]10.1046/j.1469-7580.2000.19640501.xCrossRefGoogle ScholarPubMed
Smith, D. W. & Tondury, G. (1978) Origin of the calvaria and its sutures. American Journal of Diseases of Children 132:662–66. [GO]Google ScholarPubMed
Smith Fernández, A., Pieau, C., Repérant, J., Boncinelli, E. & Wassef, M. (1998) Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: Implications for the evolution of telencephalic subdivisions in amniotes. Development 125:2099–111. [arFA, ABB, DAF, AR]10.1242/dev.125.11.2099CrossRefGoogle Scholar
Soares, J. G., Gattass, R., Souza, A. P., Rosa, M. G., Fiorani, M. Jr. & Brandao, B. L. (2001) Connectional and neurochemical subdivisions of the pulvinar in Cebus monkeys. Visual Neuroscience 18:2541. [OG]10.1017/S0952523801181034CrossRefGoogle ScholarPubMed
Stenman, J., Yu, R. T., Evans, R. M. & Campbell, K. (2003) Tlx and Pax6 cooperate genetically to establish the pallio-subpallial boundary in the embryonic mouse telencephalon. Development 130:1113–22. [rFA, ABB]10.1242/dev.00328CrossRefGoogle ScholarPubMed
Stephan, H. (1983) Evolutionary trends in limbic structures. Neuroscience and Behavioral Physiology 7:367–74. [aFA]10.1016/0149-7634(83)90041-6CrossRefGoogle ScholarPubMed
Stephan, H. & Manolescu, J. (1980) Comparative investigations on hippocampus in insectivores and primates. Zeitschrift fur Mikroskopische und Anatomische Forschung 94:1025–50. [HS]Google ScholarPubMed
Steriade, M. (1997) Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. Cerebral Cortex 7:583604. [H-V]10.1093/cercor/7.6.583CrossRefGoogle ScholarPubMed
Stoykova, A., Treichel, D., Hallonet, M. & Gruss, P. (2000) Pax6 modulates the dorsoventral patterning of the mammalian telencephalon. Journal of Neuroscience 20:8042–50. [aFA]10.1523/JNEUROSCI.20-21-08042.2000CrossRefGoogle ScholarPubMed
Stoykova, A., Walther, C., Fritsch, R. & Gruss, P. (1996) Forebrain patterning defects in Pax6/Small eye mutant mice. Development 122:3453–65. [LM]10.1242/dev.122.11.3453CrossRefGoogle ScholarPubMed
Striedter, G. F. (1997) The telencephalon of tetrapods in evolution. Brain, Behavior and Evolution 49:179213. [aFA, RGN, TS]10.1159/000112991CrossRefGoogle ScholarPubMed
Striedter, G. F., Marchant, A. & Beydler, S. (1998) The “neostriatum” develops as part of the lateral pallium in birds. Journal of Neuroscience 18:5839–49. [aFA]10.1523/JNEUROSCI.18-15-05839.1998CrossRefGoogle Scholar
Striedter, G. F. & Northcutt, R. G. (1991) Biological hierarchies and the concept of homology. Brain, Behavior and Evolution 38:177–89. [aFA]10.1159/000114387CrossRefGoogle ScholarPubMed
Sun, H. & Frost, B. J. (1998) Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. Nature Neuroscience 1:296303. [OG]10.1038/1110CrossRefGoogle ScholarPubMed
Supèr, H., Martinez, A., Del Rio, J. A. & Soriano, E. (1998a) Involvement of distinct pioneer neurons in the formation of layer-specific connections in the hippocampus. Journal of Neuroscience 18:4616–26. [HS]10.1523/JNEUROSCI.18-12-04616.1998CrossRefGoogle Scholar
Supèr, H., Soriano, E. & Uylings, H. B. M. (1998b) The functions of the preplate in development and evolution of the neocortex and hippocampus. Brain Research Reviews 27:4064. [arFA, HS]10.1016/S0165-0173(98)00005-8CrossRefGoogle Scholar
Supèr, H. & Uylings, H. B. M. (2001) The early differentiation of the neocortex: A hypothesis on neocortical evolution. Cerebral Cortex 11:1101–09. [HS, AT]10.1093/cercor/11.12.1101CrossRefGoogle ScholarPubMed
Sussel, L., Marín, O., Kimura, S. & Rubenstein, J. L. (1999) Loss of Nkx 2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: Evidence for a transformation of the pallidum into striatum. Development 126:3359–70. [aFA]10.1242/dev.126.15.3359CrossRefGoogle Scholar
Swanson, L. W. (2000) Cerebral hemisphere regulation for motivated behavior. Brain Research 886:113–64. [aFA]10.1016/S0006-8993(00)02905-XCrossRefGoogle ScholarPubMed
Swanson, L. W. & Kohler, C. (1986) Anatomical evidence for direct projections from the entorhinal area to the entire cortical mantle in the rat. Journal of Neuroscience 6:3010–23. [MB]10.1523/JNEUROSCI.06-10-03010.1986CrossRefGoogle Scholar
Swanson, L. W. & Petrovich, G. D. (1998) What is the amygdala? Trends in Neuroscience 21:323–31. [aFA]10.1016/S0166-2236(98)01265-XCrossRefGoogle ScholarPubMed
Szucsik, J. C., Witte, D. P., Li, H., Pixley, S. K., Small, K. M. & Potter, S. S. (1997) Altered forebrain and hindbrain development in mice mutant for the Gsh2 homeobox gene. Developmental Biology 191:230–42. [aFA]10.1006/dbio.1997.8733CrossRefGoogle ScholarPubMed
Tabata, H. & Nakajima, K. (2002) Neurons tend to stop migration and differentiate along the cortical internal plexiform layers in the reelin signal-deficient mice. Journal of Neuroscience Research 69:723–30. [aFA]10.1002/jnr.10345CrossRefGoogle Scholar
Tarabykin, V., Stoykova, A., Usman, N. & Gruss, P. (2001) Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development 128:1983–93. [aFA, DAF]10.1242/dev.128.11.1983CrossRefGoogle ScholarPubMed
Taschenberger, H., Leao, R. M., Rowland, K. C., Spirou, G. A. & von Gersdorff, H. (2002) Optimizing synaptic architecture and efficiency for high-frequency transmission. Neuron 36:1127–43. [H-V]10.1016/S0896-6273(02)01137-6CrossRefGoogle ScholarPubMed
Ten Donkelaar, H. J. (1998a) Anurans. In: The central nervous system of vertebrates, ed. Nieuwenhuys, R., Ten Donkelaar, H. J., Nicholson, C. Springer-Verlag. [aFA]Google Scholar
Ten Donkelaar, H. J. (1998b) Reptiles. In: The central nervous system of vertebrates, ed. Nieuwenhuys, R., Ten Donkelaar, H. J., Nicholson, C. Springer-Verlag. [aFA]Google Scholar
Ten Donkelaar, H. J. (1998c) Urodeles. In: The central nervous system of vertebrates, ed. Nieuwenhuys, R., Ten Donkelaar, H. J., Nicholson, C. Springer-Verlag. [aFA]Google Scholar
Theil, T., Aydin, S., Koch, S., Grotewold, L. & Ruther, U. (2002) Wnt and Bmp signalling cooperatively regulate graded Emx2 expression in the dorsal telencephalon. Development 129:3045–54. [LM]10.1242/dev.129.13.3045CrossRefGoogle ScholarPubMed
Theiss, M. P. H., Hellmann, B. & Güntürkün, O. (2003) The architecture of an inhibitory side path within the avian tectofugal system, NeuroReport 14:879–82. [OG]10.1097/00001756-200305060-00021CrossRefGoogle Scholar
Thierry, A. M., Gioanni, Y., Dégénétais, E. & Glowinski, J. (2000) Hippocampoprefrontal cortex pathway: Anatomical and electrophysiological characteristics. Hippocampus 10:411–19. [aFA]10.1002/1098-1063(2000)10:4<411::AID-HIPO7>3.0.CO;2-A3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Tissir, F., Lambert De Rouvroit, C., Sire, J. Y., Meyer, G. & Goffinet, A. M. (2003) Reelin expression during embryonic brain development in Crocodylus niloticus. Journal of Comparative Neurology 457:250–62. [rFA]10.1002/cne.10573CrossRefGoogle ScholarPubMed
Tole, S., Goudreau, G., Assimacopoulos, S. & Grove, E. A. (2000) Emx2 is required for growth of the hippocampus but not hippocampal field specification. Journal of Neuroscience 20:2618–25. [LM]10.1523/JNEUROSCI.20-07-02618.2000CrossRefGoogle Scholar
Treves, A. (2003) Computational constraints that may have favoured the lamination of sensory cortex. Journal of Computational Neuroscience 14:271–82. [AT]10.1023/A:1023213010875CrossRefGoogle ScholarPubMed
Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W. & Nimpf, J., Hammer, R. E., Richardson, J. A. & Herz, J. (1999) Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689701. [aFA]10.1016/S0092-8674(00)80782-5CrossRefGoogle ScholarPubMed
Tsien, J. Z. (2000) Linking Hebb's coincidence-detection to memory formation. Current Opinions in Neurobiology 10:266–73. [H-V]10.1016/S0959-4388(00)00070-2CrossRefGoogle ScholarPubMed
Tsodyks, M. (2002) Spike-timing-dependent synaptic plasticity – The long road towards understanding neuronal mechanisms of learning and memory. Trends in Neuroscience 25:599600. [H-V]10.1016/S0166-2236(02)02294-4CrossRefGoogle Scholar
Ulinski, P. S. (1983) Dorsal ventricular ridge: A treatise on brain organization in reptiles and birds. Wiley. [aFA]Google Scholar
Ulinski, P. S. (1988) Functional architecture of turtle dorsal cortex. In: The forebrain of reptiles. Current concepts of structure and function, ed. Schwerdtfeger, W. K. & Smeets, W. J. A. J. Karger. [ASP]Google Scholar
Ulinski, P. S. (1990) The cerebral cortex of reptiles. In: Cerebral cortex, vol. 8A, ed. Jones, E. G. & Peters, A. Plenum Press. [aFA]Google Scholar
Van Hoesen, G. W. (1982) The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends in Neuroscience 10:345–50. [aFA]10.1016/0166-2236(82)90201-6CrossRefGoogle Scholar
Vanderwolf, C. H. (1992) Hippocampal activity, olfaction, and sniffing: An olfactory input to the dentate gyrus. Brain Research 593:197208. [H-V]10.1016/0006-8993(92)91308-2CrossRefGoogle Scholar
Vargas, J. P., Rodríguez, F., López, J. C., Arias, J. L. & Salas, C. (2000) Spatial learning-induced increase in the argyrophilic nucleolar organizer region of dorsolateral telencephalic neurons in goldfish. Brain Research 865:7784. [CS]10.1016/S0006-8993(00)02220-4CrossRefGoogle ScholarPubMed
Veenman, C. L., Wild, J. M. & Reiner, A. (1995) Organization of the avian “corticostriatal” projection system: A retrograde and anterograde pathway tracing study in pigeons. Journal of Comparative Neurology 354:87126. [aFA]10.1002/cne.903540108CrossRefGoogle ScholarPubMed
Vesselkin, N. P., Agayan, A. L. & Nomokonova, L. M. (1971) A study of thalamo-telencephalic afferent systems in frogs. Brain, Behavior and Evolution 4:295306. [FM-G]10.1159/000125439CrossRefGoogle ScholarPubMed
Voogd, J., Nieuwenhuys, R. & Van Dongen, P. A. M. (1998) Mammals. In: The Central Nervous System of Vertebrates, ed. Nieuwenhuys, R., Ten Donkelaar, H. J., Nicholson, C. Springer-Verlag. [aFA]Google Scholar
Wagermans, P. A. H., van der Velde, J.-P. & Kuijpers-Jagtman, A. M. (1988) Sutures and forces: A review. American Journal of Orthodontics and Dentofacial Orthopedics 94:129–41. [GO]10.1016/0889-5406(88)90361-7CrossRefGoogle Scholar
Wang, Y., Hu, Y., Meng, J. & Chuankui, L. (2001) An ossified Meckel's cartilage in two cretaceous mammals and origin of the mammalian middle ear. Science 294:357–61. [aFA, EG]10.1126/science.1063830CrossRefGoogle ScholarPubMed
Wang, Y., Jiang, S. & Frost, B. J. (1993) Visual processing in pigeon nucleus rotundus: Luminance, color, motion, and looming subdivisions. Visual Neuroscience 10:2130. [OG]10.1017/S0952523800003199CrossRefGoogle ScholarPubMed
Weidenreich, F. (1941) The brain and its role in the phylogenetic transformation of the human skull. Transactions of the American Philosophical Society 31:321442. [GO]10.2307/1005610CrossRefGoogle Scholar
Weller, R. E., Wall, J. T. & Kaas, J. H. (1984) Cortical connections of the middle temporal visual area (MT) and the superior temporal cortex in owl monkeys. The Journal of Comparative Neurology 228:81104. [OG]10.1002/cne.902280109CrossRefGoogle ScholarPubMed
Wenk, H., Bigl, V. & Meyer, U. (1980) Cholinergic projections from magnocellular nuclei of the basal forebrain to cortical areas in rats. Brain Research 2:295316. [H-V]10.1016/0165-0173(80)90011-9CrossRefGoogle ScholarPubMed
Whishaw, I., Cassel, J. & Jarrard, L. (1995) Rats with fimbria-fornix lesions display a place response in a swimming pool: A dissociation between getting there and knowing where. Journal of Neuroscience 15:5779–88. [MC]10.1523/JNEUROSCI.15-08-05779.1995CrossRefGoogle Scholar
Whittington, M. A., Traub, R. D. & Jefferys, J. G. (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373:612–15. [H-V]10.1038/373612a0CrossRefGoogle ScholarPubMed
Wicht, H. (1996) The brains of lampreys and hagfishes: Characteristics, characters, and comparisons. Brain, Behavior and Evolution 48:248–61. [aFA]10.1159/000113204CrossRefGoogle ScholarPubMed
Wicht, H. & Himstedt, W. (1988) Topologic and connectional analysis of the dorsal thalamus of Triturus alpestris (Amphibia, Urodela, Salamandridae). The Journal of Comparative Neurology 267:545–61. [FM-G]10.1002/cne.902670408CrossRefGoogle ScholarPubMed
Wicht, H. & Northcutt, R. G. (1992) The forebrain of the pacific hagfish: A cladistic reconstruction of the ancestral craniate forebrain. Brain, Behavior and Evolution 40:2564. [aFA]10.1159/000108540CrossRefGoogle ScholarPubMed
Wicht, H. & Northcutt, R. G. (1993) Secondary olfactory projections and pallial topography in the Pacific hagfish Eptatretus stouti. Journal of Comparative Neurology 337:529–42. [aFA]10.1002/cne.903370402CrossRefGoogle ScholarPubMed
Wiener, S. I., Paul, C. A. & Eichenbaum, H. (1989) Spatial and behavioral correlates of hippocampal neuronal activity. Journal of Neuroscience 9:2737–63. [aFA]10.1523/JNEUROSCI.09-08-02737.1989CrossRefGoogle ScholarPubMed
Wilczynski, W. (1978) Connections of the midbrain auditory center in the bullfrog, Rana catesbeiana. Ph.D. thesis, University of Michigan. [FM-G]Google Scholar
Wilczynski, W. & Capranica, R. R. (1984) The auditory system of anuran amphibians. Progress in Neurobiology 22:138. [FM-G]10.1016/0301-0082(84)90016-9CrossRefGoogle ScholarPubMed
Wilczynski, W. & Northcutt, R. G. (1983) Connections of the bullfrog striatum: Afferent organization. Journal of Comparative Neurology 214:321–32. [aFA, DAF, FM-G]10.1002/cne.902140309CrossRefGoogle ScholarPubMed
Wild, J. M. (1992) Direct and indirect “cortico”-rubral and rubro-cerebellar cortical projections in the pigeon. The Journal of Comparative Neurology 326:623–36. [FM-G]10.1002/cne.903260409CrossRefGoogle ScholarPubMed
Wild, J. M. (1997) The avian somatosensory system: The pathway from wing to Wulst in a passerine (Chloris chloris). Brain Research. 759:122–34. [aFA]10.1016/S0006-8993(97)00253-9CrossRefGoogle Scholar
Wild, J. M. & Williams, M. N. (2000) Rostral wulst in passerine birds. I. Origin, course, and terminations of an avian pyramidal tract. The Journal of Comparative Neurology 416:429–50. [FM-G]10.1002/(SICI)1096-9861(20000124)416:4<429::AID-CNE2>3.0.CO;2-X3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Wiley, E. O. (1981) Phylogenetics: Theory and practice of phylogenetic systematics. Wiley. [RGN]Google Scholar
Wilson, S. W. & Rubenstein, J. L. R. (2000) Induction and dorsoventral patterning of the telencephalon. Neuron 28:641–51. [aFA, LM]10.1016/S0896-6273(00)00171-9CrossRefGoogle ScholarPubMed
Woo, T. U., Beale, J. M. & Finlay, B. L. (1991) Dual fate of subplate neurons in a rodent. Cerebral Cortex 1:433–43. [aFA]10.1093/cercor/1.5.433CrossRefGoogle Scholar
Wood, E. R., Dudchenko, P. A. & Eichenbaum, H. (1999) The global record of memory in hippocampal neuronal activity. Nature 397:613–16. [aFA]10.1038/17605CrossRefGoogle ScholarPubMed
Wood, E. R., Dudchenko, P. A., Robitsek, J. R. & Eichenbaum, H. (2000) Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27:623–33. [aFA]10.1016/S0896-6273(00)00071-4CrossRefGoogle ScholarPubMed
Woolf, N. J., Eckenstein, F. & Butcher, L. L. (1984) Cholinergic systems in the rat brain: I. Projections to the limbic telencephalon. Brain Research Bulletin 13:751–84. [H-V]10.1016/0361-9230(84)90236-3CrossRefGoogle Scholar
Wu, C. C., Russell, R. M. & Karten, H. J. (2000) Ontogeny of the tectorotundal pathway in chicks (Gallus gallus): Birthdating and pathway tracing study. The Journal of Comparative Neurology 417:115–32. [OG]10.1002/(SICI)1096-9861(20000131)417:1<115::AID-CNE9>3.0.CO;2-B3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Yanes, C., Perez Batista, M. A., Martin Trujillo, J. M., Monzon, M. & Marrero, A. (1987) Anterior dorsal ventricular ridge in the lizard: Embryonic development. Journal of Morphology 194:5564. [RGN]10.1002/jmor.1051940105CrossRefGoogle ScholarPubMed
Yoon, M. S., Puelles, L. & Redies, C. (2000) Formation of cadherin-expressing brain nuclei in diencephalic and alar plate divisions. Journal of Comparative Neurology 421:461–80. [aFA]10.1002/(SICI)1096-9861(20000612)421:4<461::AID-CNE2>3.0.CO;2-M3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Yun, K., Potter, S. & Rubenstein, J. L. R. (2001) Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128:193205. [aFA, LM]10.1242/dev.128.2.193CrossRefGoogle ScholarPubMed
Zardoya, R. & Meyer, A. (2001) The evolutionary position of turtles revised. Naturwissenschaften 88:193200. [aFA]10.1007/s001140100228CrossRefGoogle ScholarPubMed
Zola-Morgan, S. & Squire, L. R. (1986) Memory impairment in monkeys following lesions limited to the hippocampus. Behavioral Neuroscience 100:155–60. [MC]10.1037/0735-7044.100.2.155CrossRefGoogle ScholarPubMed