Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-dbm8p Total loading time: 0 Render date: 2025-09-29T01:19:56.341Z Has data issue: false hasContentIssue false

Section VII - Individual Differences

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Bäckman, L., Lindenberger, U., Li, S.-C., & Nyberg, L. (2010). Linking cognitive aging to alterations in dopamine neurotransmitter functioning: Recent data and future avenues. Neuroscience & Biobehavioral Reviews, 34, 670–677.CrossRefGoogle ScholarPubMed
Bailey, P. E., Brady, B., Ebner, N. C., & Ruffman, T. (2018). Effects of age on emotion regulation, emotional empathy, and prosocial behavior. The Journals of Gerontology: Series B, 75, 802–810.Google Scholar
Barrett, L. F., & Bliss-Moreau, E. (2009). She’s emotional. He’s having a bad day: Attributional explanations for emotion stereotypes. Emotion, 9, 649–658.CrossRefGoogle Scholar
Bos, P. A., Panksepp, J., Bluthé, R.-M., & van Honk, J. (2012). Acute effects of steroid hormones and neuropeptides on human social–emotional behavior: A review of single administration studies. Frontiers in Neuroendocrinology, 33, 17–35.CrossRefGoogle ScholarPubMed
Burke, H. M., Davis, M. C., Otte, C., & Mohr, D. C. (2005). Depression and cortisol responses to psychological stress: A meta-analysis. Psychoneuroendocrinology, 30, 846–856.CrossRefGoogle ScholarPubMed
Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17, 85–100.CrossRefGoogle ScholarPubMed
Cabeza, R., Daselaar, S. M., Dolcos, F., Prince, S. E., Budde, M., & Nyberg, L. (2004). Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cerebral Cortex, 14, 364–375.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Berntson, G. G., Bechara, A., Tranel, D., & Hawkley, L. C. (2011). Could an aging brain contribute to subjective well-being? The value added by a social neuroscience perspective. In Todorov, A., Fiske, S., & Prentice, D. (Eds.), Social neuroscience: Toward understanding the underpinnings of the social mind (p. 249–262). Oxford University Press.Google Scholar
Carhart-Harris, R., & Nutt, D. (2017). Serotonin and brain function: A tale of two receptors. Journal of Psychopharmacology, 31, 1091–1120.CrossRefGoogle ScholarPubMed
Carstensen, L. L. (2006). The influence of a sense of time on human development. Science, 312, 1913–1915.CrossRefGoogle ScholarPubMed
Castle, E., Eisenberger, N. I., Seeman, T. E., Moons, W. G., Boggero, I. A., Grinblatt, M. S., & Taylor, S. E. (2012). Neural and behavioral bases of age differences in perceptions of trust. Proceedings of the National Academy of Sciences of the United States of America, 109, 20848–20852.Google ScholarPubMed
Craig, A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10, 59–70.Google Scholar
Dahl, M. J., Mather, M., Werkle-Bergner, M., Kennedy, B. L., Guzman, S., Hurth, K., … Ringman, J. M. (2022). Locus coeruleus integrity is related to tau burden and memory loss in autosomal-dominant Alzheimer’s disease. Neurobiology of Aging, 112, 39–54.CrossRefGoogle ScholarPubMed
Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral Cortex, 18, 1201–1209.CrossRefGoogle ScholarPubMed
Delgado, M. R., Beer, J. S., Fellows, L. K., Huettel, S. A., Platt, M. L., Quirk, G. J., & Schiller, D. (2016). Viewpoints: Dialogues on the functional role of the ventromedial prefrontal cortex. Nature Neuroscience, 19, 1545–1552.CrossRefGoogle ScholarPubMed
Ebner, N. C., Chen, H., Porges, E., Lin, T., Fischer, H., Feifel, D., & Cohen, R. A. (2016). Oxytocin’s effect on resting-state functional connectivity varies by age and sex. Psychoneuroendocrinology, 69, 50–59.CrossRefGoogle ScholarPubMed
Ebner, N. C., & Fischer, H. (2014). Emotion and aging: Evidence from brain and behavior. Frontiers in Psychology, 5, 996.CrossRefGoogle ScholarPubMed
Ebner, N. C., Kamin, H., Diaz, V., Cohen, R. A., & MacDonald, K. (2015). Hormones as “difference makers” in cognitive and socioemotional aging processes. Frontiers in Psychology, 5, 1595.CrossRefGoogle ScholarPubMed
Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15, 85–93.CrossRefGoogle ScholarPubMed
Farokhian, F., Yang, C., Beheshti, I., Matsuda, H., & Wu, S. (2017). Age-related gray and white matter changes in normal adult brains. Aging and Disease, 8, 899–909.CrossRefGoogle ScholarPubMed
Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., & Walhovd, K. B., for the Alzheimer’s Disease Neuroimaging Initiative. (2013). Brain changes in older adults at very low risk for Alzheimer’s disease. Journal of Neuroscience, 33, 8237–8242.CrossRefGoogle ScholarPubMed
Fjell, A. M., & Walhovd, K. B. (2010). Structural brain changes in aging: Courses, causes and cognitive consequences. Reviews in the Neurosciences, 21, 187–221.CrossRefGoogle ScholarPubMed
Ford, J. H., & Kensinger, E. A. (2017). Prefrontally-mediated alterations in the retrieval of negative events: Links to memory vividness across the adult lifespan. Neuropsychologia, 102, 82–94.CrossRefGoogle ScholarPubMed
Fraser, M. A., Shaw, M. E., & Cherbuin, N. (2015). A systematic review and meta-analysis of longitudinal hippocampal atrophy in healthy human ageing. NeuroImage, 112, 364–374.CrossRefGoogle ScholarPubMed
Frazier, I., Lighthall, N. R., Horta, M., Perez, E., & Ebner, N. C. (2019). CISDA: Changes in Integration for Social Decisions in Aging. Wiley Interdisciplinary Reviews Cognitive Science, 10, e1490.CrossRefGoogle ScholarPubMed
Fuchs, E., & Flügge, G. (2003). Chronic social stress: Effects on limbic brain structures. Physiology & Behavior, 79, 417–427.CrossRefGoogle ScholarPubMed
Giorgio, A., Santelli, L., Tomassini, V., Bosnell, R., Smith, S., De Stefano, N., & Johansen-Berg, H. (2010). Age-related changes in grey and white matter structure throughout adulthood. NeuroImage, 51, 943–951.CrossRefGoogle ScholarPubMed
Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N. A., Friston, K. J., & Frackowiak, R. S. J. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14, 21–36.Google ScholarPubMed
Gooren, L. (2007). Testosterone and the brain. The Journal of Men’s Health & Gender, 4, 344–351.Google Scholar
Grady, C. L., Bernstein, L. J., Beig, S., & Siegenthaler, A. L. (2002). The effects of encoding task on age-related differences in the functional neuroanatomy of face memory. Psychology and Aging, 17, 7–23.CrossRefGoogle ScholarPubMed
Grieve, S. M., Clark, C. R., Williams, L. M., Peduto, A. J., & Gordon, E. (2005). Preservation of limbic and paralimbic structures in aging. Human Brain Mapping, 25, 391–401.CrossRefGoogle ScholarPubMed
Gunning-Dixon, F. M., Brickman, A. M., Cheng, J. C., & Alexopoulos, G. S. (2009). Aging of cerebral white matter: A review of MRI findings. International Journal of Geriatric Psychiatry, 24, 109–117.CrossRefGoogle ScholarPubMed
Ha, D. M., Xu, J., & Janowsky, J. S. (2007). Preliminary evidence that long-term estrogen use reduces white matter loss in aging. Neurobiology of Aging, 28, 1936–1940.CrossRefGoogle ScholarPubMed
Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35, 4–26.CrossRefGoogle ScholarPubMed
Harrison, T. M., Weintraub, S., Mesulam, M.-M., & Rogalski, E. (2012). Superior memory and higher cortical volumes in unusually successful cognitive aging. Journal of the International Neuropsychological Society, 18, 1081–1085.CrossRefGoogle ScholarPubMed
Hauser, T. U., Eldar, E., Purg, N., Moutoussis, M., & Dolan, R. J. (2019). Distinct roles of dopamine and noradrenaline in incidental memory. The Journal of Neuroscience, 39, 7715–7721.CrossRefGoogle ScholarPubMed
Heaney, J. L. J., Phillips, A. C., & Carroll, D. (2010). Ageing, depression, anxiety, social support and the diurnal rhythm and awakening response of salivary cortisol. International Journal of Psychophysiology, 78, 201–208.CrossRefGoogle ScholarPubMed
Horta, M., Ziaei, M., Lin, T., Porges, E. C., Fischer, H., Feifel, D., … Ebner, N. C. (2019). Oxytocin alters patterns of brain activity and amygdalar connectivity by age during dynamic facial emotion identification. Neurobiology of Aging, 78, 42–51.CrossRefGoogle ScholarPubMed
Hussain, L. (2022). Physiology, noradrenergic synapse. StatPearls Publishing.Google Scholar
Isaacowitz, D. M., Freund, A. M., Mayr, U., Rothermund, K., & Tobler, P. N. (2021). Age-related changes in the role of social motivation: Implications for healthy aging. The Journals of Gerontology: Series B, 76, S115–S124.CrossRefGoogle ScholarPubMed
Jernigan, T. L., Archibald, S. L., Fennema-Notestine, C., Gamst, A. C., Stout, J. C., Bonner, J., & Hesselink, J. R. (2001). Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiology of Aging, 22, 581–594.CrossRefGoogle ScholarPubMed
Kang, W., Wang, J., & Malvaso, A. (2022). Inhibitory control in aging: The compensation-related utilization of neural circuits hypothesis. Frontiers in Aging Neuroscience, 13, 771885.CrossRefGoogle ScholarPubMed
Karalija, N., Johansson, J., Papenberg, G., Wåhlin, A., Salami, A., Köhncke, Y., … Nyberg, L. (2022). Longitudinal dopamine D2 receptor changes and cerebrovascular health in aging. Neurology, 99, e1278–e1289.CrossRefGoogle ScholarPubMed
Karrer, T. M., Josef, A. K., Mata, R., Morris, E. D., & Samanez-Larkin, G. R. (2017). Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: A meta-analysis. Neurobiology of Aging, 57, 36–46.CrossRefGoogle Scholar
Karrer, T. M., McLaughlin, C. L., Guaglianone, C. P., & Samanez-Larkin, G. R. (2019). Reduced serotonin receptors and transporters in normal aging adults: A meta-analysis of PET and SPECT imaging studies. Neurobiology of Aging, 80, 1–10.CrossRefGoogle ScholarPubMed
Kensinger, E. A., & Corkin, S. (2004). Two routes to emotional memory: Distinct neural processes for valence and arousal. Proceedings of the National Academy of Sciences of the United States of America, 101, 3310–3315.Google ScholarPubMed
Knierim, J. J. (2015). The hippocampus. Current Biology, 25, R1116–R1121.CrossRefGoogle ScholarPubMed
Knutson, B., Katovich, K., & Suri, G. (2014). Inferring affect from fMRI data. Trends in Cognitive Sciences, 18, 422–428.CrossRefGoogle ScholarPubMed
Kober, H., Barrett, L. F., Joseph, J., Bliss-Moreau, E., Lindquist, K., & Wager, T. D. (2008). Functional grouping and cortical–subcortical interactions in emotion: A meta-analysis of neuroimaging studies. NeuroImage, 42, 998–1031.CrossRefGoogle ScholarPubMed
Kryla-Lighthall, N., & Mather, M. (2009). The role of cognitive control in older adults’ emotional well-being. Springer Publishing Company.Google Scholar
Kwee, I. L., & Nakada, T. (2003). Dorsolateral prefrontal lobe activation declines significantly with age functional NIRS study. Journal of Neurology, 250, 525–529.CrossRefGoogle ScholarPubMed
Lee, T.-H., Greening, S. G., Ueno, T., Clewett, D., Ponzio, A., Sakaki, M., & Mather, M. (2018). Arousal increases neural gain via the locus coeruleus–noradrenaline system in younger adults but not in older adults. Nature Human Behaviour, 2, 356–366.CrossRefGoogle Scholar
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35, 121–143.CrossRefGoogle ScholarPubMed
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434–445.CrossRefGoogle ScholarPubMed
MacDonald, M. E., & Pike, G. B. (2021). MRI of healthy brain aging: A review. NMR in Biomedicine, 34, e4564.CrossRefGoogle ScholarPubMed
Malagurski, B., Deschwanden, P. F., Jäncke, L., & Mérillat, S. (2022). Longitudinal functional connectivity patterns of the default mode network in healthy older adults. NeuroImage, 259, 119414.CrossRefGoogle ScholarPubMed
Mather, M. (2016). The affective neuroscience of aging. Annual Review of Psychology, 67, 213–238.CrossRefGoogle ScholarPubMed
Mather, M., Clewett, D., Sakaki, M., & Harley, C. W. (2016). Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behavioral and Brain Sciences, 39, e200.CrossRefGoogle ScholarPubMed
McEwen, B. S. (2013). The brain on stress: Toward an integrative approach to brain, body, and behavior. Perspectives on Psychological Science, 8, 673–675.CrossRefGoogle ScholarPubMed
Menon, V. (2015). Salience network. In Toga, A. W. (Ed.), Brain mapping: An encyclopedic reference, Vol. 2 (pp. 597–611). Elsevier.Google Scholar
Milham, M. P., Erickson, K. I., Banich, M. T., Kramer, A. F., Webb, A., Wszalek, T., & Cohen, N. J. (2002). Attentional control in the aging brain: Insights from an fMRI study of the Stroop task. Brain and Cognition, 49, 277–296.CrossRefGoogle ScholarPubMed
Missale, C., Nash, S. R., Robinson, S. W., Jaber, M., & Caron, M. G. (1998). Dopamine receptors: From structure to function. Physiological Reviews, 78, 189–225.CrossRefGoogle ScholarPubMed
Mitchell, D. G. V. (2011). The nexus between decision making and emotion regulation: A review of convergent neurocognitive substrates. Behavioural Brain Research, 217, 215–231.CrossRefGoogle ScholarPubMed
Morawetz, C., Bode, S., Derntl, B., & Heekeren, H. R. (2017). The effect of strategies, goals and stimulus material on the neural mechanisms of emotion regulation: A meta-analysis of fMRI studies. Neuroscience & Biobehavioral Reviews, 72, 111–128.CrossRefGoogle ScholarPubMed
Nashiro, K., Sakaki, M., & Mather, M. (2012). Age differences in brain activity during emotion processing: Reflections of age-related decline or increased emotion regulation. Gerontology, 58, 156–163.CrossRefGoogle ScholarPubMed
Newhouse, P. A., Dumas, J., Hancur-Bucci, C., Naylor, M., Sites, C. K., Benkelfat, C., & Young, S. N. (2008). Estrogen administration negatively alters mood following monoaminergic depletion and psychosocial stress in postmenopausal women. Neuropsychopharmacology, 33, 1514–1527.CrossRefGoogle ScholarPubMed
Nordahl, C. W., Ranganath, C., Yonelinas, A. P., DeCarli, C., Fletcher, E., & Jagust, W. J. (2006). White matter changes compromise prefrontal cortex function in healthy elderly individuals. Journal of Cognitive Neuroscience, 18, 418–429.CrossRefGoogle ScholarPubMed
Ogawa, S. K., & Watabe-Uchida, M. (2018). Organization of dopamine and serotonin system: Anatomical and functional mapping of monosynaptic inputs using rabies virus. Pharmacology Biochemistry and Behavior, 174, 9–22.CrossRefGoogle ScholarPubMed
Onoda, K., Ishihara, M., & Yamaguchi, S. (2012). Decreased functional connectivity by aging is associated with cognitive decline. Journal of Cognitive Neuroscience, 24, 2186–2198.CrossRefGoogle ScholarPubMed
Pardo, J. V., Lee, J. T., Sheikh, S. A., Surerus-Johnson, C., Shah, H., Munch, K. R., … Dysken, M. W. (2007). Where the brain grows old: Decline in anterior cingulate and medial prefrontal function with normal aging. NeuroImage, 35, 1231–1237.CrossRefGoogle ScholarPubMed
Peper, J. S., van den Heuvel, M. P., Mandl, R. C. W., Pol, H. E. H., & van Honk, J. (2011). Sex steroids and connectivity in the human brain: A review of neuroimaging studies. Psychoneuroendocrinology, 36, 1101–1113.CrossRefGoogle ScholarPubMed
Peters, K. Z., Cheer, J. F., & Tonini, R. (2021). Modulating the neuromodulators: Dopamine, serotonin, and the endocannabinoid system. Trends in Neurosciences, 44, 464–477.CrossRefGoogle ScholarPubMed
Piazza, J. R., Charles, S. T., Stawski, R. S., & Almeida, D. M. (2013). Age and the association between negative affective states and diurnal cortisol. Psychology and Aging, 28, 47–56.CrossRefGoogle ScholarPubMed
Pierce, J. E., & Péron, J. (2020). The basal ganglia and the cerebellum in human emotion. Social Cognitive and Affective Neuroscience, 15, 599–613.CrossRefGoogle ScholarPubMed
Protopopescu, X., Pan, H., Altemus, M., Tuescher, O., Polanecsky, M., McEwen, B., … Stern, E. (2005). Orbitofrontal cortex activity related to emotional processing changes across the menstrual cycle. Proceedings of the National Academy of Sciences of the United States of America, 102, 16060–16065.Google ScholarPubMed
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676–682.Google ScholarPubMed
Raz, N. (2000). Aging of the brain and its impact on cognitive performance: Integration of structural and functional findings. Lawrence Erlbaum Associates Publishers.Google Scholar
Raz, N. (2005). The aging brain observed in vivo: Differential changes and their modifiers. In Cabeza, R., Nyberg, L., & Park, D. (Eds.), Cognitive neuroscience of aging: Linking cognitive and cerebral aging (pp. 19–57). Oxford University Press.Google Scholar
Raz, N., Ghisletta, P., Rodrigue, K. M., Kennedy, K. M., & Lindenberger, U. (2010). Trajectories of brain aging in middle-aged and older adults: Regional and individual differences. NeuroImage, 51, 501–511.CrossRefGoogle ScholarPubMed
Reed, A. E., Chan, L., & Mikels, J. A. (2014). Meta-analysis of the age-related positivity effect: Age differences in preferences for positive over negative information. Psychology and Aging, 29, 1–15.CrossRefGoogle ScholarPubMed
Salat, D. H., Kaye, J. A., & Janowsky, J. S. (1999). Prefrontal gray and white matter volumes in healthy aging and Alzheimer disease. Archives of Neurology, 56, 338–344.CrossRefGoogle ScholarPubMed
Salat, D. H., Tuch, D. S., Hevelone, N. D., Fischl, B., Corkin, S., Rosas, H. D., & Dale, A. M. (2005). Age-related changes in prefrontal white matter measured by diffusion tensor imaging. Annals of the New York Academy of Sciences, 1064, 37–49.CrossRefGoogle ScholarPubMed
Samanez-Larkin, G. R., & Knutson, B. (2015). Decision making in the ageing brain: Changes in affective and motivational circuits. Nature Reviews. Neuroscience, 16, 278–289.CrossRefGoogle ScholarPubMed
Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21, 55–89.Google ScholarPubMed
Saykin, A. J., Wishart, H. A., Rabin, L. A., Santulli, R. B., Flashman, L. A., West, J. D., … Mamourian, A. C. (2006). Older adults with cognitive complaints show brain atrophy similar to that of amnestic MCI. Neurology, 67, 834–842.CrossRefGoogle ScholarPubMed
Scherer, K. R., Schorr, A., & Johnstone, T. (Eds.). (2001). Appraisal processes in emotion: Theory, methods, research. Oxford University Press.CrossRefGoogle Scholar
Schultz, W. (2016). Reward functions of the basal ganglia. Journal of Neural Transmission, 123, 679–693.CrossRefGoogle ScholarPubMed
Schwarz, L. A., & Luo, L. (2015). Organization of the locus coeruleus-norepinephrine system. Current Biology, 25, R1051–R1056.CrossRefGoogle ScholarPubMed
Seaman, K. L., Smith, C. T., Juarez, E. J., Dang, L. C., Castrellon, J. J., Burgess, L. L., … Samanez‐Larkin, G. R. (2019). Differential regional decline in dopamine receptor availability across adulthood: Linear and nonlinear effects of age. Human Brain Mapping, 40, 3125–3138.CrossRefGoogle ScholarPubMed
Sele, S., Liem, F., Mérillat, S., & Jäncke, L. (2020). Decline variability of cortical and subcortical regions in aging: A longitudinal study. Frontiers in Human Neuroscience, 14, 363.CrossRefGoogle ScholarPubMed
Sharma, A. N., Aoun, P., Wigham, J. R., Weist, S. M., & Veldhuis, J. D. (2014). Estradiol, but not testosterone, heightens cortisol-mediated negative feedback on pulsatile ACTH secretion and ACTH approximate entropy in unstressed older men and women. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 306, R627–R635.Google Scholar
St. Jacques, P. L., Dolcos, F., & Cabeza, R. (2009). Effects of aging on functional connectivity of the amygdala for subsequent memory of negative pictures: A network analysis of functional magnetic resonance imaging data. Psychological Science, 20, 74–84.CrossRefGoogle ScholarPubMed
Stevens, F. L., Hurley, R. A., & Taber, K. H. (2011). Anterior cingulate cortex: Unique role in cognition and emotion. The Journal of Neuropsychiatry and Clinical Neurosciences, 23, 121–125.CrossRefGoogle ScholarPubMed
Storsve, A. B., Fjell, A. M., Tamnes, C. K., Westlye, L. T., Overbye, K., Aasland, H. W., & Walhovd, K. B. (2014). Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: Regions of accelerating and decelerating change. Journal of Neuroscience, 34, 8488–8498.CrossRefGoogle ScholarPubMed
Sun, F. W., Stepanovic, M. R., Andreano, J., Barrett, L. F., Touroutoglou, A., & Dickerson, B. C. (2016). Youthful brains in older adults: Preserved neuroanatomy in the default mode and salience networks contributes to youthful memory in superaging. The Journal of Neuroscience, 36, 9659–9668.CrossRefGoogle ScholarPubMed
Touroutoglou, A., Zhang, J., Andreano, J. M., Dickerson, B. C., & Barrett, L. F. (2018). Dissociable effects of aging on salience subnetwork connectivity mediate age-related changes in executive function and affect. Frontiers in Aging Neuroscience, 10, 410.CrossRefGoogle ScholarPubMed
Uddin, L. Q., Nomi, J. S., Hébert-Seropian, B., Ghaziri, J., & Boucher, O. (2017). Structure and function of the human insula. Journal of Clinical Neurophysiology, 34, 300–306.CrossRefGoogle ScholarPubMed
Urry, H. L., & Gross, J. J. (2010). Emotion regulation in older age. Current Directions in Psychological Science, 19, 352–357.CrossRefGoogle Scholar
Walla, P., & Panksepp, J. (2013). Neuroimaging helps to clarify brain affective processing without necessarily clarifying emotions. In Fountas, K. (Ed.), Novel frontiers of advanced neuroimaging (pp. 93–118). InTech.Google Scholar
Weinert, B. T., & Timiras, P. S. (2003). Invited review: Theories of aging. Journal of Applied Physiology, 95, 1706–1716.CrossRefGoogle ScholarPubMed
Wieser, M. J., Mühlberger, A., Kenntner-Mabiala, R., & Pauli, P. (2006). Is emotion processing affected by advancing age? An event-related brain potential study. Brain Research, 1096, 138–147.CrossRefGoogle ScholarPubMed
Williams, L. M., Brown, K. J., Palmer, D., Liddell, B. J., Kemp, A. H., & Olivieri, G. (2006). The mellow years?: Neural basis of improving emotional stability over age. The Journal of Neuroscience, 26, 6422–6430.CrossRefGoogle ScholarPubMed
Wu, J.-T., Wu, H.-Z., Yan, C.-G., Chen, W.-X., Zhang, H.-Y., He, Y., & Yang, H.-S. (2011). Aging-related changes in the default mode network and its anti-correlated networks: A resting-state fMRI study. Neuroscience Letters, 504, 62–67.CrossRefGoogle ScholarPubMed
Yu, J., Mamerow, L., Lei, X., Fang, L., & Mata, R. (2016). Altered value coding in the ventromedial prefrontal cortex in healthy older adults. Frontiers in Aging Neuroscience, 8, 210.CrossRefGoogle ScholarPubMed

References

Admon, R., Lubin, G., Stern, O., Rosenberg, K., Sela, L., Ben-Ami, H., & Hendler, T. (2009). Human vulnerability to stress depends on amygdala’s predisposition and hippocampal plasticity. Proceedings of the National Academy of Sciences of the United States of America, 106, 14120–14125.Google ScholarPubMed
Ahlgrim, N. S., & Manns, J. R. (2019). Optogenetic stimulation of the basolateral amygdala increased theta-modulated gamma oscillations in the hippocampus. Frontiers in Behavioral Neuroscience, 13, 87.CrossRefGoogle ScholarPubMed
Al Abed, A. S., Ducourneau, E.-G., Bouarab, C., Sellami, A., Marighetto, A., & Desmedt, A. (2020). Preventing and treating PTSD-like memory by trauma contextualization. Nature Communications, 11, 4220.CrossRefGoogle ScholarPubMed
Amaral, D. G., Behniea, H., & Kelly, J. L. (2003). Topographic organization of projections from the amygdala to the visual cortex in the macaque monkey. Neuroscience, 118, 1099–1120.CrossRefGoogle Scholar
Amaral, D. G., & Price, J. L. (1984). Amygdalo-cortical projections in the monkey (Macaca fascicularis). Journal of Comparative Neurology, 230, 465–496.Google ScholarPubMed
Banerjee, S. B., Gutzeit, V. A., Baman, J., Aoued, H. S., Doshi, N. K., Liu, R. C., & Ressler, K. J. (2017). Perineuronal nets in the adult sensory cortex are necessary for fear learning. Neuron, 95, 169–179.e163.CrossRefGoogle ScholarPubMed
Booker, J. A., Fivush, R., Graci, M. E., Heitz, H., Hudak, L. A., Jovanovic, T., … Stevens, J. S. (2020). Longitudinal changes in trauma narratives over the first year and associations with coping and mental health. Journal of Affective Disorders, 272, 116–124.CrossRefGoogle ScholarPubMed
Brewin, C. R. (2014). Episodic memory, perceptual memory, and their interaction: foundations for a theory of posttraumatic stress disorder. Psychological Bulletin, 140, 69.CrossRefGoogle ScholarPubMed
Brewin, C. R., Andrews, B., & Valentine, J. D. (2000). Meta-analysis of risk factors for posttraumatic stress disorder in trauma-exposed adults. Journal Consulting and Clinical Psychology, 68, 748–766.CrossRefGoogle ScholarPubMed
Brohawn, K. H., Offringa, R., Pfaff, D. L., Hughes, K. C., & Shin, L. M. (2010). The neural correlates of emotional memory in posttraumatic stress disorder. Biological Psychiatry, 68, 1023–1030.CrossRefGoogle ScholarPubMed
Bryant, R. A., & Harvey, A. G. (1996). Visual imagery in posttraumatic stress disorder. Journal of Trauma Stress, 9, 613–619.CrossRefGoogle ScholarPubMed
Bullock, D. N., Hayday, E. A., Grier, M. D., Tang, W., Pestilli, F., & Heilbronner, S. R. (2022). A taxonomy of the brain’s white matter: Twenty-one major tracts for the 21st century. Cerebral Cortex, 32, 4524–4548.CrossRefGoogle ScholarPubMed
Carter, S. E., Gibbons, F. X., & Beach, S. R. (2021). Measuring the biological embedding of racial trauma among Black Americans utilizing the RDoC approach. Developmental Psychopathology, 33, 1849–1863.CrossRefGoogle ScholarPubMed
Clawson, B. C., Pickup, E. J., Ensing, A., Geneseo, L., Shaver, J., Gonzalez-Amoretti, J., … Swift, K. (2021). Causal role for sleep-dependent reactivation of learning-activated sensory ensembles for fear memory consolidation. Nature Communications, 12, 1200.CrossRefGoogle ScholarPubMed
Cogan, C. M., Scholl, J. A., Lee, J. Y., & Davis, J. L. (2021). Potentially traumatic events and the association between gender minority stress and suicide risk in a gender‐diverse sample. Journal of Trauma Stress, 34, 977–984.CrossRefGoogle Scholar
Cohen, H., Kaplan, Z., Kotler, M., Kouperman, I., Moisa, R., & Grisaru, N. (2004). Repetitive transcranial magnetic stimulation of the right dorsolateral prefrontal cortex in posttraumatic stress disorder: a double-blind, placebo-controlled study. American Journal of Psychiatry, 161, 515–524.CrossRefGoogle ScholarPubMed
Costanzo, M. E., Jovanovic, T., Pham, D., Leaman, S., Highland, K. B., Norrholm, S. D., & Roy, M. J. (2016). White matter microstructure of the uncinate fasciculus is associated with subthreshold posttraumatic stress disorder symptoms and fear potentiated startle during early extinction in recently deployed service members. Neuroscience Letters, 618, 66–71.CrossRefGoogle ScholarPubMed
Cox, W., Woelk, M., de Vries, O., Krypotos, A.-M., Kindt, M., Engelhard, I., … van Ast, V. (2022). Context reexposure to bolster contextual dependency of emotional episodic memory. Scientific Reports, 13, 17792.Google Scholar
Culver, N. C., Stevens, S., Fanselow, M. S., & Craske, M. G. (2018). Building physiological toughness: Some aversive events during extinction may attenuate return of fear. Journal of Behavior Therapy and Experimental Psychiatry, 58, 18–28.CrossRefGoogle ScholarPubMed
Dahlgren, M. K., Laifer, L. M., VanElzakker, M. B., Offringa, R., Hughes, K. C., Staples-Bradley, L. K., … Orr, S. P. (2018). Diminished medial prefrontal cortex activation during the recollection of stressful events is an acquired characteristic of PTSD. Psychological Medicine, 48, 1128–1138.CrossRefGoogle Scholar
Dalmay, T., Abs, E., Poorthuis, R. B., Hartung, J., Pu, D.-L., Onasch, S., … Letzkus, J. J. (2019). A critical role for neocortical processing of threat memory. Neuron, 104, 1180–1194.e1187.CrossRefGoogle ScholarPubMed
Davis, M. (1984). The mammalian startle response. In Eaton, R. C. (Ed.), Neural mechanisms of startle behavior (pp. 287–351). Springer.Google Scholar
Dunsmoor, J. E., Campese, V. D., Ceceli, A. O., LeDoux, J. E., & Phelps, E. A. (2015). Novelty-facilitated extinction: Providing a novel outcome in place of an expected threat diminishes recovery of defensive responses. Biological Psychiatry, 78, 203–209.CrossRefGoogle ScholarPubMed
Eichenbaum, H. (2017). On the integration of space, time, and memory. Neuron, 95, 1007–1018.CrossRefGoogle ScholarPubMed
Elzinga, B. M., & Bremner, J. D. (2002). Are the neural substrates of memory the final common pathway in posttraumatic stress disorder (PTSD)? Journal of Affective Disorders, 70, 1–17.CrossRefGoogle ScholarPubMed
Etkin, A., & Wager, T. D. (2007). Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry, 164, 1476–1488.CrossRefGoogle ScholarPubMed
Fanselow, M. S., & LeDoux, J. E. (1999). Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron, 23, 229–232.CrossRefGoogle ScholarPubMed
Foa, E. B., & Rothbaum, B. O. (2001). Treating the trauma of rape: Cognitive-behavioral therapy for PTSD. Guilford Press.Google Scholar
Foa, E. B., Steketee, G., & Rothbaum, B. O. (1989). Behavioral/cognitive conceptualizations of post-traumatic stress disorder. Behavior Therapy, 20, 155–176.CrossRefGoogle Scholar
Fonzo, G. A., Flagan, T. M., Sullivan, S., Allard, C. B., Grimes, E. M., Simmons, A. N., … Stein, M. B. (2013). Neural functional and structural correlates of childhood maltreatment in women with intimate-partner violence-related posttraumatic stress disorder. Psychiatry Research, 211, 93–103.Google ScholarPubMed
Galatzer-Levy, I. R., Ankri, Y., Freedman, S., Israeli-Shalev, Y., Roitman, P., Gilad, M., & Shalev, A. Y. (2013). Early PTSD symptom trajectories: persistence, recovery, and response to treatment: Results from the Jerusalem Trauma Outreach and Prevention Study (J-TOPS). PLoS ONE, 8, e70084.CrossRefGoogle ScholarPubMed
Galatzer-Levy, I. R., & Bryant, R. A. (2013). 636,120 ways to have posttraumatic stress disorder. Perspectives on Psychological Science, 8, 651–662.CrossRefGoogle ScholarPubMed
Garfinkel, S. N., Abelson, J. L., King, A. P., Sripada, R. K., Wang, X., Gaines, L. M., & Liberzon, I. (2014). Impaired contextual modulation of memories in PTSD: An fMRI and psychophysiological study of extinction retention and fear renewal. Journal of Neuroscience, 34, 13435–13443.CrossRefGoogle ScholarPubMed
Glautier, S., Elgueta, T., & Nelson, J. B. (2013). Extinction produces context inhibition and multiple-context extinction reduces response recovery in human predictive learning. Learning & Behavior, 41, 341–352.CrossRefGoogle ScholarPubMed
Gold, A. L., Shin, L. M., Orr, S., Carson, M., Rauch, S., Macklin, M., … Alpert, N. (2011). Decreased regional cerebral blood flow in medial prefrontal cortex during trauma-unrelated stressful imagery in Vietnam veterans with post-traumatic stress disorder. Psychological Medicine, 41, 2563–2572.CrossRefGoogle ScholarPubMed
Hagihara, K. M., Bukalo, O., Zeller, M., Aksoy-Aksel, A., Karalis, N., Limoges, A., … Weinholtz, C. (2021). Intercalated amygdala clusters orchestrate a switch in fear state. Nature, 594, 403–407.CrossRefGoogle ScholarPubMed
Hallford, D. J., Rusanov, D., Yeow, J., & Barry, T. J. (2021). Overgeneral and specific autobiographical memory predict the course of depression: An updated meta-analysis. Psychological Medicine, 51, 909–926.CrossRefGoogle ScholarPubMed
Hamani, C., Davidson, B., Corchs, F., Abrahao, A., Nestor, S. M., Rabin, J. S., … Levitt, A. (2022). Deep brain stimulation of the subgenual cingulum and uncinate fasciculus for the treatment of posttraumatic stress disorder. Science Advances, 8, eadc9970.CrossRefGoogle ScholarPubMed
Hamani, C., Mayberg, H., Stone, S., Laxton, A., Haber, S., & Lozano, A. M. (2011). The subcallosal cingulate gyrus in the context of major depression. Biological Psychiatry, 69, 301–308.CrossRefGoogle ScholarPubMed
Harnett, N. G., Fani, N., Carter, S., Sanchez, L. D., Rowland, G. E., Davie, W. M., … van Rooij, S. J. (2023). Structural inequities contribute to racial/ethnic differences in neurophysiological tone, but not threat reactivity, after trauma exposure. Molecular Psychiatry, 28, 2975–2984.CrossRefGoogle Scholar
Harnett, N. G., Ference, E. W., Knight, A. J., & Knight, D. C. (2020). White matter microstructure varies with post-traumatic stress severity following medical trauma. Brain Imaging and Behavior, 14, 1012–1024.CrossRefGoogle ScholarPubMed
Harnett, N. G., Finegold, K. E., Lebois, L. A., van Rooij, S. J., Ely, T. D., Murty, V. P., … Beaudoin, F. L. (2022). Structural covariance of the ventral visual stream predicts posttraumatic intrusion and nightmare symptoms: a multivariate data fusion analysis. Translational Psychiatry, 12, 321.CrossRefGoogle ScholarPubMed
Harnett, N. G., Stevens, J. S., Fani, N., van Rooij, S. J., Ely, T. D., Michopoulos, V., … Winters, S. J. (2022). Acute posttraumatic symptoms are associated with multimodal neuroimaging structural covariance patterns: A possible role for the neural substrates of visual processing in posttraumatic stress disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 7, 129–138.Google ScholarPubMed
Harris, A., & Reece, J. (2021). Transcranial magnetic stimulation as a treatment for posttraumatic stress disorder: A meta-analysis. Journal of Affective Disorders, 289, 55–65.CrossRefGoogle ScholarPubMed
Hayes, J. P., LaBar, K. S., McCarthy, G., Selgrade, E., Nasser, J., Dolcos, F., & Morey, R. A. (2011). Reduced hippocampal and amygdala activity predicts memory distortions for trauma reminders in combat-related PTSD. Journal of Psychiatric Research, 45, 660–669.CrossRefGoogle ScholarPubMed
Heilbronner, S. R., Rodriguez-Romaguera, J., Quirk, G. J., Groenewegen, H. J., & Haber, S. N. (2016). Circuit-based corticostriatal homologies between rat and primate. Biological Psychiatry, 80, 509–521.CrossRefGoogle ScholarPubMed
Hein, T. C., Goetschius, L. G., McLoyd, V. C., Brooks-Gunn, J., McLanahan, S. S., Mitchell, C., … Monk, C. S. (2020). Childhood violence exposure and social deprivation are linked to adolescent threat and reward neural function. Social Cognitive and Affective Neuroscience, 15, 1252–1259.CrossRefGoogle ScholarPubMed
Hennings, A. C., McClay, M., Lewis-Peacock, J. A., & Dunsmoor, J. E. (2020). Contextual reinstatement promotes extinction generalization in healthy adults but not PTSD. Neuropsychologia, 147, 107573.CrossRefGoogle Scholar
Herz, N., Bar-Haim, Y., Tavor, I., Tik, N., Sharon, H., Holmes, E. A., & Censor, N. (2022). Neuromodulation of visual cortex reduces the intensity of intrusive memories. Cerebral Cortex, 32, 408–417.CrossRefGoogle ScholarPubMed
Hinojosa, C. A., VanElzakker, M. B., Hughes, K. C., Offringa, R., Sangermano, L. M., Spaulding, I. G., … Rauch, S. L. (2022). Exaggerated amygdala activation to ambiguous facial expressions is a familial vulnerability factor for posttraumatic stress disorder. Journal of Psychiatric Research, 156, 451–459.CrossRefGoogle ScholarPubMed
Hinrichs, R., van Rooij, S. J., Michopoulos, V., Schultebraucks, K., Winters, S., Maples-Keller, J., … Rothbaum, B. O. (2019). Increased skin conductance response in the immediate aftermath of trauma predicts PTSD risk. Chronic Stress, 3, 2470547019844441.CrossRefGoogle ScholarPubMed
Hoge, E. A., Worthington, J. J., Nagurney, J. T., Chang, Y., Kay, E. B., Feterowski, C. M., … Lasko, N. B. (2012). Effect of acute posttrauma propranolol on PTSD outcome and physiological responses during script‐driven imagery. CNS Neuroscience & Therapeutics, 18, 21–27.CrossRefGoogle ScholarPubMed
Holmes, E. A., Grey, N., & Young, K. A. D. (2005). Intrusive images and “hotspots” of trauma memories in posttraumatic stress disorder: An exploratory investigation of emotions and cognitive themes. Journal of Behavior Therapy and Experimental Psychiatry, 36, 3–17.CrossRefGoogle ScholarPubMed
Hoppe, J. M., Walldén, Y. S. E., Kanstrup, M., Singh, L., Agren, T., Holmes, E. A., & Moulds, M. L. (2022). Hotspots in the immediate aftermath of trauma – Mental imagery of worst moments highlighting time, space and motion. Consciousness and Cognition, 99, 103286.CrossRefGoogle Scholar
Jovanovic, T., Ely, T., Fani, N., Glover, E. M., Gutman, D., Tone, E. B., … Ressler, K. J. (2013). Reduced neural activation during an inhibition task is associated with impaired fear inhibition in a traumatized civilian sample. Cortex, 49, 1884–1891.CrossRefGoogle Scholar
Jovanovic, T., Kazama, A., Bachevalier, J., & Davis, M. (2012). Impaired safety signal learning may be a biomarker of PTSD. Neuropharmacology, 62, 695–704.CrossRefGoogle ScholarPubMed
Jovanovic, T., Norrholm, S. D., Fennell, J. E., Keyes, M., Fiallos, A. M., Myers, K. M., … Duncan, E. J. (2009). Posttraumatic stress disorder may be associated with impaired fear inhibition: Relation to symptom severity. Psychiatry Research, 167, 151–160.CrossRefGoogle ScholarPubMed
Jovanovic, T., Sakoman, A. J., Kozarić‐Kovačić, D., Meštrović, A. H., Duncan, E. J., Davis, M., & Norrholm, S. D. (2013). Acute stress disorder versus chronic posttraumatic stress disorder: Inhibition of fear as a function of time since trauma. Depression & Anxiety, 30, 217–224.CrossRefGoogle ScholarPubMed
Kamkwalala, A., Norrholm, S. D., Poole, J. M., Brown, A., Donley, S., Duncan, E.,… Jovanovic, T. (2012). Dark-enhanced startle responses and heart rate variability in a traumatized civilian sample: Putative sex-specific correlates of posttraumatic stress disorder. Psychosomatic Medicine, 74, 153–159.CrossRefGoogle Scholar
Koch, S. B., Van Zuiden, M., Nawijn, L., Frijling, J. L., Veltman, D. J., & Olff, M. (2017). Decreased uncinate fasciculus tract integrity in male and female patients with PTSD: A diffusion tensor imaging study. Journal of Psychiatry and Neuroscience, 42, 331–342.CrossRefGoogle ScholarPubMed
Li, W., & Keil, A. (2023). Sensing fear: Fast and precise threat evaluation in human sensory cortex. Trends in Cognitive Sciences, 27, 341–352.CrossRefGoogle ScholarPubMed
Liberzon, I., & Abelson, J. L. (2016). Context processing and the neurobiology of post-traumatic stress disorder. Neuron, 92, 14–30.CrossRefGoogle ScholarPubMed
Mahan, A. L., & Ressler, K. J. (2012). Fear conditioning, synaptic plasticity and the amygdala: Implications for posttraumatic stress disorder. Trends in Neurosciences, 35, 24–35.CrossRefGoogle ScholarPubMed
Mattson, W. I., Hyde, L. W., Shaw, D. S., Forbes, E. E., & Monk, C. S. (2016). Clinical neuroprediction: Amygdala reactivity predicts depressive symptoms 2 years later. Social Cognitive and Affective Neuroscience, 11, 892–898.CrossRefGoogle ScholarPubMed
McLaughlin, K. A., Busso, D. S., Duys, A., Green, J. G., Alves, S., Way, M., & Sheridan, M. A. (2014). Amygdala response to negative stimuli predicts PTSD symptom onset following a terrorist attack. Depression & Anxiety, 31, 834–842.CrossRefGoogle ScholarPubMed
Meakins, J., & Wilson, R. (1918). The effect of certain sensory stimulations of respiratory and heart rate in cases of so-called “irritable heart.” Heart, 7(17), 71.Google Scholar
Milad, M. R., Pitman, R. K., Ellis, C. B., Gold, A. L., Shin, L. M., Lasko, N. B., … Rauch, S. L. (2009). Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biological Psychiatry, 66, 1075–1082.CrossRefGoogle ScholarPubMed
Milad, M. R., & Quirk, G. J. (2002). Neurons in medial prefrontal cortex signal memory for fear extinction. Nature, 420, 70–74.CrossRefGoogle ScholarPubMed
Norrholm, S. D., Glover, E. M., Stevens, J. S., Fani, N., Galatzer-Levy, I. R., Bradley, B., … Jovanovic, T. (2014). Fear load: The psychophysiological over-expression of fear as an intermediate phenotype associated with trauma reactions. International Journal of Psychophysiology, 98, 270–275.Google Scholar
Norrholm, S. D., Jovanovic, T., Olin, I. W., Sands, L. A., Karapanou, I., Bradley, B., & Ressler, K. J. (2011). Fear extinction in traumatized civilians with posttraumatic stress disorder: Relation to symptom severity. Biological Psychiatry, 69, 556–563.CrossRefGoogle ScholarPubMed
Nugent, N. R., Christopher, N. C., Crow, J. P., Browne, L., Ostrowski, S., & Delahanty, D. L. (2010). The efficacy of early propranolol administration at reducing PTSD symptoms in pediatric injury patients: A pilot study. Journal of Trauma Stress, 23, 282–287.CrossRefGoogle ScholarPubMed
O’Doherty, D. C., Ryder, W., Paquola, C., Tickell, A., Chan, C., Hermens, D. F., … Lagopoulos, J. (2018). White matter integrity alterations in post‐traumatic stress disorder. Human Brain Mapping, 39, 1327–1338.Google ScholarPubMed
Ojala, K. E., Staib, M., Gerster, S., Ruff, C. C., & Bach, D. R. (2022). Inhibiting human aversive memory by transcranial theta-burst stimulation to the primary sensory cortex. Biological Psychiatry, 92, 149–157.CrossRefGoogle Scholar
Olff, M., Langeland, W., Draijer, N., & Gersons, B. P. (2007). Gender differences in posttraumatic stress disorder. Psychological Bulletin, 133, 183–204.CrossRefGoogle ScholarPubMed
Orr, S. P., Lasko, N. B., Macklin, M. L., Pineles, S. L., Chang, Y., & Pitman, R. K. (2012). Predicting post-trauma stress symptoms from pre-trauma psychophysiologic reactivity, personality traits and measures of psychopathology. Biology of Mood & Anxiety Disorders, 2, 8.CrossRefGoogle ScholarPubMed
Orr, S. P., Lasko, N. B., Metzger, L. J., Berry, N. J., Ahern, C. E., & Pitman, R. K. (1998). Psychophysiologic assessment of women with posttraumatic stress disorder resulting from childhood sexual abuse. Journal of Consulting and Clinical Psychology, 66, 906–913.CrossRefGoogle ScholarPubMed
Orr, S. P., Metzger, L. J., Lasko, N. B., Macklin, M. L., Peri, T., & Pitman, R. K. (2000). De novo conditioning in trauma-exposed individuals with and without posttraumatic stress disorder. Journal of Abnormal Psychology, 109, 290–298.CrossRefGoogle ScholarPubMed
Orr, S. P., Pitman, R. K., Lasko, N. B., & Herz, L. R. (1993). Psychophysiological assessment of posttraumatic stress disorder imagery in World War II and Korean combat veterans. Journal of Abnormal Psychology, 102, 152–159.CrossRefGoogle ScholarPubMed
Philip, N. S., Barredo, J., Aiken, E., Larson, V., Jones, R. N., Shea, M. T., … van’t Wout-Frank, M, (2019). Theta-burst transcranial magnetic stimulation for posttraumatic stress disorder. American Journal of Psychiatry, 176, 939–948.CrossRefGoogle ScholarPubMed
Pitman, R. K., Orr, S. P., Forgue, D. F., de Jong, J. B., & Claiborn, J. M. (1987). Psychophysiologic assessment of posttraumatic stress disorder imagery in Vietnam combat veterans. Archives of General Psychiatry, 44, 970–975.CrossRefGoogle ScholarPubMed
Pitman, R. K., Sanders, K. M., Zusman, R. M., Healy, A. R., Cheema, F., Lasko, N. B., … Orr, S. P. (2002). Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biological Psychiatry, 51, 189–192.CrossRefGoogle ScholarPubMed
Resick, P. A., & Schnicke, M. K. (1992). Cognitive processing therapy for sexual assault victims. Journal Consulting and Clinical Psychology, 60, 748–756.CrossRefGoogle ScholarPubMed
Roesler, R., Parent, M. B., LaLumiere, R. T., & McIntyre, C. K. (2021). Amygdala-hippocampal interactions in synaptic plasticity and memory formation. Neurobiology Learning and Memory, 184, 107490.CrossRefGoogle ScholarPubMed
Rosenberg, L., Rosenberg, M., Sharp, S., Thomas, C. R., Humphries, H. F., HolzerIII, C. E., … MeyerIII, W. J. (2018). Does acute propranolol treatment prevent posttraumatic stress disorder, anxiety, and depression in children with burns? Journal of Child and Adolescent Psychopharmacology, 28, 117–123.CrossRefGoogle ScholarPubMed
Rougemont-Bucking, A., Linnman, C., Zeffiro, T. A., Zeidan, M. A., Lebron-Milad, K., Rodriguez-Romaguera, J., … Milad, M. R. (2011). Altered processing of contextual information during fear extinction in PTSD: An fMRI study. CNS Neuroscience & Therapeutics, 17, 227–236.CrossRefGoogle ScholarPubMed
Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience, 10, 211–223.CrossRefGoogle ScholarPubMed
Seligman, M. E., & Yellen, A. (1987). What is a dream? Behaviour Research and Therapy, 25, 1–24.CrossRefGoogle ScholarPubMed
Sendi, M. S. E., Inman, C. S., Bijanki, K. R., Blanpain, L., Park, J. K., Hamann, S., … Mahmoudi, B. (2021). Identifying the neurophysiological effects of memory-enhancing amygdala stimulation using interpretable machine learning. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 14, 1511–1519.CrossRefGoogle ScholarPubMed
Shin, L. M., Kosslyn, S. M., McNally, R. J., Alpert, N. M., Thompson, W. L., Rauch, S. L., … Pitman, R. K. (1997). Visual imagery and perception in posttraumatic stress disorder: A positron emission tomographic investigation. Archives of General Psychiatry, 54, 233–241.CrossRefGoogle ScholarPubMed
Shin, L. M., Rauch, S. L., & Pitman, R. K. (2006). Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Annals of New York Academy of Sciences, 1071, 67–79.CrossRefGoogle ScholarPubMed
Shin, L. M., Whalen, P. J., Pitman, R. K., Bush, G., Macklin, M. L., Lasko, N. B., … Rauch, S. L. (2001). An fMRI study of anterior cingulate function in posttraumatic stress disorder. Biological Psychiatry, 50, 932–942.CrossRefGoogle ScholarPubMed
Shin, L. M., Wright, C. I., Cannistraro, P. A., Wedig, M. M., McMullin, K., Martis, B., … Rauch, S. L. (2005). A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Archives of General Psychiatry, 62, 273–281.CrossRefGoogle ScholarPubMed
Squire, L. R., & Zola-Morgan, S. (1988). Memory: Brain systems and behavior. Trends in Neurosciences, 11, 170–175.CrossRefGoogle ScholarPubMed
Stein, M. B., Kerridge, C., Dimsdale, J. E., & Hoyt, D. B. (2007). Pharmacotherapy to prevent PTSD: Results from a randomized controlled proof‐of‐concept trial in physically injured patients. Journal of Traumatic Stress, 20, 923–932.CrossRefGoogle ScholarPubMed
Stevens, J. S., Almli, L. M., Fani, N., Gutman, D. A., Bradley, B., Norrholm, S. D., … Ressler, K. J. (2014). PACAP receptor gene polymorphism impacts fear responses in the amygdala and hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 111, 3158–3163.Google ScholarPubMed
Stevens, J. S., Jovanovic, T., Fani, N., Ely, T. D., Glover, E. M., Bradley, B., & Ressler, K. J. (2013). Disrupted amygdala-prefrontal functional connectivity in civilian women with posttraumatic stress disorder. Journal of Psychiatric Research, 47, 1469–1478.CrossRefGoogle ScholarPubMed
Stevens, J. S., Kim, Y. J., Galatzer-Levy, I. R., Reddy, R., Ely, T. D., Nemeroff, C. B., … Ressler, K. J. (2017). Amygdala reactivity and anterior cingulate habituation predict PTSD symptom maintenance after acute civilian trauma. Biological Psychiatry, 81, 1023–1029.CrossRefGoogle ScholarPubMed
Stevens, J. S., Reddy, R., Kim, Y. J., van Rooij, S. J. H., Ely, T. D., Hamann, S., … Jovanovic, T. (2018). Episodic memory after trauma exposure: Medial temporal lobe function is positively related to re-experiencing and inversely related to negative affect symptoms. NeuroImage: Clinical, 17, 650–658.Google ScholarPubMed
Suo, X., Lei, D., Li, W., Sun, H., Qin, K., Yang, J., … Gong, Q. (2022). Psychoradiological abnormalities in treatment‐naive noncomorbid patients with posttraumatic stress disorder. Depression & Anxiety, 39, 83–91.CrossRefGoogle ScholarPubMed
Swartz, J. R., Knodt, A. R., Radtke, S. R., & Hariri, A. R. (2015). A neural biomarker of psychological vulnerability to future life stress. Neuron, 85, 505–511.CrossRefGoogle ScholarPubMed
Thompson, E. H., Lensjø, K. K., Wigestrand, M. B., Malthe-Sørenssen, A., Hafting, T., & Fyhn, M. (2018). Removal of perineuronal nets disrupts recall of a remote fear memory. Proceedings of the National Academy of Sciences of the United States of America, 115, 607–612.Google ScholarPubMed
Tsukano, H., Hou, X., Horie, M., Kitaura, H., Nishio, N., Hishida, R., … Sugiyama, S. (2019). Reciprocal connectivity between secondary auditory cortical field and amygdala in mice. Scientific Reports, 9, 19610.CrossRefGoogle ScholarPubMed
Urcelay, G. P., Wheeler, D. S., & Miller, R. R. (2009). Spacing extinction trials alleviates renewal and spontaneous recovery. Learning & Behavior, 37, 60–73.CrossRefGoogle ScholarPubMed
van Rooij, S., Stevens, J., Ely, T., Fani, N., Smith, A., Kerley, K., … Jovanovic, T. (2016). Childhood trauma and COMT genotype interact to increase hippocampal activation in resilient individuals. Frontiers in Psychiatry, 7, 156.CrossRefGoogle ScholarPubMed
van Rooij, S. J., Ravi, M., Ely, T. D., Michopoulos, V., Winters, S. J., Shin, J., … Ressler, K. J. (2021). Hippocampal activation during contextual fear inhibition related to resilience in the early aftermath of trauma. Behavioural Brain Research, 408, 113282.CrossRefGoogle ScholarPubMed
van Rooij, S. J. H., Stevens, J. S., Ely, T. D., Hinrichs, R. C., Michopoulos, V., Winters, S. J., … Jovanovic, T. (2018). The role of the hippocampus in predicting future PTSD symptoms in recently traumatized civilians. Biological Psychiatry, 84, 106–115.CrossRefGoogle ScholarPubMed
van Wingen, G. A., Geuze, E., Vermetten, E., & Fernandez, G. (2011). Perceived threat predicts the neural sequelae of combat stress. Molecular Psychiatry, 16, 664–671.CrossRefGoogle ScholarPubMed
White, M. G., Bogdan, R., Fisher, P. M., Munoz, K. E., Williamson, D. E., & Hariri, A. R. (2012). FKBP5 and emotional neglect interact to predict individual differences in amygdala reactivity. Genes, Brain and Behavior, 11, 869–878.CrossRefGoogle ScholarPubMed
Williams, L. M., Kemp, A. H., Felmingham, K., Barton, M., Olivieri, G., Peduto, A., … Bryant, R. A. (2006). Trauma modulates amygdala and medial prefrontal responses to consciously attended fear. NeuroImage, 29, 347–357.CrossRefGoogle ScholarPubMed
Yang, Y., Liu, D.-q., Huang, W., Deng, J., Sun, Y., Zuo, Y., & Poo, M.-M. (2016). Selective synaptic remodeling of amygdalocortical connections associated with fear memory. Nature Neuroscienec, 19, 1348–1355.Google ScholarPubMed
Yehuda, R., Hoge, C. W., McFarlane, A. C., Vermetten, E., Lanius, R. A., Nievergelt, C. M., … Hyman, S. E. (2015). Post-traumatic stress disorder. Nature Reviews Disease Primers, 1, 15057.CrossRefGoogle ScholarPubMed
Yukie, M. (2002). Connections between the amygdala and auditory cortical areas in the macaque monkey. Neuroscience Research, 42, 219–229.CrossRefGoogle ScholarPubMed

References

Armey, M. F., Fresco, D. M., Moore, M. T., Mennin, D. S., Turk, C. L., Heimberg, R. G., … Alloy, L. B. (2009). Brooding and pondering: Isolating the active ingredients of depressive rumination with exploratory factor analysis and structural equation modeling. Assessment, 16, 315–327.CrossRefGoogle ScholarPubMed
Baker, J. T., Dillon, D. G., Patrick, L. M., Roffman, J. L., Brady, R. O. J., Pizzagalli, D. A., … Holmes, A. J. (2019). Functional connectomics of affective and psychotic pathology. Proceedings of the National Academy of Sciences of the United States of America, 116, 9050–9059.Google ScholarPubMed
Bauriedl-Schmidt, C., Jobst, A., Gander, M., Seidl, E., Sabaß, L., Sarubin, N., … Buchheim, A. (2017). Attachment representations, patterns of emotion regulation, and social exclusion in patients with chronic and episodic depression and healthy controls. Journal of Affective Disorders, 210, 130–138.CrossRefGoogle ScholarPubMed
Berthoz, S., Artiges, E., Van De Moortele, P.-F., Poline, J.-B., Rouquette, S., Consoli, S. M., & Martinot, J.-L. (2002). Effect of impaired recognition and expression of emotions on frontocingulate cortices: An fMRI study of men with alexithymia. The American Journal of Psychiatry, 159, 961–967.CrossRefGoogle ScholarPubMed
Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H., Israel, S., … Moffitt, T. E. (2014). The p factor: One general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science, 2, 119–137.CrossRefGoogle Scholar
Christoff, K., Irving, Z. C., Fox, K. C. R., Spreng, R. N., & Andrews-Hanna, J. R. (2016). Mind-wandering as spontaneous thought: A dynamic framework. Nature Reviews Neuroscience, 17, 718–731.CrossRefGoogle ScholarPubMed
Clemens, B., Wagels, L., Bauchmüller, M., Bergs, R., Habel, U., & Kohn, N. (2017). Alerted default mode: Functional connectivity changes in the aftermath of social stress. Scientific Reports, 7, 40180.CrossRefGoogle ScholarPubMed
Cludius, B., Mennin, D., & Ehring, T. (2020). Emotion regulation as a transdiagnostic process. Emotion, 20, 37–42.CrossRefGoogle ScholarPubMed
Dedovic, K., Slavich, G. M., Muscatell, K. A., Irwin, M. R., & Eisenberger, N. I. (2016). Dorsal anterior cingulate cortex responses to repeated social evaluative feedback in young women with and without a history of depression. Frontiers in Behavioral Neuroscience, 10, 64.CrossRefGoogle Scholar
Eisenberger, N. I. (2003). Does rejection hurt? An fMRI study of social exclusion. Science, 302, 290–292.CrossRefGoogle ScholarPubMed
Fan, Z., Chang, J., Liang, Y., Zhu, H., Zhang, C., Zheng, D., … Hu, H. (2023). Neural mechanism underlying depressive-like state associated with social status loss. Cell, 186, 560–576.e17.CrossRefGoogle ScholarPubMed
Fossati, P. (2012). Neural correlates of emotion processing: from emotional to social brain. European Neuropsychopharmacology, 22, S487–S491.CrossRefGoogle ScholarPubMed
Fossati, P. (2018). Is major depression a cognitive disorder? Revue Neurologique, 174, 212–215.CrossRefGoogle Scholar
Fossati, P. (2019). Circuit based anti-correlation, attention orienting, and major depression. CNS Spectrums, 24, 94–101.CrossRefGoogle ScholarPubMed
Frank, D. W., Dewitt, M., Hudgens-Haney, M., Schaeffer, D. J., Ball, B. H., Schwarz, N. F., … Sabatinelli, D. (2014). Emotion regulation: Quantitative meta-analysis of functional activation and deactivation. Neuroscience & Biobehavioral Reviews, 45, 202–211.CrossRefGoogle ScholarPubMed
Freton, M., Lemogne, C., Delaveau, P., Guionnet, S., Wright, E., Wiernik, E., … Fossati, P. (2014). The dark side of self-focus: Brain activity during self-focus in low and high brooders. Social Cognitive and Affective Neuroscience, 9, 1808–1813.CrossRefGoogle ScholarPubMed
Funkhouser, C. J., Kaiser, A. J. E., Alqueza, K. L., Carrillo, V. L., Hoffman, L. M. K., Nabb, C. B., … Shankman, S. A. (2021). Depression risk factors and affect dynamics: An experience sampling study. Journal of Psychiatric Research, 135, 68–75.CrossRefGoogle ScholarPubMed
Gao, S., Assink, M., Cipriani, A., & Lin, K. (2017). Associations between rejection sensitivity and mental health outcomes: A meta-analytic review. Clinical Psychology Review, 57, 59–74.CrossRefGoogle ScholarPubMed
Gross, J. J. (2002). Emotion regulation: Affective, cognitive, and social consequences. Psychophysiology, 39, 281–291.CrossRefGoogle ScholarPubMed
Gruber, J., Eidelman, P., Johnson, S. L., Smith, B., & Harvey, A. G. (2011). Hooked on a feeling: Rumination about positive and negative emotion in inter-episode bipolar disorder. Journal of Abnormal Psychology, 120, 956–961.CrossRefGoogle ScholarPubMed
Hamilton, J. P., Farmer, M., Fogelman, P., & Gotlib, I. H. (2015). Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience. Biological Psychiatry, 78, 224–230.CrossRefGoogle ScholarPubMed
Hamilton, J. P., Furman, D. J., Chang, C., Thomason, M. E., Dennis, E., & Gotlib, I. H. (2011). Default-mode and task-positive network activity in major depressive disorder: Implications for adaptive and maladaptive rumination. Biological Psychiatry, 70, 327–333.CrossRefGoogle ScholarPubMed
Houben, M., Van Den Noortgate, W., & Kuppens, P. (2015). The relation between short-term emotion dynamics and psychological well-being: A meta-analysis. Psychological Bulletin, 141, 901–930.CrossRefGoogle ScholarPubMed
Ingram, R. E. (1990). Self-focused attention in clinical disorders: Review and a conceptual model. Psychological Bulletin, 107, 156–176.CrossRefGoogle Scholar
Johnson, M. K., Nolen-Hoeksema, S., Mitchell, K. J., & Levin, Y. (2009). Medial cortex activity, self-reflection and depression. Social Cognitive and Affective Neuroscience, 4, 313–327.CrossRefGoogle ScholarPubMed
Joormann, J., Dkane, M., & Gotlib, I. H. (2006). Adaptive and maladaptive components of rumination? Diagnostic specificity and relation to depressive biases. Behavior Therapy, 37, 269–280.CrossRefGoogle ScholarPubMed
Joormann, J., & Stanton, C. H. (2016). Examining emotion regulation in depression: A review and future directions. Behaviour Research and Therapy, 86, 35–49.CrossRefGoogle ScholarPubMed
Jungilligens, J., Paredes-Echeverri, S., Popkirov, S., Barrett, L. F., & Perez, D. L. (2022). A new science of emotion: Implications for functional neurological disorder. Brain, 145, 2648–2663.CrossRefGoogle ScholarPubMed
Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the national comorbidity survey replication. Archives of General Psychiatry, 62, 593–602.Google ScholarPubMed
Kret, M. E., & Ploeger, A. (2015). Emotion processing deficits: A liability spectrum providing insight into comorbidity of mental disorders. Neuroscience & Biobehavioral Reviews, 52, 153–171.CrossRefGoogle ScholarPubMed
Kuppens, P., & Verduyn, P. (2017). Emotion dynamics. Current Opinion in Psychology, 17, 22–26.CrossRefGoogle ScholarPubMed
Kühn, S., Vanderhasselt, M.-A., De Raedt, R., & Gallinat, J. (2012). Why ruminators won’t stop: The structural and resting state correlates of rumination and its relation to depression. Journal of Affective Disorders, 141, 352–360.CrossRefGoogle ScholarPubMed
Lanius, R. A., Vermetten, E., Loewenstein, R. J., Brand, B., Schmahl, C., Bremner, J. D., & Spiegel, D. (2010). Emotion modulation in PTSD: Clinical and neurobiological evidence for a dissociative subtype. The American Journal of Psychiatry, 167, 640–647.CrossRefGoogle ScholarPubMed
Leweke, F., Leichsenring, F., Kruse, J., & Hermes, S. (2012). Is alexithymia associated with specific mental disorders? Psychopathology, 45, 22–28.CrossRefGoogle ScholarPubMed
Liang, S., Deng, W., Li, X., Greenshaw, A. J., Wang, Q., Li, M., … Li, T. (2020). Biotypes of major depressive disorder: Neuroimaging evidence from resting-state default mode network patterns. NeuroImage: Clinical, 28, 102514.Google ScholarPubMed
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35, 121–143.CrossRefGoogle ScholarPubMed
Liu, Y., Yu, X., Yang, B., Zhang, F., Zou, W., Na, A., … Yin, G. (2017). Rumination mediates the relationship between overgeneral autobiographical memory and depression in patients with major depressive disorder. BMC Psychiatry, 17, 103.CrossRefGoogle ScholarPubMed
Mayberg, H. S., Liotti, M., Brannan, S. K., McGinnis, S., Mahurin, R. K., Jerabek, P. A., … Fox, P. T. (1999). Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. The American Journal of Psychiatry, 156, 675–682.CrossRefGoogle ScholarPubMed
Mayberg, H. S., Lozano, A. M., Voon, V., McNeely, H. E., Seminowicz, D., Hamani, C., … Kennedy, S. H. (2005). Deep brain stimulation for treatment-resistant depression. Neuron, 45, 651–660.CrossRefGoogle ScholarPubMed
McTeague, L. M., Rosenberg, B. M., Lopez, J. W., Carreon, D. M., Huemer, J., Jiang, Y., … Etkin, A. (2020). Identification of common neural circuit disruptions in emotional processing across psychiatric disorders. The American Journal of Psychiatry, 177, 411–421.CrossRefGoogle ScholarPubMed
Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15, 483–506.CrossRefGoogle ScholarPubMed
Mesbah, R., Koenders, M. A., van der Wee, N. J. A., Giltay, E. J., van Hemert, A. M., & de Leeuw, M. (2023). Association between the fronto-limbic network and cognitive and emotional functioning in individuals with bipolar disorder: A systematic review and meta-analysis. JAMA Psychiatry, 80, 432–440.CrossRefGoogle ScholarPubMed
Nakao, T., Okada, K., & Kanba, S. (2014). Neurobiological model of obsessive-compulsive disorder: Evidence from recent neuropsychological and neuroimaging findings. Psychiatry and Clinical Neurosciences, 68, 587–605.CrossRefGoogle ScholarPubMed
Nejad, A. B. (2013). Self-referential processing, rumination, and cortical midline structures in major depression. Frontiers in Human Neuroscience, 7, 666.CrossRefGoogle ScholarPubMed
Nolen-Hoeksema, S., Wisco, B. E., & Lyubomirsky, S. (2008). Rethinking rumination. Perspectives on Psychological Science, 3, 400–424.CrossRefGoogle ScholarPubMed
Olfson, M., Mojtabai, R., Merikangas, K. R., Compton, W. M., Wang, S., Grant, B. F., & Blanco, C. (2017). Reexamining associations between mania, depression, anxiety and substance use disorders: Results from a prospective national cohort. Molecular Psychiatry, 22, 235–241.CrossRefGoogle ScholarPubMed
Pearson, K. A., Watkins, E. R., & Mullan, E. G. (2011). Rejection sensitivity prospectively predicts increased rumination. Behaviour Research and Therapy, 49, 597–605.CrossRefGoogle ScholarPubMed
Phillips, M. L., Ladouceur, C. D., & Drevets, W. C. (2008). A neural model of voluntary and automatic emotion regulation: Implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13, 833–857.Google ScholarPubMed
Price, J. L., & Drevets, W. C. (2012). Neural circuits underlying the pathophysiology of mood disorders. Trends in Cognitive Sciences, 16, 61–71.CrossRefGoogle ScholarPubMed
Provenzano, J., Fossati, P., Dejonckheere, E., Verduyn, P., & Kuppens, P. (2021). Inflexibly sustained negative affect and rumination independently link default mode network efficiency to subclinical depressive symptoms. Journal of Affective Disorders, 293, 347–354.CrossRefGoogle ScholarPubMed
Résibois, M., Kalokerinos, E. K., Verleysen, G., Kuppens, P., Van Mechelen, I., Fossati, P., & Verduyn, P. (2018). The relation between rumination and temporal features of emotion intensity. Cognition & Emotion, 32, 259–274.CrossRefGoogle ScholarPubMed
Résibois, M., Rotgé, J.-Y., Delaveau, P., Kuppens, P., Van Mechelen, I., Fossati, P., & Verduyn, P. (2018). The impact of self-distancing on emotion explosiveness and accumulation: An fMRI study. PLoS ONE, 13, e0206889.CrossRefGoogle ScholarPubMed
Résibois, M., Verduyn, P., Delaveau, P., Rotgé, J.-Y., Kuppens, P., Van Mechelen, I., & Fossati, P. (2017). The neural basis of emotions varies over time: different regions go with onset- and offset-bound processes underlying emotion intensity. Social Cognitive and Affective Neuroscience, 12, 1261–1271.CrossRefGoogle ScholarPubMed
Roelofs, J., Papageorgiou, C., Gerber, R. D., Huibers, M., Peeters, F., & Arntz, A. (2007). On the links between self-discrepancies, rumination, metacognitions, and symptoms of depression in undergraduates. Behaviour Research and Therapy, 45, 1295–1305.CrossRefGoogle ScholarPubMed
Roiser, J. P., & Sahakian, B. J. (2013). Hot and cold cognition in depression. CNS Spectrums, 18, 139–149.CrossRefGoogle ScholarPubMed
Rotgé, J.-Y., Lemogne, C., Hinfray, S., Huguet, P., Grynszpan, O., Tartour, E., … Fossati, P. (2015). A meta-analysis of the anterior cingulate contribution to social pain. Social Cognitive and Affective Neuroscience, 10, 19–27.CrossRefGoogle ScholarPubMed
Seidl, E., Padberg, F., Bauriedl-Schmidt, C., Albert, A., Daltrozzo, T., Hall, J., … Jobst, A. (2020). Response to ostracism in patients with chronic depression, episodic depression and borderline personality disorder a study using Cyberball. Journal of Affective Disorders, 260, 254–262.CrossRefGoogle ScholarPubMed
Servaas, M. N., Riese, H., Renken, R. J., Wichers, M., Bastiaansen, J. A., Figueroa, C. A., … Ruhé, H. G. (2017). Associations between daily affective instability and connectomics in functional subnetworks in remitted patients with recurrent major depressive disorder. Neuropsychopharmacology, 42, 2583–2592.CrossRefGoogle ScholarPubMed
Sheppes, G., Suri, G., & Gross, J. J. (2015). Emotion regulation and psychopathology. Annual Review of Clinical Psychology, 11, 379–405.CrossRefGoogle ScholarPubMed
Siegle, G. J., Steinhauer, S. R., Thase, M. E., Stenger, V. A., & Carter, C. S. (2002). Can’t shake that feeling: Event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biological Psychiatry, 51, 693–707.CrossRefGoogle ScholarPubMed
Sifneos, P. E. (1996). Alexithymia: Past and present. The American Journal of Psychiatry, 153, 137–142.Google ScholarPubMed
Silk, J. S., Siegle, G. J., Lee, K. H., Nelson, E. E., Stroud, L. R., & Dahl, R. E. (2014). Increased neural response to peer rejection associated with adolescent depression and pubertal development. Social Cognitive and Affective Neuroscience, 9, 1798–1807.CrossRefGoogle ScholarPubMed
Slavich, G. M., O’Donovan, A., Epel, E. S., & Kemeny, M. E. (2010). Black sheep get the blues: A psychobiological model of social rejection and depression. Neuroscience & Biobehavioral Reviews, 35, 39–45.CrossRefGoogle Scholar
Vanderhasselt, M.-A., Kühn, S., & De Raedt, R. (2011). Healthy brooders employ more attentional resources when disengaging from the negative: An event-related fMRI study. Cognitive, Affective, & Behavioral Neuroscience, 11, 207–216.CrossRefGoogle ScholarPubMed
Verduyn, P., Van Mechelen, I., & Frederix, E. (2012). Determinants of the shape of emotion intensity profiles. Cognition & Emotion, 26, 1486–1495.CrossRefGoogle ScholarPubMed
Watkins, E. R. (2009). Depressive rumination: Investigating mechanisms to improve cognitive behavioural treatments. Cognitive Behaviour Therapy, 38, 8–14.CrossRefGoogle ScholarPubMed
Whitmer, A. J., & Gotlib, I. H. (2013). An attentional scope model of rumination. Psychological Bulletin, 139, 1036–1061.CrossRefGoogle ScholarPubMed
Zhu, X., Wang, X., Xiao, J., Liao, J., Zhong, M., Wang, W., & Yao, S. (2012). Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients. Biological Psychiatry, 71, 611–617.CrossRefGoogle ScholarPubMed

References

Ahmed, S. H., & Koob, G. F. (1998). Transition from moderate to excessive drug intake: Change in hedonic set point. Science, 282, 298–300.CrossRefGoogle ScholarPubMed
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders, fifth edition (DSM-5). American Psychiatric Association Publishing.Google Scholar
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders, fourth edition – text revision (DSM-IV-TR). American Psychiatric Association Publishing.Google Scholar
Anacker, C., O’Donnell, K. J., & Meaney, M. J. (2014). Early life adversity and the epigenetic programming of hypothalamic-pituitary-adrenal function. Dialogues in Clinical Neuroscience, 16, 321–333.CrossRefGoogle ScholarPubMed
Anagnostaras, S. G. (2010). Automated assessment of Pavlovian conditioned freezing and shock reactivity in mice using the VideoFreeze system. Frontiers in Behavioral Neuroscience, 4, 158.CrossRefGoogle Scholar
Anderson, D. J., & Adolphs, R. (2014). A framework for studying emotions across species. Cell, 157, 187–200.CrossRefGoogle ScholarPubMed
Andrews, N. A., Papakosta, M., & Barnes, N. M. (2014). Discovery of novel anxiolytic agents – the trials and tribulations of pre-clinical models of anxiety. Neurobiology of Disease, 61, 72–78.CrossRefGoogle ScholarPubMed
Arp, J. M., ter Horst, J. P., Loi, M., den Blaauwen, J., Bangert, E., Fernández, G., … Krugers, H. J. (2016). Blocking glucocorticoid receptors at adolescent age prevents enhanced freezing between repeated cue-exposures after conditioned fear in adult mice raised under chronic early life stress. Neurobiology of Learning and Memory, 133, 30–38.CrossRefGoogle ScholarPubMed
Assaf, Y., Bouznach, A., Zomet, O., Marom, A., & Yovel, Y. (2020). Conservation of brain connectivity and wiring across the mammalian class. Nature Neuroscience, 23, 805–808.CrossRefGoogle ScholarPubMed
Augier, E., Barbier, E., Dulman, R. S., Licheri, V., Augier, G., Domi, E., … Heilig, M. (2018). A molecular mechanism for choosing alcohol over an alternative reward. Science, 360, 1321–1326.CrossRefGoogle ScholarPubMed
Baldwin, D., & Rudge, S. (1995). The role of serotonin in depression and anxiety. International Clinical Psychopharmacology, 9, 41–45.CrossRefGoogle ScholarPubMed
Barnes, N. M., & Sharp, T. (1999). A review of central 5-HT receptors and their function. Neuropharmacology, 38, 1083–1152.CrossRefGoogle ScholarPubMed
Bath, K. G., Manzano-Nieves, G., & Goodwill, H. (2016). Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice. Hormones and Behavior, 82, 64–71.CrossRefGoogle ScholarPubMed
Belzung, C., & Lemoine, M. (2011). Criteria of validity for animal models of psychiatric disorders: Focus on anxiety disorders and depression. Biology of Mood & Anxiety Disorders, 1, 9.CrossRefGoogle ScholarPubMed
Beyeler, A., Ju, A., Chagraoui, A., Cuvelle, L., Teixeira, M., Di Giovanni, G., & De Deurwaerdère, P. (2021). Multiple facets of serotonergic modulation. Progress in Brain Research, 261, 3–39.CrossRefGoogle ScholarPubMed
Bittar, T. P., & Labonté, B. (2021). Functional contribution of the medial prefrontal circuitry in major depressive disorder and stress-induced depressive-like behaviors. Frontiers in Behavioral Neuroscience, 15, 699592.CrossRefGoogle ScholarPubMed
Bittar, T. P., Pelaez, M. C., Hernandez Silva, J. C., Quessy, F., Lavigne, A.-A., Morency, D., … Labonté, B. (2021). Chronic stress induces sex-specific functional and morphological alterations in corticoaccumbal and corticotegmental pathways. Biological Psychiatry, 90, 194–205.CrossRefGoogle ScholarPubMed
Bölükbas, I., Mundorf, A., & Freund, N. (2020). Maternal separation in rats induces neurobiological and behavioral changes on the maternal side. Scientific Reports, 10, 22431.CrossRefGoogle ScholarPubMed
Bonne, O., Grillon, C., Vythilingam, M., Neumeister, A., & Charney, D. S. (2004). Adaptive and maladaptive psychobiological responses to severe psychological stress: Implications for the discovery of novel pharmacotherapy. Neuroscience & Biobehavioral Reviews, 28, 65–94.CrossRefGoogle ScholarPubMed
Bordes, J., Miranda, L., Müller-Myhsok, B., & Schmidt, M. V. (2023). Advancing social behavioral neuroscience by integrating ethology and comparative psychology methods through machine learning. Neuroscience & Biobehavioral Reviews, 151, 105243.CrossRefGoogle ScholarPubMed
Bordes, J., Miranda, L., Reinhardt, M., Narayan, S., Hartmann, J., Newman, E. L., … Schmidt, M. V. (2023). Automatically annotated motion tracking identifies a distinct social behavioral profile following chronic social defeat stress. Nature Communications, 14, 4319.CrossRefGoogle ScholarPubMed
Borroto-Escuela, D. O., Ambrogini, P., Chruścicka, B., Lindskog, M., Crespo-Ramirez, M., Hernández-Mondragón, J. C., … Fuxe, K. (2021). The role of central serotonin neurons and 5-HT heteroreceptor complexes in the pathophysiology of depression: A historical perspective and future prospects. International Journal of Molecular Sciences, 22, 1927.CrossRefGoogle ScholarPubMed
Bourin, M. (2015). Animal models for screening anxiolytic-like drugs: A perspective. Dialogues in Clinical Neuroscience, 17, 295–303.CrossRefGoogle ScholarPubMed
Calhoon, G. G., & Tye, K. M. (2015). Resolving the neural circuits of anxiety. Nature Neuroscience, 18, 1394–1404.CrossRefGoogle ScholarPubMed
Campos, A. C., Fogaca, M. V., Aguiar, D. C., Guimaraes, F. S., Campos, A. C., Fogaca, M. V., … Guimaraes, F. S. (2013). Animal models of anxiety disorders and stress. Revista Brasileira de Psiquiatria, 35, S101–S111.Google ScholarPubMed
Careaga, M. B. L., Girardi, C. E. N., & Suchecki, D. (2016). Understanding posttraumatic stress disorder through fear conditioning, extinction and reconsolidation. Neuroscience & Biobehavioral Reviews, 71, 48–57.CrossRefGoogle ScholarPubMed
Carlén, M. (2017). What constitutes the prefrontal cortex? Science, 358, 478–482.CrossRefGoogle ScholarPubMed
Chauvet, C., Nicolas, C., Thiriet, N., Lardeux, M. V., Duranti, A., & Solinas, M. (2014). Chronic stimulation of the tone of endogenous anandamide reduces cue- and stress-induced relapse in rats. International Journal of Neuropsychopharmacology, 18, pyu025.Google ScholarPubMed
Commons, K. G., Cholanians, A. B., Babb, J. A., & Ehlinger, D. G. (2017). The rodent forced swim test measures stress-coping strategy, not depression-like behavior. ACS Chemical Neuroscience, 8, 955–960.CrossRefGoogle Scholar
Cryan, J. F., & Holmes, A. (2005). The ascent of mouse: Advances in modelling human depression and anxiety. Nature Reviews Drug Discovery, 4, 775–790.CrossRefGoogle ScholarPubMed
Davis, M. T., Holmes, S. E., Pietrzak, R. H., & Esterlis, I. (2017). Neurobiology of chronic stress-related psychiatric disorders: Evidence from molecular imaging studies. Chronic Stress, 1, 2470547017710916.CrossRefGoogle ScholarPubMed
Daviu, N., Bruchas, M. R., Moghaddam, B., Sandi, C., & Beyeler, A. (2019). Neurobiological links between stress and anxiety. Neurobiology of Stress, 11, 100191.CrossRefGoogle ScholarPubMed
Deroche-Gamonet, V., Belin, D., & Piazza, P. V. (2004). Evidence for addiction-like behavior in the rat. Science, 305, 1014–1017.CrossRefGoogle ScholarPubMed
Desmedt, A., Marighetto, A., & Piazza, P.-V. (2015). Abnormal fear memory as a model for posttraumatic stress disorder. Biological Psychiatry, 78, 290–297.CrossRefGoogle Scholar
Duman, C. H., Schlesinger, L., Russell, D. S., & Duman, R. S. (2008). Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice. Brain Research, 1199, 148–158.CrossRefGoogle ScholarPubMed
Etkin, A., & Wager, T. D. (2007). Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry, 164, 1476–1488.CrossRefGoogle ScholarPubMed
Finlay-Jones, R., & Brown, G. W. (1981). Types of stressful life event and the onset of anxiety and depressive disorders. Psychological Medicine, 11, 803–815.CrossRefGoogle ScholarPubMed
Forkosh, O., Karamihalev, S., Roeh, S., Alon, U., Anpilov, S., Touma, C., … Chen, A. (2019). Identity domains capture individual differences from across the behavioral repertoire. Nature Neuroscience, 22, 2023–2028.CrossRefGoogle ScholarPubMed
Fornari, C., Guerrero-Marquez, C., Namburi, P., Couderc, Y., Nicolas, C., & Beyeler, A. (2023). Sexual dimorphism of insular cortex function in persistent alcohol drinking despite aversion in mice. bioRxiv, https://doi.org/10.1101/2023.10.04.560817Google Scholar
Fox, E., Yates, A., & Ashwin, C. (2012). Trait anxiety and perceptual load as determinants of emotion processing in a fear conditioning paradigm. Emotion, 12, 236–249.CrossRefGoogle Scholar
Franceschelli, A., Herchick, S., Thelen, C., Papadopoulou-Daifoti, Z., & Pitychoutis, P. M. (2014). Sex differences in the chronic mild stress model of depression. Behavioural Pharmacology, 25, 372–383.CrossRefGoogle ScholarPubMed
Gabriel, C. J., Zeidler, Z., Jin, B., Guo, C., Goodpaster, C. M., Kashay, A. Q., … DeNardo, L. A. (2022). BehaviorDEPOT is a simple, flexible tool for automated behavioral detection based on markerless pose tracking. eLife, 11, e74314.CrossRefGoogle ScholarPubMed
Golden, S. A., Covington, H. E., Berton, O., & Russo, S. J. (2011). A standardized protocol for repeated social defeat stress in mice. Nature Protocols, 6, 1183–1191.CrossRefGoogle ScholarPubMed
Griebel, G., & Holmes, A. (2013). 50 years of hurdles and hope in anxiolytic drug discovery. Nature Reviews Drug Discovery, 12, 667–687.CrossRefGoogle ScholarPubMed
Groenewold, N. A., Opmeer, E. M., de Jonge, P., Aleman, A., & Costafreda, S. G. (2013). Emotional valence modulates brain functional abnormalities in depression: Evidence from a meta-analysis of fMRI studies. Neuroscience & Biobehavioral Reviews, 37, 152–163.CrossRefGoogle ScholarPubMed
Gruene, T. M., Flick, K., Stefano, A., Shea, S. D., & Shansky, R. M. (2015). Sexually divergent expression of active and passive conditioned fear responses in rats. eLife, 4, e11352.CrossRefGoogle ScholarPubMed
Guadagno, A., Belliveau, C., Mechawar, N., & Walker, C.-D. (2021). Effects of early life stress on the developing basolateral amygdala-prefrontal cortex circuit: The emerging role of local inhibition and perineuronal nets. Frontiers in Human Neuroscience, 15, 669120.CrossRefGoogle ScholarPubMed
Harada, M., Pascoli, V., Hiver, A., Flakowski, J., & Lüscher, C. (2021). Corticostriatal activity driving compulsive reward seeking. Biological Psychiatry, 90, 808–818.CrossRefGoogle ScholarPubMed
Harris, A. Z., Atsak, P., Bretton, Z. H., Holt, E. S., Alam, R., Morton, M. P., … Gordon, J. A. (2017). A novel method for chronic social defeat stress in female mice. Neuropsychopharmacology, 43, 1276–1283.Google ScholarPubMed
Heisler, L. K., Chu, H. M., Brennan, T. J., Danao, J. A., Bajwa, P., Parsons, L. H., & Tecott, L. H. (1998). Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 95, 15049–15054.Google ScholarPubMed
Hodes, G. E., Pfau, M. L., Purushothaman, I., Ahn, H. F., Golden, S. A., Christoffel, D. J., … Russo, S. J. (2015). Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress. Journal of Neuroscience, 35, 16362–16376.CrossRefGoogle ScholarPubMed
Hodos, W. (1961). Progressive ratio as a measure of reward strength. Science, 134, 943–944.CrossRefGoogle ScholarPubMed
Hyman, S. E., & Malenka, R. C. (2001). Addiction and the brain: The neurobiology of compulsion and its persistence. Nature Reviews Neuroscience, 2, 695–703.CrossRefGoogle ScholarPubMed
Iñiguez, S. D., Flores-Ramirez, F. J., Riggs, L. M., Alipio, J. B., Garcia-Carachure, I., Hernandez, M. A., … Castillo, S. A. (2018). Vicarious social defeat stress induces depression-related outcomes in female mice. Biological Psychiatry, 83, 9–17.CrossRefGoogle ScholarPubMed
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P. (2010). Research Domain Criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167, 748–751.CrossRefGoogle Scholar
Juruena, M. F., Eror, F., Cleare, A. J., & Young, A. H. (2020). The role of early life stress in HPA axis and anxiety. Advances in Experimental Medicine and Biology, 1191, 141–153.CrossRefGoogle ScholarPubMed
Kaouane, N., Porte, Y., Vallée, M., Brayda-Bruno, L., Mons, N., Calandreau, L., … Desmedt, A. (2012). Glucocorticoids can induce PTSD-like memory impairments in mice. Science, 335, 1510–1513.CrossRefGoogle ScholarPubMed
Karamihalev, S., Brivio, E., Flachskamm, C., Stoffel, R., Schmidt, M. V., & Chen, A. (2020). Social dominance mediates behavioral adaptation to chronic stress in a sex-specific manner. eLife, 9, e58723.CrossRefGoogle Scholar
Kasanetz, F., Lafourcade, M., Deroche-Gamonet, V., Revest, J.-M., Berson, N., Balado, E., … Manzoni, O. J. (2013). Prefrontal synaptic markers of cocaine addiction-like behavior in rats. Molecular Psychiatry, 18, 729–737.CrossRefGoogle ScholarPubMed
Keller, J., Gomez, R., Williams, G., Lembke, A., Lazzeroni, L., Murphy, G. M., & Schatzberg, A. F. (2017). HPA axis in major depression: Cortisol, clinical symptomatology and genetic variation predict cognition. Molecular Psychiatry, 22, 527–536.CrossRefGoogle ScholarPubMed
Kos, A., Lopez, J. P., Bordes, J., de Donno, C., Dine, J., Brivio, E., … Chen, A. (2023). Early life adversity shapes social subordination and cell type–specific transcriptomic patterning in the ventral hippocampus. Science Advances, 9, eadj3793.CrossRefGoogle ScholarPubMed
Kreek, M. J., LaForge, K. S., & Butelman, E. (2002). Pharmacotherapy of addictions. Nature Reviews Drug Discovery, 1, 710–726.Google ScholarPubMed
Kundakovic, M., Lim, S., Gudsnuk, K., & Champagne, F. A. (2013). Sex-specific and strain-dependent effects of early life adversity on behavioral and epigenetic outcomes. Frontiers in Psychiatry, 4, 78.CrossRefGoogle ScholarPubMed
Lauer, J., Zhou, M., Ye, S., Menegas, W., Schneider, S., Nath, T., … Mathis, A. (2022). Multi-animal pose estimation, identification and tracking with DeepLabCut. Nature Methods, 19, 496–504.CrossRefGoogle ScholarPubMed
Leshner, A. I. (1997). Addiction is a brain disease, and it matters. Science, 278, 45–47.CrossRefGoogle Scholar
Lezak, K. R., Missig, G., & CarlezonJr, W. A. (2017). Behavioral methods to study anxiety in rodents. Dialogues in Clinical Neuroscience, 19, 181–191.CrossRefGoogle ScholarPubMed
Limpens, J. H. W., Schut, E. H. S., Voorn, P., & Vanderschuren, L. J. M. J. (2014). Using conditioned suppression to investigate compulsive drug seeking in rats. Drug and Alcohol Dependence, 142, 314–324.CrossRefGoogle ScholarPubMed
Lisieski, M. J., Eagle, A. L., Conti, A. C., Liberzon, I., & Perrine, S. A. (2018). Single-prolonged stress: A review of two decades of progress in a rodent model of post-traumatic stress disorder. Frontiers in Psychiatry, 9, 196.CrossRefGoogle Scholar
Mahan, A. L., & Ressler, K. J. (2012). Fear conditioning, synaptic plasticity and the amygdala: Implications for posttraumatic stress disorder. Trends in Neuroscience, 35, 24–35.CrossRefGoogle ScholarPubMed
Marchant, N. J., Khuc, T. N., Pickens, C. L., Bonci, A., & Shaham, Y. (2013). Context-induced relapse to alcohol seeking after punishment in a rat model. Biological Psychiatry, 73, 256–262.CrossRefGoogle ScholarPubMed
Martín-Sánchez, A., González-Pardo, H., Alegre-Zurano, L., Castro-Zavala, A., López-Taboada, I., Valverde, O., … Conejo, N. M. (2022). Early-life stress induces emotional and molecular alterations in female mice that are partially reversed by cannabidiol. Progress in Neuro-psychopharmacology & Biological Psychiatry, 115, 110508.CrossRefGoogle ScholarPubMed
McCormick, C. M., Kehoe, P., & Kovacs, S. (1998). Corticosterone release in response to repeated, short episodes of neonatal isolation: Evidence of sensitization. International Journal of Developmental Neuroscience, 16, 175–185.CrossRefGoogle ScholarPubMed
Ménard, C., Hodes, G. E., & Russo, S. J. (2016). Pathogenesis of depression: Insights from human and rodent studies. Neuroscience, 321, 138–162.CrossRefGoogle ScholarPubMed
Mineur, Y. S., Belzung, C., & Crusio, W. E. (2006). Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice. Behavioural Brain Research, 175, 43–50.CrossRefGoogle ScholarPubMed
Miranda, L., Bordes, J., Gasperoni, S., & Lopez, J. P. (2023). Increasing resolution in stress neurobiology: From single cells to complex group behaviors. Stress, 26, 2186141.CrossRefGoogle ScholarPubMed
Miranda, L., Bordes, J., Pütz, B., Schmidt, M. V., & Müller-Myhsok, B. (2023). DeepOF: A Python package for supervised and unsupervised pattern recognition in mice motion tracking data. Journal of Open Source Software, 8, 5394.CrossRefGoogle Scholar
Mitchell, J. R., Trettel, S. G., Li, A. J., Wasielewski, S., Huckleberry, K. A., Fanikos, M., … Shansky, R. M. (2022). Darting across space and time: Parametric modulators of sex-biased conditioned fear responses. Learning & Memory, 29, 171–180.CrossRefGoogle ScholarPubMed
Montkowski, A., Barden, N., Wotjak, C., Stec, I., Ganster, J., Meaney, M., … Holsboer, F. (1995). Long-term antidepressant treatment reduces behavioural deficits in transgenic mice with impaired glucocorticoid receptor function. Journal of Neuroendocrinology, 7, 841–845.CrossRefGoogle ScholarPubMed
Müller, M. B., Zimmermann, S., Sillaber, I., Hagemeyer, T. P., Deussing, J. M., Timpl, P., … Wurst, W. (2003). Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nature Neuroscience, 6, 1100–1107.CrossRefGoogle ScholarPubMed
Murthy, S., & Gould, E. (2018). Early life stress in rodents: Animal models of illness or resilience? Frontiers in Behavioral Neuroscience, 12, 157.CrossRefGoogle ScholarPubMed
Nicolas, C., Ju, A., Wu, Y., Eldirdiri, H., Delcasso, S., Couderc, Y., … Beyeler, A. (2023). Linking emotional valence and anxiety in a mouse insula-amygdala circuit. Nature Communications, 14, 5073.CrossRefGoogle Scholar
Nicolas, C., Lafay-Chebassier, C., & Solinas, M. (2016). Exposure to sucrose during periods of withdrawal does not reduce cocaine-seeking behavior in rats. Scientific Reports, 6, 23272.CrossRefGoogle Scholar
Nicolas, C., Russell, T. I., Pierce, A. F., Maldera, S., Holley, A., You, Z.-B., … Ikemoto, S. (2019). Incubation of cocaine craving after intermittent-access self-administration: Sex differences and estrous cycle. Biological Psychiatry, 85, 915–924.CrossRefGoogle ScholarPubMed
Nicolas, C., Russell, T. I., Shaham, Y., & Ikemoto, S. (2021). Dissociation between incubation of cocaine craving and anxiety-related behaviors after continuous and intermittent access self-administration. Frontiers in Neuroscience, 15, 824741.Google ScholarPubMed
Nicolas, C., Zlebnik, N. E., Farokhnia, M., Leggio, L., Ikemoto, S., & Shaham, Y. (2022). Sex differences in opioid and psychostimulant craving and relapse: A critical review. Pharmacological Reviews, 74, 119–140.CrossRefGoogle ScholarPubMed
Orso, R., Creutzberg, K. C., Wearick-Silva, L. E., Wendt Viola, T., Tractenberg, S. G., Benetti, F., & Grassi-Oliveira, R. (2019). How early life stress impact maternal care: A systematic review of rodent studies. Frontiers in Behavioral Neuroscience, 13, 197.CrossRefGoogle Scholar
Papp, M., Willner, P., & Muscat, R. (1991). An animal model of anhedonia: Attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology, 104, 255–259.CrossRefGoogle ScholarPubMed
Parks, C. L., Robinson, P. S., Sibille, E., Shenk, T., & Toth, M. (1998). Increased anxiety of mice lacking the serotonin1A receptor. Proceedings of the National Academy of Sciences of the United States of America, 95, 10734–10739.Google ScholarPubMed
Peña, C. J., Smith, M., Ramakrishnan, A., Cates, H. M., Bagot, R. C., Kronman, H. G., … Nestler, E. J. (2019). Early life stress alters transcriptomic patterning across reward circuitry in male and female mice. Nature Communications, 10, 5098.CrossRefGoogle ScholarPubMed
Pignatelli, M., & Beyeler, A. (2019). Valence coding in amygdala circuits. Current Opinion in Behavioral Sciences, 26, 97–106.CrossRefGoogle ScholarPubMed
Qin, X., Liu, X.-X., Wang, Y., Wang, D., Song, Y., Zou, J.-X., … Zhang, W.-H. (2021). Early life stress induces anxiety-like behavior during adulthood through dysregulation of neuronal plasticity in the basolateral amygdala. Life Sciences, 285, 119959.CrossRefGoogle ScholarPubMed
Quessy, F., Bittar, T., Blanchette, L. J., Lévesque, M., & Labonté, B. (2021). Stress-induced alterations of mesocortical and mesolimbic dopaminergic pathways. Scientific Reports, 11, 11000.CrossRefGoogle ScholarPubMed
Reemst, K., Ruigrok, S. R., Bleker, L., Naninck, E. F. G., Ernst, T., Kotah, J. M., … Korosi, A. (2022). Sex-dependence and comorbidities of the early-life adversity induced mental and metabolic disease risks: Where are we at? Neuroscience & Biobehavioral Reviews, 138, 104627.CrossRefGoogle Scholar
Réus, G. Z., Stringari, R. B., Ribeiro, K. F., Cipriano, A. L., Panizzutti, B. S., Stertz, L., … Quevedo, J. (2011). Maternal deprivation induces depressive-like behaviour and alters neurotrophin levels in the rat brain. Neurochemical Research, 36, 460–466.CrossRefGoogle ScholarPubMed
Rice, C. J., Sandman, C. A., Lenjavi, M. R., & Baram, T. Z. (2008). A novel mouse model for acute and long-lasting consequences of early life stress. Endocrinology, 149, 4892–4900.CrossRefGoogle ScholarPubMed
Richter-Levin, G., Stork, O., & Schmidt, M. V. (2018). Animal models of PTSD: A challenge to be met. Molecular Psychiatry, 24, 1135–1156.Google ScholarPubMed
Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39, 1161–1178.CrossRefGoogle Scholar
Safaie, M., Chang, J. C., Park, J., Miller, L. E., Dudman, J. T., Perich, M. G., & Gallego, J. A. (2023). Preserved neural dynamics across animals performing similar behaviour. Nature, 623, 765–771.CrossRefGoogle ScholarPubMed
Sailer, U., Robinson, S., Fischmeister, F. Ph. S., König, D., Oppenauer, C., Lueger-Schuster, B., … Bauer, H. (2008). Altered reward processing in the nucleus accumbens and mesial prefrontal cortex of patients with posttraumatic stress disorder. Neuropsychologia, 46, 2836–2844.CrossRefGoogle ScholarPubMed
Saleh, A., Potter, G. G., McQuoid, D. R., Boyd, B., Turner, R., MacFall, J. R., & Taylor, W. D. (2017). Effects of early life stress on depression, cognitive performance and brain morphology. PsychologicalMedicine, 47, 171–181.Google ScholarPubMed
Scarpa, J. R., Fatma, M., Loh, Y. H. E., Traore, S. R., Stefan, T., Chen, T. H., … Labonté, B. (2020). Shared transcriptional signatures in major depressive disorder and mouse chronic stress models. Biological Psychiatry, 88, 159–168.CrossRefGoogle ScholarPubMed
Selten, J.-P., van der Ven, E., Rutten, B. P. F., & Cantor-Graae, E. (2013). The social defeat hypothesis of schizophrenia: An update. Schizophrenia Bulletin, 39, 1180–1186.CrossRefGoogle ScholarPubMed
Siciliano, C. A., Noamany, H., Chang, C.-J., Brown, A. R., Chen, X., Leible, D., … Tye, K. M. (2019). A cortical-brainstem circuit predicts and governs compulsive alcohol drinking. Science, 366, 1008–1012.CrossRefGoogle ScholarPubMed
Sikora, M., Nicolas, C., Istin, M., Jaafari, N., Thiriet, N., & Solinas, M. (2018). Generalization of effects of environmental enrichment on seeking for different classes of drugs of abuse. Behavioural Brain Research, 341, 109–113.CrossRefGoogle ScholarPubMed
Song, J., & Kim, Y.-K. (2021). Animal models for the study of depressive disorder. CNS Neuroscience & Therapeutics, 27, 633–642.CrossRefGoogle Scholar
Stellern, J., Xiao, K. B., Grennell, E., Sanches, M., Gowin, J. L., & Sloan, M. E. (2023). Emotion regulation in substance use disorders: A systematic review and meta-analysis. Addiction, 118, 30–47.CrossRefGoogle ScholarPubMed
Tillmann, J. F., Hsu, A., Schwarz, M. K., & Yttri, E. (2024). A-SOiD, an active-learning platform for expert-guided, data-efficient discovery of behavior. Nature Methods, 21, 703–711.CrossRefGoogle ScholarPubMed
van der Kolk, B. A., Hopper, J. W., & Osterman, J. E. (2001). Exploring the nature of traumatic memory: Combining clinical knowledge with laboratory methods. Journal of Aggression Maltreatment & Trauma, 4, 9–31.CrossRefGoogle Scholar
Vanderschuren, L. J. M. J., & Everitt, B. J. (2004). Drug seeking becomes compulsive after prolonged cocaine self-administration. Science, 305, 1017–1019.CrossRefGoogle Scholar
Veenema, A. H., Reber, S. O., Selch, S., Obermeier, F., & Neumann, I. D. (2008). Early life stress enhances the vulnerability to chronic psychosocial stress and experimental colitis in adult mice. Endocrinology, 149, 2727–2736.CrossRefGoogle ScholarPubMed
Verbitsky, A., Dopfel, D., & Zhang, N. (2020). Rodent models of post-traumatic stress disorder: Behavioral assessment. Translational Psychiatry, 10, 132.CrossRefGoogle ScholarPubMed
von Mücke-Heim, I.-A., Urbina-Treviño, L., Bordes, J., Ries, C., Schmidt, M. V., & Deussing, J. M. (2022). Introducing a depression-like syndrome for translational neuropsychiatry: A plea for taxonomical validity and improved comparability between humans and mice. Molecular Psychiatry, 28, 329–340.Google ScholarPubMed
Wang, H.-Q., Wang, Z.-Z., & Chen, N.-H. (2021). The receptor hypothesis and the pathogenesis of depression: Genetic bases and biological correlates. Pharmacological Research, 167, 105542.CrossRefGoogle ScholarPubMed
Willner, P. (1984). The validity of animal models of depression. Psychopharmacology, 83, 1–16.CrossRefGoogle ScholarPubMed
Wiltschko, A. B., Tsukahara, T., Zeine, A., Anyoha, R., Gillis, W. F., Markowitz, J. E., … Datta, S. R. (2020). Revealing the structure of pharmacobehavioral space through motion sequencing. Nature Neuroscience, 23, 1433–1443.CrossRefGoogle ScholarPubMed
Wittchen, H. U., Jacobi, F., Rehm, J., Gustavsson, A., Svensson, M., Jönsson, B., … Steinhausen, H.-C. (2011). The size and burden of mental disorders and other disorders of the brain in Europe 2010. European Neuropsychopharmacology, 21, 655–679.CrossRefGoogle ScholarPubMed
Wotjak, C. T. (2019). Sound check, stage design and screen plot – how to increase the comparability of fear conditioning and fear extinction experiments. Psychopharmacology, 236, 33–48.CrossRefGoogle ScholarPubMed
Yalcin, I., Belzung, C., & Surget, A. (2008). Mouse strain differences in the unpredictable chronic mild stress: A four-antidepressant survey. Behavioural Brain Research, 193, 140–143.CrossRefGoogle Scholar
Yehuda, R., & Antelman, S. M. (1993). Criteria for rationally evaluating animal models of posttraumatic stress disorder. Biological Psychiatry, 33, 479–486.CrossRefGoogle ScholarPubMed
Yovell, Y., Bannett, Y., & Shalev, A. Y. (2003). Amnesia for traumatic events among recent survivors: A pilot study. CNS Spectrums, 8, 676–685.CrossRefGoogle ScholarPubMed
Zbozinek, T. D., Rose, R. D., Wolitzky-Taylor, K. B., Sherbourne, C., Sullivan, G., Stein, M. B., … Craske, M. G. (2012). Diagnostic overlap of generalized anxiety disorder and major depressive disorder in a primary care sample. Depression and Anxiety, 29, 1065–1071.CrossRefGoogle Scholar
Zuj, D. V., Palmer, M. A., Lommen, M. J. J., & Felmingham, K. L. (2016). The centrality of fear extinction in linking risk factors to PTSD: A narrative review. Neuroscience & Biobehavioral Reviews, 69, 15–35.CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.0 A

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Individual Differences
  • Edited by Jorge Armony, McGill University, Montréal, Patrik Vuilleumier, University of Geneva
  • Book: The Cambridge Handbook of Human Affective Neuroscience
  • Online publication: 16 September 2025
  • Chapter DOI: https://doi.org/10.1017/9781009342919.035
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Individual Differences
  • Edited by Jorge Armony, McGill University, Montréal, Patrik Vuilleumier, University of Geneva
  • Book: The Cambridge Handbook of Human Affective Neuroscience
  • Online publication: 16 September 2025
  • Chapter DOI: https://doi.org/10.1017/9781009342919.035
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Individual Differences
  • Edited by Jorge Armony, McGill University, Montréal, Patrik Vuilleumier, University of Geneva
  • Book: The Cambridge Handbook of Human Affective Neuroscience
  • Online publication: 16 September 2025
  • Chapter DOI: https://doi.org/10.1017/9781009342919.035
Available formats
×