No CrossRef data available.
Published online by Cambridge University Press: 15 July 2003
This article discusses finite element Galerkin schemes for a number of linear model problems in electromagnetism. The finite element schemes are introduced as discrete differential forms, matching the coordinate-independent statement of Maxwell's equations in the calculus of differential forms. The asymptotic convergence of discrete solutions is investigated theoretically. As discrete differential forms represent a genuine generalization of conventional Lagrangian finite elements, the analysis is based upon a judicious adaptation of established techniques in the theory of finite elements. Risks and difficulties haunting finite element schemes that do not fit the framework of discrete differential forms are highlighted.