Published online by Cambridge University Press: 09 June 2025
Rare or extreme fluctuations beyond the Gaussian regime are treated through large deviation theory for the nonequilibrium steady state of discrete systems and of systems with Langevin dynamics. For both classes, we first develop the spectral approach that yields the scaled cumulant-generating function for state observables and currents in terms of the largest eigenvalue of the tilted generator. Second, we introduce the rate function of level 2.5 that can be determined exactly. Contractions then lead to bounds on the rate function for state observables or currents. Specialized to equilibrium, explicit results are obtained. As a general result, the rate function for any current is shown to be bounded by a quadratic function which implies the thermodynamic uncertainty relation.
To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.