No CrossRef data available.
Published online by Cambridge University Press: 01 July 2016
We consider the stochastic sequence {Yt}t∈ℕ defined recursively by the linear relation Yt+1=AtYt+Bt in a random environment. The environment is described by the stochastic process {(At,Bt)}t∈ℕ and is under the simultaneous control of several agents playing a discounted stochastic game. We formulate sufficient conditions on the game which ensure the existence of Nash equilibria in Markov strategies which have the additional property that, in equilibrium, the process {Yt}t∈ℕ converges in distribution to a stationary regime.