Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-2bdfx Total loading time: 0 Render date: 2025-10-01T07:26:35.831Z Has data issue: false hasContentIssue false

Chapter 7 - Electro- and Magnetoencephalography

from Section II - Measuring Emotional Processes

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Summary

Large-scale neural activity during emotional processes can be measured noninvasively and in real time using electroencephalography (EEG) and magnetoencephalography (MEG). Both methods have been applied to the study of human affect, yielding information regarding the time course and cerebral correlates of emotional processes. This chapter aims to provide the reader with an understanding of how EEG and MEG may be used in affective neuroscience, including current trends and new methods in this rapidly expanding field. To this end, we discuss the neurophysiological mechanisms and physical origin of electromagnetic brain signals, highlighting methodological challenges and paradigmatic applications of EEG and MEG in affective neuroscience. We also illustrate methodological approaches used by affective neuroscientists, including experimental designs, data-recording procedures, and analytical methods. The chapter concludes by noting major challenges and future directions for EEG and MEG studies in affective neuroscience research.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Bacigalupo, F., & Luck, S. J. (2018). Event-related potential components as measures of aversive conditioning in humans. Psychophysiology, 55, e13015.CrossRefGoogle ScholarPubMed
Bae, G.-Y., & Luck, S. J. (2019). Reactivation of previous experiences in a working memory task. Psychological Science, 30, 587–595.CrossRefGoogle Scholar
Barry, R. J., & Blasio, F. M. D. (2021). Characterizing pink and white noise in the human electroencephalogram. Journal of Neural Engineering, 18, 034001.CrossRefGoogle ScholarPubMed
Bartsch, F., Hamuni, G., Miskovic, V., Lang, P. J., & Keil, A. (2015). Oscillatory brain activity in the alpha range is modulated by the content of word-prompted mental imagery. Psychophysiology, 52, 727–735.CrossRefGoogle ScholarPubMed
Ben-Simon, E., Oren, N., Sharon, H., Kirschner, A., Goldway, N., Okon-Singer, H., … Hendler, T. (2015). Losing neutrality: The neural basis of impaired emotional control without sleep. The Journal of Neuroscience, 35, 13194–13205.Google Scholar
Berger, H. (1969). On the electroencephalogram of man. Electroencephalography and Clinical Neurophysiology, 28, 37–73.Google Scholar
Bertrand, O., Bohorquez, J., & Pernier, J. (1994). Time-frequency digital filtering based on an invertible wavelet transform: An application to evoked potentials. IEEE Transactions on Biomedical Engineering, 41, article 1.CrossRefGoogle Scholar
Boudewyn, M. A., Luck, S. J., Farrens, J. L., & Kappenman, E. S. (2018). How many trials does it take to get a significant ERP effect? It depends. Psychophysiology, 55, e13049.CrossRefGoogle ScholarPubMed
Borck, C. (2005). Hirnströme—Eine kulturgeschichte der elektroenzephalographie. Wallstein Verlag.Google Scholar
Bradley, M. M. (2009). Natural selective attention: Orienting and emotion. Psychophysiology, 46, 1–11.CrossRefGoogle ScholarPubMed
Bradley, M. M., Codispoti, M., & Lang, P. J. (2006). A multi-process account of startle modulation during affective perception. Psychophysiology, 43, 486–497.CrossRefGoogle ScholarPubMed
Bradley, M. M., Hamby, S., Low, A., & Lang, P. J. (2007). Brain potentials in perception: Picture complexity and emotional arousal. Psychophysiology, 44, 364–373.CrossRefGoogle ScholarPubMed
Bradley, M. M., Keil, A., & Lang, P. J. (2012). Orienting and emotional perception: Facilitation, attenuation, and interference. Frontiers in Psychology, 3, 493.CrossRefGoogle ScholarPubMed
Bradley, M. M., & Lang, P. J. (2007). The International Affective Picture System (IAPS) in the study of emotion and attention. In Coan, J. A. & Allen, J. J. B. (Eds.), Handbook of emotion elicitation and assessment (pp. 29–46). Oxford University Press.Google Scholar
Brookes, M. J., Leggett, J., Rea, M., Hill, R. M., Holmes, N., Boto, E., & Bowtell, R. (2022). Magnetoencephalography with optically pumped magnetometers (OPM-MEG): The next generation of functional neuroimaging. Trends in Neurosciences, 45, 621–634.CrossRefGoogle ScholarPubMed
Bruchmann, M., Schindler, S., Dinyarian, M., & Straube, T. (2022). The role of phase and orientation for ERP modulations of spectrum-manipulated fearful and neutral faces. Psychophysiology, 59, e13974.CrossRefGoogle ScholarPubMed
Bruder, G. E., Quitkin, F. M., Stewart, J. W., Martin, C., Voglmaier, M. M., & Harrison, W. M. (1989). Cerebral laterality and depression: Differences in perceptual asymmetry among diagnostic subtypes. Journal of Abnormal Psychology, 98, 177–186.CrossRefGoogle ScholarPubMed
Chaumon, M., Bishop, D. V. M., & Busch, N. A. (2015). A practical guide to the selection of independent components of the electroencephalogram for artifact correction. Journal of Neuroscience Methods, 250, 47–63.CrossRefGoogle Scholar
Clayson, P. E., Keil, A., & Larson, M. J. (2022). Open science in human electrophysiology. International Journal of Psychophysiology, 174, 43–46.CrossRefGoogle ScholarPubMed
Clayson, P. E., & Miller, G. A. (2017a). ERP Reliability Analysis (ERA) toolbox: An open-source toolbox for analyzing the reliability of event-related brain potentials. International Journal of Psychophysiology, 111, 68–79.CrossRefGoogle Scholar
Clayson, P. E., & Miller, G. A. (2017b). Psychometric considerations in the measurement of event-related brain potentials: Guidelines for measurement and reporting. International Journal of Psychophysiology, 111, 57–67.CrossRefGoogle Scholar
Cohen, D. (1968). Magnetoencephalography: Evidence of magnetic fields produced by alpha-rhythm currents. Science, 161, 784–786.CrossRefGoogle ScholarPubMed
Cohen, D. (1972). Magnetoencephalography: Detection of the brain’s electrical activity with a superconducting magnetometer. Science, 175, 664–666.CrossRefGoogle ScholarPubMed
Cohen, M. X. (2014). Analyzing neural time series data: Theory and practice. MIT Press.CrossRefGoogle Scholar
CookIII, E. W., & Miller, G. A. (1992). Digital filtering: Background and tutorial for psychophysiologists. Psychophysiology, 29, 350–367.CrossRefGoogle ScholarPubMed
Cuthbert, B. N., Schupp, H. T., Bradley, M. M., Birbaumer, N., & Lang, P. J. (2000). Brain potentials in affective picture processing: Covariation with autonomic arousal and affective report. Biological Psychology, 52, 95–111.CrossRefGoogle ScholarPubMed
Davidson, R. J. (1988). EEG measures of cerebral asymmetry: Conceptual and methodological issues. International Journal of Neuroscience, 39, 71–89.CrossRefGoogle ScholarPubMed
Davidson, R. J. (1995). Cerebral asymmetry, emotion, and affective style. In Davidson, R. J. & Hugdahl, K. (Eds.), Brain asymmetry (pp. 361–387). MIT Press.Google Scholar
Delgado, M. R., Olsson, A., & Phelps, E. A. (2006). Extending animal models of fear conditioning to humans. Biological Psychology, 73, 39–48.CrossRefGoogle ScholarPubMed
Delorme, A., Mullen, T., Kothe, C., Akalin Acar, Z., Bigdely-Shamlo, N., Vankov, A., & Makeig, S. (2011). EEGLAB, SIFT, NFT, BCILAB, and ERICA: New tools for advanced EEG processing. Computational Intelligence and Neuroscience, 2011, e130714.CrossRefGoogle ScholarPubMed
Dien, J. (2010a). Evaluating two-step PCA of ERP data with Geomin, Infomax, Oblimin, Promax, and Varimax rotations. Psychophysiology, 47, 170–183.CrossRefGoogle Scholar
Dien, J. (2010b). The ERP PCA Toolkit: An open source program for advanced statistical analysis of event-related potential data. Journal of Neuroscience Methods, 187, 138–145.CrossRefGoogle Scholar
Donoghue, T., Haller, M., Peterson, E. J., Varma, P., Sebastian, P., Gao, R., … Voytek, B. (2020). Parameterizing neural power spectra into periodic and aperiodic components. Nature Neuroscience, 23, 1655–1665.CrossRefGoogle ScholarPubMed
Elliott, G., Rothenberg, T. J., & Stock, J. (1996). Efficient tests for an autoregressive unit root. Econometrica, 64, article 4.CrossRefGoogle Scholar
Fox, N. A. (1991). If it’s not left, it’s right. Electroencephalograph asymmetry and the development of emotion. The American Psychologist, 46, 863–872.CrossRefGoogle Scholar
Friedl, W. M., & Keil, A. (2020). Aversive conditioning of spatial position sharpens neural population-level tuning in visual cortex and selectively reduces alpha-band activity. The Journal of Neuroscience, 41, 5723–5733.Google Scholar
Gable, P., Miller, M., & Bernat, E. (2022). The Oxford handbook of EEG frequency. Oxford University Press.CrossRefGoogle Scholar
Galambos, R. (1992). A comparison of certain gamma-band (40 Hz) brain rhythms in cat and man. In Basar, E. & Bullock, T. (Eds.), Induced rhythms in the brain (pp. 103–122). Springer.Google Scholar
Gibney, K. D., Kypriotakis, G., Cinciripini, P. M., Robinson, J. D., Minnix, J. A., & Versace, F. (2020). Estimating statistical power for event-related potential studies using the late positive potential. Psychophysiology, 57, e13482.CrossRefGoogle ScholarPubMed
Gratton, G. (2018). Brain reflections: A circuit-based framework for understanding information processing and cognitive control. Psychophysiology, 55, e13038.CrossRefGoogle ScholarPubMed
Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analysis of event-related brain potentials/fields I: A critical tutorial review. Psychophysiology, 48, 1711–1725.Google Scholar
Güntekin, B., & Başar, E. (2014). A review of brain oscillations in perception of faces and emotional pictures. Neuropsychologia, 58, 33–51.CrossRefGoogle ScholarPubMed
Gupta, R. S., Kujawa, A., & Vago, D. R. (2019). The neural chronometry of threat-related attentional bias: Event-related potential (ERP) evidence for early and late stages of selective attentional processing. International Journal of Psychophysiology, 146, 20–42.CrossRefGoogle ScholarPubMed
Hajcak, G., Dunning, J. P., & Foti, D. (2009). Motivated and controlled attention to emotion: Time-course of the late positive potential. Clinical Neurophysiology, 120, 505–510.CrossRefGoogle ScholarPubMed
Hajcak, G., & Foti, D. (2020). Significance?… Significance! Empirical, methodological, and theoretical connections between the late positive potential and P300 as neural responses to stimulus significance: An integrative review. Psychophysiology, 57, e13570.CrossRefGoogle ScholarPubMed
Haken, H. (1983). Synergetics: An introduction. Springer.CrossRefGoogle Scholar
Handy, T. C. (2004). Event-related potentials: A methods handbook. MIT Press.Google Scholar
He, B. J. (2014). Scale-free brain activity: Past, present, and future. Trends in Cognitive Sciences, 18, 480–487.CrossRefGoogle ScholarPubMed
Heim, S., & Keil, A. (2006). Effects of classical conditioning on identification and cortical processing of speech syllables. Experimental Brain Research, 175, 411–424.CrossRefGoogle ScholarPubMed
Hughes, A. M., Whitten, T. A., Caplan, J. B., & Dickson, C. T. (2012). BOSC: A better oscillation detection method, extracts both sustained and transient rhythms from rat hippocampal recordings. Hippocampus, 22, 1417–1428.CrossRefGoogle Scholar
Jackson, A. F., & Bolger, D. J. (2014). The neurophysiological bases of EEG and EEG measurement: A review for the rest of us. Psychophysiology, 51, 1061–1071.CrossRefGoogle ScholarPubMed
Jaiswal, A., Nenonen, J., Stenroos, M., Gramfort, A., Dalal, S. S., Westner, B. U., … Parkkonen, L. (2020). Comparison of beamformer implementations for MEG source localization. NeuroImage, 216, 116797. https://doi.org/10.1016/j.neuroimage.2020.116797CrossRefGoogle ScholarPubMed
Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience, 4, 186.CrossRefGoogle ScholarPubMed
Junghöfer, M., Bradley, M. M., Elbert, T. R., & Lang, P. J. (2001). Fleeting images: A new look at early emotion discrimination. Psychophysiology, 38, 175–178.CrossRefGoogle Scholar
Kappenman, E. S., Farrens, J. L., Luck, S. J., & Proudfit, G. H. (2014). Behavioral and ERP measures of attentional bias to threat in the dot-probe task: Poor reliability and lack of correlation with anxiety. Frontiers in Psychology, 5, 1368.CrossRefGoogle ScholarPubMed
Kappenman, E. S., & Luck, S. J. (2010). The effects of electrode impedance on data quality and statistical significance in ERP recordings. Psychophysiology, 47, 888–904.Google ScholarPubMed
Keil, A. (2022). Recommendations and publication guidelines for studies using frequency-domain and time-frequency-domain analyses of neural time series. Psychophysiology, 59, e14052.CrossRefGoogle ScholarPubMed
Keil, A., Bernat, E. M., Cohen, M. X., Ding, M., Fabiani, M., Gratton, G., … Weisz, N. (2022). Recommendations and publication guidelines for studies using frequency domain and time-frequency domain analyses of neural time series. Psychophysiology, 59, e14052.CrossRefGoogle ScholarPubMed
Keil, A., Bradley, M. M., Hauk, O., Rockstroh, B., Elbert, T., & Lang, P. J. (2002). Large-scale neural correlates of affective picture processing. Psychophysiology, 39, 641–649.CrossRefGoogle ScholarPubMed
Keil, A., Bradley, M. M., Junghoefer, M., Russmann, T., Lowenthal, W., & Lang, P. J. (2007). Cross-modal attention capture by affective stimuli: Evidence from event-related potentials. Cognitive, Affective, & Behavioral Neuroscience, 7, 18–24.CrossRefGoogle ScholarPubMed
Keil, A., Debener, S., Gratton, G., Junghofer, M., Kappenman, E. S., Luck, S. J., … Yee, C. M. (2014). Committee report: Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology, 51, 1–21.CrossRefGoogle ScholarPubMed
Keuper, K., Zwanzger, P., Nordt, M., Eden, A., Laeger, I., Zwitserlood, P., … Dobel, C. (2014). How “love” and “hate” differ from “sleep”: Using combined electro/magnetoencephalographic data to reveal the sources of early cortical responses to emotional words. Human Brain Mapping, 35, 875–888.CrossRefGoogle Scholar
Khanna, A., Pascual-Leone, A., Michel, C. M., & Farzan, F. (2015). Microstates in resting-state EEG: Current status and future directions. Neuroscience & Biobehavioral Reviews, 49, 105–113.CrossRefGoogle ScholarPubMed
Kiesel, A., Miller, J., Jolicoeur, P., & Brisson, B. (2008). Measurement of ERP latency differences: A comparison of single-participant and jackknife-based scoring methods. Psychophysiology, 42, article 2.Google Scholar
Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16, 606–617.CrossRefGoogle ScholarPubMed
Kwaitkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54, 159–178.Google Scholar
Lang, P. J., & Bradley, M. M. (2010). Emotion and the motivational brain. Biological Psychology, 84, 437–450.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (1989). Central pathways of emotional plasticity. In Florin, I., Weiner, H., Murison, R., & Hellhammer, D. (Eds.), Frontiers of stress research. Neuronal control of bodily function: Basic and clinical aspects, Vol. 3. (pp. 122–136). Hans Huber Publishers.Google Scholar
Li, W., & Keil, A. (2023). Sensing fear: Fast and precise threat evaluation in human sensory cortex. Trends in Cognitive Sciences, 27, 341–352.CrossRefGoogle ScholarPubMed
Liu, Y., Huang, H., McGinnis-Deweese, M., Keil, A., & Ding, M. (2012). Neural substrate of the late positive potential in emotional processing. Journal of Neuroscience, 32, 14563–14572.CrossRefGoogle ScholarPubMed
Luck, S. J. (2014). An introduction to the event-related potential technique. MIT Press.Google Scholar
Maris, E. (2012). Statistical testing in electrophysiological studies. Psychophysiology, 49, 549–565.CrossRefGoogle ScholarPubMed
McTeague, L. M., Gruss, L. F., & Keil, A. (2015). Aversive learning shapes neuronal orientation tuning in human visual cortex. Nature Communications, 6, 7823.CrossRefGoogle ScholarPubMed
McTeague, L. M., Laplante, M.-C., Bulls, H. W., Shumen, J. R., Lang, P. J., & Keil, A. (2018). Face perception in social anxiety: Visuocortical dynamics reveal propensities for hypervigilance or avoidance. Biological Psychiatry, 83, 618–628.CrossRefGoogle ScholarPubMed
Melcher, J. R., & Cohen, D. (1988). Dependence of the MEG on dipole orientation in the rabbit head. Electroencephalography and Clinical Neurophysiology, 70, 460–472.CrossRefGoogle ScholarPubMed
Michel, C. M., & Brunet, D. (2019). EEG source imaging: A practical review of the analysis steps. Frontiers in Neurology, 10, 325.CrossRefGoogle ScholarPubMed
Michel, C. M., Murray, M. M., Lantz, G., Gonzalez, S., Spinelli, L., & Grave de Peralta, R. (2004). EEG source imaging. Clinical Neurophysiology, 115, 2195–2222.CrossRefGoogle ScholarPubMed
Miller, J., Patterson, T., & Ulrich, R. (1998). Jackknife-based method for measuring LRP onset latency differences. Psychophysiology, 35, 99–115.CrossRefGoogle ScholarPubMed
Miskovic, V., & Keil, A. (2012). Acquired fears reflected in cortical sensory processing: A review of electrophysiological studies of human classical conditioning. Psychophysiology, 49, 1230–1241.CrossRefGoogle ScholarPubMed
Müller, M. M., Andersen, S., & Keil, A. (2008). Time course of competition for visual processing resources between emotional pictures and a foreground task. Cerebral Cortex, 18, 1892–1899.CrossRefGoogle Scholar
Nunez, P. L., Srinivasan, R., Westdorp, A. F., Wijesinghe, R. S., Tucker, D. M., Silberstein, R. B., & Cadusch, P. J. (1997). EEG coherency. I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalography and Clinical Neurophysiology, 103, 499–515.Google ScholarPubMed
Olejniczak, P. (2006). Neurophysiologic basis of EEG. Journal of Clinical Neurophysiology, 23, 186–189.CrossRefGoogle ScholarPubMed
Panitz, C., Hermann, C., & Mueller, E. M. (2015). Conditioned and extinguished fear modulate functional corticocardiac coupling in humans. Psychophysiology, 52, 1351–1360.CrossRefGoogle ScholarPubMed
Panitz, C., Keil, A., & Mueller, E. M. (2019). Extinction-resistant attention to long-term conditioned threat is indexed by selective visuocortical alpha suppression in humans. Scientific Reports, 9, 15809.CrossRefGoogle ScholarPubMed
Pernet, C., Garrido, M. I., Gramfort, A., Maurits, N., Michel, C. M., Pang, E., … Puce, A. (2020). Issues and recommendations from the OHBM COBIDAS MEEG committee for reproducible EEG and MEG research. Nature Neuroscience, 23, 1473–1483.CrossRefGoogle ScholarPubMed
Pessoa, L. (2018). Understanding emotion with brain networks. Current Opinion in Behavioral Sciences, 19, 19–25.CrossRefGoogle ScholarPubMed
Peyk, P., DeCesarei, A., & Junghöfer, M. (2011). Electro magneto encephalograhy software: Overview and integration with other EEG/MEG toolboxes. Computational Intelligence and Neuroscience, 2011, 861705.CrossRefGoogle Scholar
Piastra, M. C., Nüßing, A., Vorwerk, J., Clerc, M., Engwer, C., & Wolters, C. H. (2021). A comprehensive study on electroencephalography and magnetoencephalography sensitivity to cortical and subcortical sources. Human Brain Mapping, 42, 978–992.CrossRefGoogle Scholar
Radilova, J. (1982). The late positive component of visual evoked response sensitive to emotional factors. Activitas Nervosa Superior, Suppl 3, 334–337.Google ScholarPubMed
Riels, K., Ramos Campagnoli, R., Thigpen, N., & Keil, A. (2022). Oscillatory brain activity links experience to expectancy during associative learning. Psychophysiology, 59, e13946.CrossRefGoogle ScholarPubMed
Ringach, D. L. (2010). Population coding under normalization. Vision Research, 50, 2223–2232.CrossRefGoogle ScholarPubMed
Sabatinelli, D., Keil, A., Frank, D. W., & Lang, P. J. (2013). Emotional perception: Correspondence of early and late event-related potentials with cortical and subcortical functional MRI. Biological Psychology, 92, 513–519.CrossRefGoogle ScholarPubMed
Schindler, S., & Bublatzky, F. (2020). Attention and emotion: An integrative review of emotional face processing as a function of attention. Cortex, 130, 362–386.CrossRefGoogle ScholarPubMed
Schindler, S., Busch, N., Bruchmann, M., Wolf, M.-I., & Straube, T. (2022). Early ERP functions are indexed by lateralized effects to peripherally presented emotional faces and scrambles. Psychophysiology, 59, e13959.CrossRefGoogle ScholarPubMed
Schupp, H. T., Cuthbert, B. N., Bradley, M. M., Birbaumer, N., & Lang, P. J. (1997). Probe P3 and blinks: Two measures of affective startle modulation. Psychophysiology, 34, 1–6.CrossRefGoogle ScholarPubMed
Schupp, H. T., Stockburger, J., Codispoti, M., Junghofer, M., Weike, A. I., & Hamm, A. O. (2007). Selective visual attention to emotion. Journal of Neuroscience, 27, 1082–1089.CrossRefGoogle ScholarPubMed
Smith, E. E., Reznik, S. J., Stewart, J. L., & Allen, J. J. B. (2017). Assessing and conceptualizing frontal EEG asymmetry: An updated primer on recording, processing, analyzing, and interpreting frontal alpha asymmetry. International Journal of Psychophysiology, 111, 98–114.CrossRefGoogle ScholarPubMed
Stegmann, Y., Ahrens, L., Pauli, P., Keil, A., & Wieser, M. J. (2020). Social aversive generalization learning sharpens the tuning of visuocortical neurons to facial identity cues. eLife, 9, e55204.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C., & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Sciences, 3, 151–162.CrossRefGoogle ScholarPubMed
Thigpen, N. N., Bartsch, F., & Keil, A. (2017). The malleability of emotional perception: Short-term plasticity in retinotopic neurons accompanies the formation of perceptual biases to threat. Journal of Experimental Psychology: General, 146, 464–471.Google ScholarPubMed
Thigpen, N. N., Kappenman, E. S., & Keil, A. (2017). Assessing the internal consistency of the event-related potential: An example analysis. Psychophysiology, 54, 123–138.CrossRefGoogle ScholarPubMed
Thigpen, N., Petro, N. M., Oschwald, J., Oberauer, K., & Keil, A. (2019). Selection of visual objects in perception and working memory one at a time. Psychological Science, 30, 1259–1272.CrossRefGoogle ScholarPubMed
Tomarken, A. J., Davidson, R. J., Wheeler, R. E., & Kinney, L. (1992). Psychometric properties of resting anterior EEG asymmetry: Temporal stability and internal consistency. Psychophysiology, 29, 576–592.CrossRefGoogle ScholarPubMed
Urigüen, J. A., & Garcia-Zapirain, B. (2015). EEG artifact removal – State-of-the-art and guidelines. Journal of Neural Engineering, 12, 031001.CrossRefGoogle ScholarPubMed
van der Vinne, N., Vollebregt, M. A., van Putten, M. J. A. M., & Arns, M. (2017). Frontal alpha asymmetry as a diagnostic marker in depression: Fact or fiction? A meta-analysis. NeuroImage: Clinical, 16, 79–87.Google ScholarPubMed
Walter, W. G. (1967). The analysis, synthesis and identification of evoked responses and contigent negative variation (CNV). Electroencephalography and Clinical Neurophysiology, 23, 489.Google ScholarPubMed
Ward, R. T., Gilbert, F. E., Pouliot, J., Chiasson, P., McIlvanie, S., Traiser, C., … Keil, A. (2022). The relationship between self-reported misophonia symptoms and auditory aversive generalization leaning: A preliminary report. Frontiers in Neuroscience, 16, 899476.CrossRefGoogle Scholar
Wieser, M. J., & Keil, A. (2020). Attentional threat biases and their role in anxiety: A neurophysiological perspective. International Journal of Psychophysiology, 153, 148–158.CrossRefGoogle ScholarPubMed
Wieser, M. J., McTeague, L. M., & Keil, A. (2011). Sustained preferential processing of social threat cues: Bias without competition? Journal of Cognitive Neuroscience, 23, 1973–1986.CrossRefGoogle ScholarPubMed
Wieser, M. J., Miskovic, V., & Keil, A. (2016). Steady-state visual evoked potentials as a research tool in social affective neuroscience. Psychophysiology, 53, 1763–1775.CrossRefGoogle ScholarPubMed
Widmann, A., Schröger, E., & Maess, B. (2015). Digital filter design for electrophysiological data – a practical approach. Journal of Neuroscience Methods, 250, 34–46.CrossRefGoogle Scholar
Wiesman, A. I., da Silva Castanheira, J., & Baillet, S. (2022). Stability of spectral estimates in resting-state magnetoencephalography: Recommendations for minimal data duration with neuroanatomical specificity. NeuroImage, 247, 118823.CrossRefGoogle ScholarPubMed
Yao, D., Qin, Y., Hu, S., Dong, L., Bringas Vega, M. L., & Valdés Sosa, P. A. (2022). Which reference should we use for EEG and ERP practice? Brain Topography, 32, 530–549.Google Scholar

Accessibility standard: WCAG 2.0 A

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×