Hostname: page-component-6bb9c88b65-bcq64 Total loading time: 0 Render date: 2025-07-27T00:57:57.593Z Has data issue: false hasContentIssue false

Neural adaptive distributed tight formation control for multiple hypersonic gliding vehicles with mismatched uncertainties and multisource external disturbances

Published online by Cambridge University Press:  18 July 2025

X. Xing
Affiliation:
Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an, 710072, Shaanxi, China
W. Li
Affiliation:
Shanghai Satellite Engineering Research Institute, Shanghai, 201100, China
Z. Wang*
Affiliation:
Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi’an, 710072, Shaanxi, China Northwest Institute of Mechanical and Electrical Engineering, Xianyang, 712099, China
Y. Bai
Affiliation:
China Academy of Launch Vehicle Technology, Beijing, 100076, China
S. Wang
Affiliation:
China Academy of Launch Vehicle Technology, Beijing, 100076, China
X. Ning
Affiliation:
School of Astronautics, Northwestern Polytechnical University, Xi’an, 710072, Shaanxi, China
*
Corresponding author: Z. Wang; Email: wangzheng0905@nwpu.edu.cn

Abstract

This paper studies the adaptive distributed consensus tracking control framework for hypersonic gliding vehicles (HGVs) flying in tight formation. The system investigated in this paper is non-affine and subjected to multisource disturbances and mismatched uncertainties caused by a dramatically changing environment. Firstly, by refining the primary factors in the three-dimensional cluster dynamics, a non-affine closed-loop control system is summarised. Note that actual control is coupled with states, an additional auxiliary differential equation is developed to introduce additional affine control inputs. Furthermore, by employing the hyperbolic tangent function and disturbance boundary estimator, time-varying multisource disturbances can be handled. Several radial base function neural networks (RBFNNs) are utilised to approximate unknown nonlinearities. Furthermore, a generalised equatorial coordinate system is proposed to convert the longitudinal, lateral and vertical relative distances in the desired formation configuration into first-order consensus tracking error, such as latitude, longitude and height deviations. Analysis based on the Lyapunov function illustrates that variables are globally uniformly bounded, and the output tracking error of followers exponentially converges to a small neighbourhood. Finally, numerical simulations of equilibrium glide and spiral diving manoeuvers are provided to demonstrate the validity and practicability of the proposed approach.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Han, Y., Guo, Z., Ding, Y., Cao, S., Wang, H., Han, T. and Guo, J. Probability-oriented disturbance estimation-triggered control via collaborative and adaptive bayesian optimization for reentry vehicles, Aerosp Sci Technol., 2024, 153, p 109470.10.1016/j.ast.2024.109470CrossRefGoogle Scholar
Han, T., Hu, Q. and Xin, M. Analytical solution of field-of-view limited guidance with constrained impact and capturability analysis, Aerosp Sci Technol., 2020, 97, p 105586.CrossRefGoogle Scholar
Li, Z., He, B., Wang, M., Lin, H. and An, X. Time-coordination entry guidance for multi-hypersonic vehicles, Aerosp Sci Technol., 2019, 89, pp 123135.10.1016/j.ast.2019.03.056CrossRefGoogle Scholar
Han, T., Hu, Q. and Xin, M. Analytical solution of field-of-view limited guidance with constrained impact and capturability analysis, Aerosp Sci Technol., 2020, 97, p 105586.10.1016/j.ast.2019.105586CrossRefGoogle Scholar
Kumar, S.R. and Shima, T. Cooperative nonlinear guidance strategies for aircraft defense, J Guid Control Dyn., 2017, 40, (1), pp 124138.10.2514/1.G000659CrossRefGoogle Scholar
Tan, Z.W., Fonod, R. and Shima, T. Cooperative guidance law for target pair to lure two pursuers into collision, J Guid Control Dyn., 2018, 41, (8), pp 16871699.10.2514/1.G003357CrossRefGoogle Scholar
Sinha, A., Kumar, S.R. and Mukherjee, D. Cooperative integrated guidance and control design for simultaneous interception, Aerosp Sci Technol., 2022, 120, p 107262.10.1016/j.ast.2021.107262CrossRefGoogle Scholar
Jiang, H., An, Z., Yu, Y.N., Chen, S. and Xiong, F. Cooperative guidance with multiple constraints using convex optimization, Aerosp Sci Technol., 2018, 79, pp 426440.10.1016/j.ast.2018.06.001CrossRefGoogle Scholar
Gaudet, B., Furfaro, R. and Linares, R. Reinforcement learning for angle-only intercept guidance of maneuvering targets, Aerosp Sci Technol., 2020, 99, p 105746.10.1016/j.ast.2020.105746CrossRefGoogle Scholar
Jianglong, Y.U., Xiwang, D.O.N.G., Qingdong, L.I., Zhang, R.E.N. and Jinhu, L.V. Cooperative guidance strategy for multiple hypersonic gliding vehicles system, Chin J Aeronaut., 2020, 33, pp 9901005.Google Scholar
Sui, S., Bai, Z., Tong, S. and Chen, C.P. Nonsingular fixed-time asymptotic consensus for nonlinear nonstrict-feedback mass, IEEE Trans Cybern., 2024, 54, pp 47384748.10.1109/TCYB.2023.3338821CrossRefGoogle ScholarPubMed
Sui, S., Bai, Z., Tong, S. and Chen, C.P. Finite-time adaptive fuzzy event-triggered consensus control for high-order mimo nonlinear mass, IEEE Trans Fuzzy Syst., 2024, 32, pp 671682.10.1109/TFUZZ.2023.3306153CrossRefGoogle Scholar
Wei, C., Luo, J., Yin, Z. and Yuan, J. Leader-following consensus of second-order multi-agent systems with arbitrarily appointed-time prescribed performance, IET Control Theory Appl., 2018, 12, (16), pp 22762286.10.1049/iet-cta.2018.5158CrossRefGoogle Scholar
Wei, C., Wu, X., Xiao, B., Wu, J. and Zhang, C. Adaptive leader-following performance guaranteed formation control for multiple spacecraft with collision avoidance and connectivity assurance, Aerosp Sci Technol., 2022, 120, p 107266.10.1016/j.ast.2021.107266CrossRefGoogle Scholar
Ning, B., Han, Q.L. and Zuo, Z. Distributed optimization of multiagent systems with preserved network connectivity, IEEE Trans Cybern., 2018, 49, (11), pp 39803990.10.1109/TCYB.2018.2856508CrossRefGoogle ScholarPubMed
Zhang, Y. and Tian, Y.P. Consentability and protocol design of multi-agent systems with stochastic switching topology, Automatica, 2009, 45, (5), pp 11951201.CrossRefGoogle Scholar
Zhang, J., Yan, J. and Zhang, P. Multi-UAV formation control based on a novel back-stepping approach, IEEE Trans Vehicular Technol., 2020, 69, (3), pp 24372448.10.1109/TVT.2020.2964847CrossRefGoogle Scholar
Chang, Y., Wang, Z., Qiu, L., Wang, S. and Bai, Y. Reinforcement learning–based adaptive fault-tolerant antidisturbance control for UAVs subjected to external disturbances, input uncertainties, and structural uncertainties, J Aerosp Eng., 2025, 38, (1), p 04024103.10.1061/JAEEEZ.ASENG-5655CrossRefGoogle Scholar
Wang, L. and Su, J. Robust disturbance rejection control for attitude tracking of an aircraft, IEEE Trans Control Syst Technol., 2015, 23, (6), pp 23612368.10.1109/TCST.2015.2398811CrossRefGoogle Scholar
Cabecinhas, D., Cunha, R. and Silvestre, C. A globally stabilizing path following controller for rotorcraft with wind disturbance rejection, IEEE Trans Control Syst Technol., 2014, 23, (2), pp 708714.10.1109/TCST.2014.2326820CrossRefGoogle Scholar
Wang, C., Song, B., Huang, P. and Tang, C. Trajectory tracking control for quadrotor robot subject to payload variation and wind gust disturbance, J Intell Robot Syst., 2016, 83, pp 315333.10.1007/s10846-016-0333-4CrossRefGoogle Scholar
Mohit, M. and Shahrokhi, M. Adaptive fixed-time consensus control for a class of non-strict feedback multi-agent systems subject to input nonlinearities, state constraints, unknown control directions, and actuator faults, Eur J Control, 2022, 66, p 100649.10.1016/j.ejcon.2022.100649CrossRefGoogle Scholar
Wang, Z., Chang, Y. and Liu, J. Reinforcement learning-based adaptive tracking control for mismatched non-affine nonlinear systems with coupled uncertainties, Proc Inst Mech Eng I J Syst Control Eng., 2024, 238, (9), pp 17091721.Google Scholar
Wang, Z., Chang, Y., Qiu, Y. and Xing, X. RL-based adaptive control for a class of non-affine uncertain stochastic systems with mismatched disturbances, Commun Nonlinear Sci Numer Simul., 2024, 138, p 108191.10.1016/j.cnsns.2024.108191CrossRefGoogle Scholar
Chen, L., Liu, M., Shi, Y., Zhang, H. and Zhao, E. Adaptive fault estimation for unmanned surface vessels with a neural network observer approach, IEEE Trans Circuits Syst I Reg Pap., 2020, 68, (1), pp 416425.10.1109/TCSI.2020.3033803CrossRefGoogle Scholar
Yang, Y., Liu, Q., Tan, H., Shen, Z. and Wu, D. Collision-free and connectivity-preserving formation control of nonlinear multi-agent systems with external disturbances, IEEE Trans Vehicular Technol., 2023, 72, (8), pp 99569968.10.1109/TVT.2023.3262673CrossRefGoogle Scholar
Ren, Y., Zhang, K., Jiang, B., Cheng, W. and Ding, Y. Distributed fault-tolerant time-varying formation control of heterogeneous multi-agent systems, Int J Robust Nonlin Control, 2022, 32, (5), pp 28642882.10.1002/rnc.5870CrossRefGoogle Scholar
Wang, J. and Xin, M. Integrated optimal formation control of multiple unmanned aerial vehicles, IEEE Trans Control Syst Technol., 2012, 21, (5), pp 17311744.10.1109/TCST.2012.2218815CrossRefGoogle Scholar
Khodaverdian, M., Hajshirmohamadi, S., Hakobyan, A. and Ijaz, S. Predictor-based constrained fixed-time sliding mode control of multi-UAV formation flight, Aerosp Sci Technol., 2024, 148, p 109113.10.1016/j.ast.2024.109113CrossRefGoogle Scholar
Zhang, Z., Luo, Y. and Qu, Y. Distributed formation control with obstacle and collision avoidance for hypersonic gliding vehicles subject to multiple constraints, Int J Aerosp Eng., 2023, 2023, (1), p 9973653.Google Scholar
Xie, S. and Xie, L. Decentralized stabilization of a class of interconnected stochastic nonlinear systems, IEEE Trans Automat Contr., 2000, 45, (1), pp 132137.Google Scholar
Polycarpou, M.M. and Ioannou, P.A. A robust adaptive nonlinear control design, 1993 American Control Conference, IEEE, 1993, pp 13651369.10.23919/ACC.1993.4793094CrossRefGoogle Scholar
Li, Z., Wang, C., Shen, F., Peng, Y. and Wang, M. Goose queue inspired v-array with cross-section variations for enhanced electromechanical energy harvesting behaviors, IEEE/ASME Trans Mechatron., 2024, pp 110.10.1109/TMECH.2024.3496935CrossRefGoogle Scholar
Xie, Y., Liu, L., Liu, J., Tang, G. and Zheng, W. Rapid generation of entry trajectories with waypoint and no-fly zone constraints, Acta Astronaut., 2012, 77, pp 167181.10.1016/j.actaastro.2012.04.006CrossRefGoogle Scholar
Xiong, T., Pu, Z. and Yi, J. Neural network based distributed adaptive time-varying formation control for multi-UAV systems with varying time delays., 2018 International Joint Conference on Neural Networks (IJCNN), IEEE, 2018, pp 17.10.1109/IJCNN.2018.8489040CrossRefGoogle Scholar
Zhen, Z., Tao, G., Xu, Y. and Song, G. Multivariable adaptive control based consensus flight control system for UAVs formation, Aerosp Sci Technol., 2019, 93, p 105336.10.1016/j.ast.2019.105336CrossRefGoogle Scholar