Published online by Cambridge University Press: 27 June 2025
This note surveys some recent results on higher-dimensional birational geometry, summarising the views expressed at the conference held at MSRI in November 1992. The topics reviewed include semistable flips, birational theory of Mori fiber spaces, the logarithmic abundance theorem, and effective base point freeness.
1. Introduction
The purpose of this note is to survey some recent results in higher-dimensional birational geometry. A glance to the table of contents may give the reader some idea of the topics that will be treated. I have attempted to give an informal presentation of the main ideas, emphasizing the common grounds, addressing a general audience. In §3, I could not resist discussing some details that perhaps only the expert will care about, but hopefully will also introduce the non-expert reader to a subtle subject.
Perhaps the most significant trend in Mori theory today is the increasing use, more or less explicit, of the logarithmic theory. Let me take this opportunity to advertise the Utah book [Ko], which contains all the recent software on log minimal models. Our notation is taken from there.
I have kept the bibliography to a minimum and made no attempt to give proper credit for many results. The reader who wishes to know more about the results or their history could start from the references listed here and the literature quoted in those references.
The end of a proof or the absence of it will be denoted with a ▫ . Anyway here proof always means “proof“: a bare outline will be given at best, usually only a brief account of some of what the author considers to be the main ideas.
To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.