Hostname: page-component-5447f9dfdb-cjbmw Total loading time: 0 Render date: 2025-07-29T11:06:56.859Z Has data issue: false hasContentIssue false

FULLY DECOUPLED ARBITRARILY HIGH-ORDER CONSERVATIVE SCHEMES FOR THE SCHRÖDINGER–BOUSSINESQ EQUATION

Published online by Cambridge University Press:  25 July 2025

JIN-LIANG YAN*
Affiliation:
Fujian Key Laboratory of Big Data Application and Intellectualization for Tea Industry, College of Mathematics and Computer, https://ror.org/059djzq42 Wuyi University , Fujian, PR China
LIANGHONG ZHENG
Affiliation:
Department of Information and Computer Technology, No. 1 Middle School of Nanping, Fujian, PR China; e-mail: 413845939@qq.com
LING ZHU
Affiliation:
Department of Mathematics and Physics, https://ror.org/03jc41j30 Jiangsu University of Science and Technology , Zhenjiang, PR China; e-mail: 38196700@qq.com

Abstract

A family of arbitrarily high-order energy-preserving methods are developed to solve the coupled Schrödinger–Boussinesq (S-B) system. The system is a nonlinear coupled system and satisfies a series of conservation laws. It is often difficult to construct a high-order decoupling numerical algorithm to solve the nonlinear system. In this paper, the original system is first reformulated into an equivalent Hamiltonian system by introducing multiple auxiliary variables. Next, the reformulated system is discretized by the Fourier pseudo-spectral method and the implicit midpoint scheme in the spatial and temporal directions, respectively, and a second-order conservative scheme is obtained. Finally, the scheme is extended to arbitrarily high-order accuracy by means of diagonally implicit symplectic Runge–Kutta methods or composition methods. Rigorous analyses show that the proposed methods are fully decoupled and can precisely conserve the discrete invariants. Numerical results show that the proposed schemes are effective and can be easily extended to other nonlinear partial differential equations.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Australian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Almushaira, M., “Efficient eighth-order accurate energy-preserving compact difference schemes for the coupled Schrödinger–Boussinesq equations”, Math. Methods Appl. Sci. 46 (2023) 1719917225; doi:10.1002/mma.9495.CrossRefGoogle Scholar
Bai, D. M. and Wang, J. L., “The time-splitting Fourier spectral method for the coupled Schrödinger–Boussinesq equations”, Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 12011210; doi:10.1016/j.cnsns.2011.08.012.CrossRefGoogle Scholar
Bai, D. M. and Zhang, L. M., “The quadratic B-spline finite-element method for the coupled Schrödinger–Boussinesq equations”, Int. J. Comput. Math. 88 (2011) 17141729; doi:10.1080/00207160.2010.522234.CrossRefGoogle Scholar
Bona, J., Chen, H., Karakashian, O. and Xing, Y., “Conservative, discontinuous Galerkin-methods for the generalized Korteweg-de Vries equation”, Math. Comput. 82(283) (2013) 14011432; doi:10.1090/S0025-5718-2013-02661-0.CrossRefGoogle Scholar
Brugnano, L., Iavernaro, F. and Trigiante, D., “Hamiltonian boundary value methods (energy preserving discrete line integral methods)”, JNAIAM. J. Numer. Anal. Ind. Appl. Math. 5 (2010) 1037; doi:10.48550/arXiv.0910.3621.Google Scholar
Cai, J. and Chen, J., “Fully-decoupled conservative exponential approaches for the coupled nonlinear Schrödinger–Boussinesq equations”, Discrete Contin. Dyn. Syst. Ser. B 29 (2024) 24532470; doi:10.3934/dcdsb.2023186.CrossRefGoogle Scholar
Cai, J., Chen, J. and Yang, B., “Efficient energy-preserving wavelet collocation schemes for the coupled nonlinear Schrödinger–Boussinesq system”, Appl. Math. Comput. 357 (2019) 111; doi:10.1016/j.amc.2019.03.058.Google Scholar
Cai, J., Yang, B. and Zhang, C., “Efficient mass- and energy-preserving schemes for the coupled nonlinear Schrödinger-Boussinesq system”, Appl. Math. lett. 91 (2019) 7682; doi:10.1016/j.aml.2018.11.024.CrossRefGoogle Scholar
Chen, Y., Gong, Y. Z., Hong, Q. and Wang, C. W., “A novel class of energy-preserving Runge–Kutta methods for the Korteweg-de Vries equation”, Numer. Math. Theory Methods Appl. 15 (2022) 768792; doi:10.4208/nmtma.OA-2021-0172.Google Scholar
de Frutos, J. and Sanz-Serna, J. M., “An easily implementable fourth-order method for the time integration of wave problems”, J. Comput. Phys. 103 (1992) 160168; doi:10.1016/0021-9991(92)90331-R.CrossRefGoogle Scholar
Deng, D. W. and Wu, Q., “Analysis of the linearly energy- and mass-preserving finite difference methods for the coupled Schrödinger–Boussinesq equations”, Appl. Numer. Math. 170 (2021) 1438; doi:10.1016/j.apnum.2021.07.013.CrossRefGoogle Scholar
Deng, D. W. and Wu, Q., “Linearized and decoupled structure-preserving finite difference methods and their analyses for the coupled Schrödinger–Boussinesq equations”, Numer. Methods Partial Differential Equations 37 (2021) 29242951; doi:10.1002/num.22805.CrossRefGoogle Scholar
Deng, X., “Exact solitary and periodic wave solutions for the coupled Schrödinger–Boussinesq equation”, Optik 136 (2017) 312318; doi:10.1016/j.ijleo.2017.02.014.CrossRefGoogle Scholar
Dougalis, V. A. and Durán, Á., “A high-order fully discrete scheme for the Korteweg-de Vries equation with a time-stepping procedure of Runge–Kutta-composition type”, IMA J. Numer. Anal. 42 (2022) 30223057; doi:10.1093/imanum/drab060.CrossRefGoogle Scholar
Ebrahimijahan, A., Dehghan, M. and Abbaszadeh, M., “Simulation of the coupled Schrödinger–Boussinesq equations through integrated radial basis functions-partition of unity method”, Eng. Anal. Bound. Elem. 153 (2023) 5167; doi:10.1016/j.enganabound.2023.04.043.CrossRefGoogle Scholar
Farah, L. G. and Pastor, A., “On the periodic Schrödinger–Boussinesq system”, J. Math. Anal. 368 (2010) 330349; doi:10.1016/j.jmaa.2010.03.007.CrossRefGoogle Scholar
Feng, K., “On difference schemes and symplectic geometry”, in: Proceedings of the 1984 Beijing symposium on differential geometry and differential equations (Science Press, Beijing, 1985) 4258.Google Scholar
Feng, X. B., Li, B. Y. and Ma, S., “High-order mass- and energy-conserving SAV-Gauss collocation finite element methods for the nonlinear Schrödinger equation”, SIAM J. Numer. Anal. 59 (2021) 15661591; doi:10.1137/20M1344998.CrossRefGoogle Scholar
Furihata, D. and Matsuo, T., Discrete variational derivative method: a structure-preserving numerical method for partial differential equations, 1st edn (CRC Press, London, 2010).10.1201/b10387CrossRefGoogle Scholar
Gong, Y. Z., Hong, Q., and Wang, Q., “Supplementary variable method for thermodynamically consistent partial differential equations”. Comput. Methods Appl. Mech. Engrg. 381 (2021), Article ID: 113746; doi:10.1016/j.cma.2021.113746.CrossRefGoogle Scholar
Gong, Y. Z., Hong, Q., Wang, C. W. and Wang, Y. S., “Arbitrarily high-order energy-preserving schemes for the Camassa–Holm equation based on the quadratic auxiliary variable approach”, Adv. Appl. Math. Mech. 15 (2023) 12331255; doi:10.4208/aamm.OA-2022-0188.CrossRefGoogle Scholar
Gong, Y. Z., Wang, Q., Wang, Y. S. and Cai, J. X., “A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation”, J. Comput. Phys. 328 (2017) 354370; doi:10.1016/j.jcp.2016.10.022.CrossRefGoogle Scholar
Gong, Y. Z., Zhao, J. and Wang, Q., “Arbitrarily high-order unconditionally energy stable schemes for thermodynamically consistent gradient flow models”, SIAM J. Sci. Comput. 42 (2020) B135B156; doi:10.1137/18M1213579.CrossRefGoogle Scholar
Guo, B. L., “The global solution of the system of equations for complex Schrödinger field coupled with Boussinesq type self-consistent field”, Acta Math. Sinica 26 (1983) 295306 (in Chinese); https://xueshu.baidu.com/usercenter/paper/show?paperid=b3572068fd22f9e2a5f4dca87a3e6ff9.CrossRefGoogle Scholar
Guo, B. L. and Chen, F. X., “Finite dimensional behavior of global attractors for weakly damped nonlinear Schrödinger–Boussinesq equations”, Phys. D 93 (1996) 101118; doi:10.1016/0167-2789(95)00277-4.Google Scholar
Guo, B. L. and Du, X. Y., “The behavior of attractors for damped Schrödinger–Boussinesq equation”, Commun. Nonlinear Sci. Numer. Simul. 6 (2001) 5460; doi:10.1016/S1007-5704(01)90030-9.CrossRefGoogle Scholar
Guo, B. L. and Du, X. Y., “Existence of the periodic solution for the weakly damped Schrödinger–Boussinesq equation”, J. Math. Anal. Appl. 262 (2001) 453472; doi:10.1006/jmaa.2000.7455.CrossRefGoogle Scholar
He, Y. Y. and Chen, H. T., “Efficient and conservative compact difference scheme for the coupled Schrödinger–Boussinesq equations”, Appl. Numer. Math. 182 (2022) 285307; doi:10.1016/j.apnum.2022.08.013.CrossRefGoogle Scholar
Jiang, C. L., Cui, J., Qian, X. and Song, S. H., “High-order linearly implicit structure-preserving exponential integrators for the nonlinear Schrödinger equation”, J. Sci. Comput. 90 (2022) Article ID: 66; doi:10.1007/s10915-021-01739-x.CrossRefGoogle Scholar
Kalogiratou, Z., Monovasilis, T. and Simos, T. E., “A sixth order symmetric and symplectic diagonally implicit Runge–Kutta method”, AIP Conf. Proc. 1618 (2014) 833838; doi:10.1063/1.4897862.CrossRefGoogle Scholar
Li, M., “Cut-off error splitting technique for conservative nonconforming VEM for N-coupled nonlinear Schrödinger–Boussinesq equations”, J. Sci. Comput. 93 (2022) Article ID: 86; doi:10.1007/s10915-022-02050-z.CrossRefGoogle Scholar
Liao, F. and Zhang, L. M., “Conservative compact finite difference scheme for the coupled Schrödinger–Boussinesq equation”, Numer. Methods Partial Differential Equations 32 (2016) 16671688; doi:10.1002/num.22067.CrossRefGoogle Scholar
Liao, F., Zhang, L. M. and Wang, S. S., “Numerical analysis of cubic orthogonal spline collocation methods for the coupled Schrödinger–Boussinesq equations”, Appl. Numer. Math. 119 (2017) 194212; doi:10.1016/j.apnum.2017.04.007.CrossRefGoogle Scholar
Liao, F., Zhang, L. M. and Wang, S. S., “Time-splitting combining with exponential wave integrator Fourier pseudospectral method for Schrödinger–Boussinesq system”, Commun. Nonlinear Sci. Numer. Simul. 55 (2018) 93104; doi:10.1016/j.cnsns.2017.06.033.CrossRefGoogle Scholar
Makhankov, V. G., “On stationary solutions of the Schrödinger equation with a self-consistent potential satisfying Boussinesq’s equation”, Phys. Lett. A 50 (1974) 4244; doi:10.1016/0375-9601(74)90344-2.CrossRefGoogle Scholar
Mclachlan, R. I., “On the numerical integration of ordinary differential equations by symmetric composition methods”, SIAM J. Sci. Comput. 16 (1995) 151168; doi:10.1137/0916010.CrossRefGoogle Scholar
Oruç, Ö., “A local radial basis function-finite difference (RBF-FD) method for solving 1D and 2D coupled Schrödinger–Boussinesq (SBq) equations”, Eng. Anal. Bound. Elem. 129 (2021) 5566; doi:10.1016/j.enganabound.2021.04.019.CrossRefGoogle Scholar
Quispel, G. and McLaren, D. I., “A new class of energy-preserving numerical integration methods”, J. Phys. A 41 (2008) Article ID: 045206; doi:10.1088/1751-8113/41/4/045206.CrossRefGoogle Scholar
Rao, N. N., “Coupled scalar field equations for nonlinear wave modulations in dispersive media”, Pramana J. Phys. 46 (1996) 161202; doi:10.1007/BF02846945.CrossRefGoogle Scholar
Saha Ray, S., “New double periodic exact solutions of the coupled Schrödinger–Boussinesq equations describing physical processes in laser and plasma physics”, Chinese J. Phys. 55 (2017) 20392047; doi:10.1016/j.cjph.2017.08.022.Google Scholar
Sanz-Serna, J. M. and Abia, L., “Order conditions for canonical Runge–Kutta schemes”, SIAM J. Numer. Anal. 28 (1991), 10811096; doi:10.1137/0728058.CrossRefGoogle Scholar
Shen, J., Xu, J. and Yang, J., “The scalar auxiliary variable (SAV) approach for gradient flows”, J. Comput. Phys. 353 (2018), 407416; doi:10.1016/j.jcp.2017.10.021.CrossRefGoogle Scholar
Suzuki, M. and Umeno, K., Higher-order decomposition theory of exponential operators and its applications to QMC and nonlinear dynamics (Springer, New York, 1993) 7486.Google Scholar
Tang, W. and Sun, Y., “Time finite element methods: a unified framework for numerical discretizations of ODEs”, Appl. Math. Comput. 219 (2012) 21582179; doi:10.1016/j.amc.2012.08.062.Google Scholar
Tapley, B. K., “Geometric integration of ODEs using multiple quadratic auxiliary variables”, SIAM J. Sci. Comput. 44 (2022) A2651A2668; doi:10.1137/21M1442644.CrossRefGoogle Scholar
Yajima, N. and Satsuma, J., “Soliton solutions in a diatomic lattice system”, Prog. Theor. Phys. 62 (1979) 370378; doi:10.1143/PTP.62.370.CrossRefGoogle Scholar
Yan, J. L., Zheng, L. H., Lu, F. Q. and Zhang, Q. Y., “Efficient energy-preserving methods for the Schrödinger–Boussinesq equation”, Math. Methods Appl. Sci. 48 (2022) 70007010; doi:10.1002/mma.8574.CrossRefGoogle Scholar
Yang, X. F. and Ju, L. L., “Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model”, Comput. Methods Appl. Mech. Engrg. 315 (2017) 691712; doi:10.1016/j.cma.2016.10.041.CrossRefGoogle Scholar
Yang, Y., Sun, Z., Liu, Y. and Li, H., “Structure-preserving BDF2 FE method for the coupled Schrödinger–Boussinesq equations”, Numer. Algorithms 93 (2023) 12431267; doi:10.1007/s11075-022-01466-w.CrossRefGoogle Scholar
Yang, Y., Wang, J., Zhang, S. and Tohidi, E., “Convergence analysis of space-time Jacobi spectral collocation method for solving time-fractional Schrödinger equations”, Appl. Math. Comput. 387 (2020) Article ID: 124489; doi:10.1016/j.amc.2019.06.003.Google Scholar
Yao, S. H., Hong, Q. and Gong, Y. Z., “An extended quadratic auxiliary variable method for the singular Lennard–Jones droplet liquid film model”. Appl. Math. Lett. 149 (2024) Article ID: 108933; doi:10.1016/j.aml.2023.108933.CrossRefGoogle Scholar
Yoshida, H., “Construction of higher order symplectic integrators”, Phys. Lett. A 150 (1990) 262268; doi:10.1016/0375-9601(90)90092-3.CrossRefGoogle Scholar
Zakharov, V. E., “Collapse of Langmuir waves”, Sov. Phys. JETP 35 (1972) 908914; https://zakharov75.itp.ac.ru/static/local/zve75/zakharov/1972/1972-04-e_035_05_0908.pdf.Google Scholar
Zhang, G., Jiang, C. and Huang, H., “Arbitrarily high-order energy-preserving schemes for the Zakharov–Rubenchik equations”, Adv. Appl. Math. Mech. 94 (2023), Article ID 32; doi:10.1007/s10915-022-02075-4.Google Scholar
Zhang, L. M., Bai, D. M. and Wang, S. S., “Numerical analysis for a conservative difference scheme to solve the Schrödinger–Boussinesq equation”, J. Comput. Appl. Math. 235 (2011) 48994915; doi:10.1016/j.cam.2011.04.001.CrossRefGoogle Scholar
Zhang, Y. R. and Shen, J., “A generalized SAV approach with relaxation for dissipative systems”, J. Comput. Phys. 464 (2022) Article ID: 111311; doi:10.1016/j.jcp.2022.111311.CrossRefGoogle Scholar