Internet Explorer 11 is being discontinued by Microsoft in August 2021.
If you have difficulties viewing the site on Internet Explorer 11 we
recommend using a different browser such as Microsoft Edge, Google
Chrome, Apple Safari or Mozilla Firefox.
Integrated Digital Marketing in Practice is a comprehensive guide to the transformative effect of digital technologies on all of the key practices of marketing. Considering a broad range of organization types, sizes and markets, this book provides an all-encompassing view of how digital technologies help marketers understand, anticipate and deliver on customer needs as efficiently and effectively as possible. Students will benefit from the clear structure and rich learning features, including case studies, key concepts in brief, digital and research insight boxes, review questions and skills development boxes. Instructor resources include model answers to practice exam questions, teaching slides, group discussion ideas, and practice activities.
Integrated Digital Marketing in Practice is a comprehensive guide to the transformative effect of digital technologies on all of the key practices of marketing. Considering a broad range of organization types, sizes and markets, this book provides an all-encompassing view of how digital technologies help marketers understand, anticipate and deliver on customer needs as efficiently and effectively as possible. Students will benefit from the clear structure and rich learning features, including case studies, key concepts in brief, digital and research insight boxes, review questions and skills development boxes. Instructor resources include model answers to practice exam questions, teaching slides, group discussion ideas, and practice activities.
Introduction to Applied Geophysics covers the fundamental methods of exploration geophysics in a depth and style both challenging and appropriate to undergraduates. Because of the increasing opportunities for students to conduct field experiments, the authors focus on methods, examples, illustrations, applications, and problem sets that emphasize shallow exploration of the Earth's surface. The textbook includes chapters on refraction seismology, electrical resistivity methods, gravity, magnetic surveying, and electromagnetic methods, including ground conductivity measurements and ground-penetrating radar. Geologic, engineering, and environmental applications are emphasized throughout. For each geophysical method, the theory and its application in exploring a given target in introduced. Each chapter includes a brief discussion of the applicable instruments, field operations, data collection and reduction, and limitations on interpretation. The textbook is supported by an extensive package of software. This edition from Cambridge University Press is a re-issue of the W.W. Norton edition, first published in 2006.
Introduction to Applied Geophysics covers the fundamental methods of exploration geophysics in a depth and style both challenging and appropriate to undergraduates. Because of the increasing opportunities for students to conduct field experiments, the authors focus on methods, examples, illustrations, applications, and problem sets that emphasize shallow exploration of the Earth's surface. The textbook includes chapters on refraction seismology, electrical resistivity methods, gravity, magnetic surveying, and electromagnetic methods, including ground conductivity measurements and ground-penetrating radar. Geologic, engineering, and environmental applications are emphasized throughout. For each geophysical method, the theory and its application in exploring a given target in introduced. Each chapter includes a brief discussion of the applicable instruments, field operations, data collection and reduction, and limitations on interpretation. The textbook is supported by an extensive package of software. This edition from Cambridge University Press is a re-issue of the W.W. Norton edition, first published in 2006.
This book offers an accessible and engaging introduction to quantum cryptography, assuming no prior knowledge in quantum computing. Essential background theory and mathematical techniques are introduced and applied in the analysis and design of quantum cryptographic protocols. The title explores several important applications such as quantum key distribution, quantum money, and delegated quantum computation, while also serving as a self-contained introduction to the field of quantum computing. With frequent illustrations and simple examples relevant to quantum cryptography, this title focuses on building intuition and challenges readers to understand the basis of cryptographic security. Frequent worked examples and mid-chapter exercises allow readers to extend their understanding, and in-text quizzes, end-of-chapter homework problems, and recommended further reading reinforce and broaden understanding. Online resources available to instructors include interactive computational problems in Julia, videos, lecture slides, and a fully worked solutions manual.
This book offers an accessible and engaging introduction to quantum cryptography, assuming no prior knowledge in quantum computing. Essential background theory and mathematical techniques are introduced and applied in the analysis and design of quantum cryptographic protocols. The title explores several important applications such as quantum key distribution, quantum money, and delegated quantum computation, while also serving as a self-contained introduction to the field of quantum computing. With frequent illustrations and simple examples relevant to quantum cryptography, this title focuses on building intuition and challenges readers to understand the basis of cryptographic security. Frequent worked examples and mid-chapter exercises allow readers to extend their understanding, and in-text quizzes, end-of-chapter homework problems, and recommended further reading reinforce and broaden understanding. Online resources available to instructors include interactive computational problems in Julia, videos, lecture slides, and a fully worked solutions manual.
Data Science for the Geosciences provides students and instructors with the statistical and machine learning foundations to address Earth science questions using real-world case studies in natural hazards, climate change, environmental contamination and Earth resources. It focuses on techniques that address common characteristics of geoscientific data, including extremes, multivariate, compositional, geospatial and space-time methods. Step-by-step instructions are provided, enabling readers to easily follow the protocols for each method, solve their geoscientific problems and make interpretations. With an emphasis on intuitive reasoning throughout, students are encouraged to develop their understanding without the need for complex mathematics, making this the perfect text for those with limited mathematical or coding experience. Students can test their skills with homework exercises that focus on data scientific analysis, modeling, and prediction problems, and through the use of supplemental Python notebooks that can be applied to real datasets worldwide.
Data Science for the Geosciences provides students and instructors with the statistical and machine learning foundations to address Earth science questions using real-world case studies in natural hazards, climate change, environmental contamination and Earth resources. It focuses on techniques that address common characteristics of geoscientific data, including extremes, multivariate, compositional, geospatial and space-time methods. Step-by-step instructions are provided, enabling readers to easily follow the protocols for each method, solve their geoscientific problems and make interpretations. With an emphasis on intuitive reasoning throughout, students are encouraged to develop their understanding without the need for complex mathematics, making this the perfect text for those with limited mathematical or coding experience. Students can test their skills with homework exercises that focus on data scientific analysis, modeling, and prediction problems, and through the use of supplemental Python notebooks that can be applied to real datasets worldwide.
This self-contained introduction to machine learning, designed from the start with engineers in mind, will equip students with everything they need to start applying machine learning principles and algorithms to real-world engineering problems. With a consistent emphasis on the connections between estimation, detection, information theory, and optimization, it includes: an accessible overview of the relationships between machine learning and signal processing, providing a solid foundation for further study; clear explanations of the differences between state-of-the-art techniques and more classical methods, equipping students with all the understanding they need to make informed technique choices; demonstration of the links between information-theoretical concepts and their practical engineering relevance; reproducible examples using Matlab, enabling hands-on student experimentation. Assuming only a basic understanding of probability and linear algebra, and accompanied by lecture slides and solutions for instructors, this is the ideal introduction to machine learning for engineering students of all disciplines.
This self-contained introduction to machine learning, designed from the start with engineers in mind, will equip students with everything they need to start applying machine learning principles and algorithms to real-world engineering problems. With a consistent emphasis on the connections between estimation, detection, information theory, and optimization, it includes: an accessible overview of the relationships between machine learning and signal processing, providing a solid foundation for further study; clear explanations of the differences between state-of-the-art techniques and more classical methods, equipping students with all the understanding they need to make informed technique choices; demonstration of the links between information-theoretical concepts and their practical engineering relevance; reproducible examples using Matlab, enabling hands-on student experimentation. Assuming only a basic understanding of probability and linear algebra, and accompanied by lecture slides and solutions for instructors, this is the ideal introduction to machine learning for engineering students of all disciplines.
This is a graduate text on turbulent flows, an important topic in fluid dynamics. It is up-to-date, comprehensive, designed for teaching, and is based on a course taught by the author at Cornell University for a number of years. The book consists of two parts followed by a number of appendices. Part I provides a general introduction to turbulent flows, how they behave, how they can be described quantitatively, and the fundamental physical processes involved. Part II is concerned with different approaches for modelling or simulating turbulent flows. The necessary mathematical techniques are presented in the appendices. This book is primarily intended as a graduate level text in turbulent flows for engineering students, but it may also be valuable to students in applied mathematics, physics, oceanography and atmospheric sciences, as well as researchers and practising engineers.
This is a graduate text on turbulent flows, an important topic in fluid dynamics. It is up-to-date, comprehensive, designed for teaching, and is based on a course taught by the author at Cornell University for a number of years. The book consists of two parts followed by a number of appendices. Part I provides a general introduction to turbulent flows, how they behave, how they can be described quantitatively, and the fundamental physical processes involved. Part II is concerned with different approaches for modelling or simulating turbulent flows. The necessary mathematical techniques are presented in the appendices. This book is primarily intended as a graduate level text in turbulent flows for engineering students, but it may also be valuable to students in applied mathematics, physics, oceanography and atmospheric sciences, as well as researchers and practising engineers.
Packed with real-world examples, industry insights and practical activities, this textbook is designed to teach machine learning in a way that is easy to understand and apply. It assumes only a basic knowledge of technology, making it an ideal resource for students and professionals, including those who are new to computer science. All the necessary topics are covered, including supervised and unsupervised learning, neural networks, reinforcement learning, cloud-based services, and the ethical issues still posing problems within the industry. While Python is used as the primary language, many exercises will also have the solutions provided in R for greater versatility. A suite of online resources is available to support teaching across a range of different courses, including example syllabi, a solutions manual, and lecture slides. Datasets and code are also available online for students, giving them everything they need to practice the examples and problems in the book.
Packed with real-world examples, industry insights and practical activities, this textbook is designed to teach machine learning in a way that is easy to understand and apply. It assumes only a basic knowledge of technology, making it an ideal resource for students and professionals, including those who are new to computer science. All the necessary topics are covered, including supervised and unsupervised learning, neural networks, reinforcement learning, cloud-based services, and the ethical issues still posing problems within the industry. While Python is used as the primary language, many exercises will also have the solutions provided in R for greater versatility. A suite of online resources is available to support teaching across a range of different courses, including example syllabi, a solutions manual, and lecture slides. Datasets and code are also available online for students, giving them everything they need to practice the examples and problems in the book.
This original and innovative textbook takes the unique perspective of introducing and solving problems in quantum mechanics using linear algebra methods, to equip readers with a deeper and more practical understanding of this fundamental pillar of contemporary physics. Extensive motivation for the properties of quantum mechanics, Hilbert space, and the Schrödinger equation is provided through analysis of the derivative, while standard topics like the harmonic oscillator, rotations, and the hydrogen atom are covered from within the context of operator methods. Advanced topics forming the basis of modern physics research are also included, such as the density matrix, entropy, and measures of entanglement. Written for an undergraduate audience, this book offers a unique and mathematically self-contained treatment of this hugely important topic. Students are guided gently through the text by the author's engaging writing style, with an extensive glossary provided for reference and numerous homework problems to expand and develop key concepts. Online resources for instructors include a fully worked solutions manual and lecture slides.
This original and innovative textbook takes the unique perspective of introducing and solving problems in quantum mechanics using linear algebra methods, to equip readers with a deeper and more practical understanding of this fundamental pillar of contemporary physics. Extensive motivation for the properties of quantum mechanics, Hilbert space, and the Schrödinger equation is provided through analysis of the derivative, while standard topics like the harmonic oscillator, rotations, and the hydrogen atom are covered from within the context of operator methods. Advanced topics forming the basis of modern physics research are also included, such as the density matrix, entropy, and measures of entanglement. Written for an undergraduate audience, this book offers a unique and mathematically self-contained treatment of this hugely important topic. Students are guided gently through the text by the author's engaging writing style, with an extensive glossary provided for reference and numerous homework problems to expand and develop key concepts. Online resources for instructors include a fully worked solutions manual and lecture slides.
Pragmatics – the study of language in context, and of how we understand what other people say – is a core subject in English language, linguistics, and communication studies. This textbook introduces the key topics in this fast-moving field, including metaphor, irony, politeness, disambiguation, and reference assignment. It walks the reader through the essential theories in pragmatics, including Grice, relevance theory, speech act theory, and politeness theory. Each chapter includes a range of illustrative examples, guiding readers from the basic principles to a thorough understanding of the topics. A dedicated chapter examines how research is conducted in pragmatics, providing students with resources and ideas for developing their own projects. Featuring exercises, a comprehensive glossary, and suggestions for further reading, this book is accessible to beginner undergraduates, including those with no prior knowledge of linguistics. It is an essential resource for courses in English language, English studies, and linguistics.
Pragmatics – the study of language in context, and of how we understand what other people say – is a core subject in English language, linguistics, and communication studies. This textbook introduces the key topics in this fast-moving field, including metaphor, irony, politeness, disambiguation, and reference assignment. It walks the reader through the essential theories in pragmatics, including Grice, relevance theory, speech act theory, and politeness theory. Each chapter includes a range of illustrative examples, guiding readers from the basic principles to a thorough understanding of the topics. A dedicated chapter examines how research is conducted in pragmatics, providing students with resources and ideas for developing their own projects. Featuring exercises, a comprehensive glossary, and suggestions for further reading, this book is accessible to beginner undergraduates, including those with no prior knowledge of linguistics. It is an essential resource for courses in English language, English studies, and linguistics.
Biblical Aramaic and Related Dialects is a comprehensive, introductory-level textbook for the acquisition of the language of the Old Testament and related dialects that were in use from the last few centuries BCE. Based on the latest research, it uses a method that guides students into knowledge of the language inductively, with selections taken from the Bible, the Dead Sea Scrolls, and papyrus discoveries from ancient Egypt. The volume offers a comprehensive view of ancient Aramaic that enables students to progress to advanced levels with a solid grounding in historical grammar. Most up-to-date description of Aramaic in light of modern discoveries and methods. Provides more detail than previous textbooks. Includes comprehensive description of Biblical dialect, along with Aramaic of the Persian period and of the Dead Sea Scrolls. Guided readings begin with primary sources, enabling students learn the language by reading historical texts.
Biblical Aramaic and Related Dialects is a comprehensive, introductory-level textbook for the acquisition of the language of the Old Testament and related dialects that were in use from the last few centuries BCE. Based on the latest research, it uses a method that guides students into knowledge of the language inductively, with selections taken from the Bible, the Dead Sea Scrolls, and papyrus discoveries from ancient Egypt. The volume offers a comprehensive view of ancient Aramaic that enables students to progress to advanced levels with a solid grounding in historical grammar. Most up-to-date description of Aramaic in light of modern discoveries and methods. Provides more detail than previous textbooks. Includes comprehensive description of Biblical dialect, along with Aramaic of the Persian period and of the Dead Sea Scrolls. Guided readings begin with primary sources, enabling students learn the language by reading historical texts.
This well-balanced introduction to enterprise risk management integrates quantitative and qualitative approaches and motivates key mathematical and statistical methods with abundant real-world cases - both successes and failures. Worked examples and end-of-chapter exercises support readers in consolidating what they learn. The mathematical level, which is suitable for graduate and senior undergraduate students in quantitative programs, is pitched to give readers a solid understanding of the concepts and principles involved, without diving too deeply into more complex theory. To reveal the connections between different topics, and their relevance to the real world, the presentation has a coherent narrative flow, from risk governance, through risk identification, risk modelling, and risk mitigation, capped off with holistic topics - regulation, behavioural biases, and crisis management - that influence the whole structure of ERM. The result is a text and reference that is ideal for graduate and senior undergraduate students, risk managers in industry, and anyone preparing for ERM actuarial exams.
This well-balanced introduction to enterprise risk management integrates quantitative and qualitative approaches and motivates key mathematical and statistical methods with abundant real-world cases - both successes and failures. Worked examples and end-of-chapter exercises support readers in consolidating what they learn. The mathematical level, which is suitable for graduate and senior undergraduate students in quantitative programs, is pitched to give readers a solid understanding of the concepts and principles involved, without diving too deeply into more complex theory. To reveal the connections between different topics, and their relevance to the real world, the presentation has a coherent narrative flow, from risk governance, through risk identification, risk modelling, and risk mitigation, capped off with holistic topics - regulation, behavioural biases, and crisis management - that influence the whole structure of ERM. The result is a text and reference that is ideal for graduate and senior undergraduate students, risk managers in industry, and anyone preparing for ERM actuarial exams.
Mathematics instruction is often more effective when presented in a physical context. Schramm uses this insight to help develop students' physical intuition as he guides them through the mathematical methods required to study upper-level physics. Based on the undergraduate Math Methods course he has taught for many years at Occidental College, the text encourages a symbiosis through which the physics illuminates the math, which in turn informs the physics. Appropriate for both classroom and self-study use, the text begins with a review of useful techniques to ensure students are comfortable with prerequisite material. It then moves on to cover vector fields, analytic functions, linear algebra, function spaces, and differential equations. Written in an informal and engaging style, it also includes short supplementary digressions ('By the Ways') as optional boxes showcasing directions in which the math or physics may be explored further. Extensive problems are included throughout, many taking advantage of Mathematica, to test and deepen comprehension.
Mathematics instruction is often more effective when presented in a physical context. Schramm uses this insight to help develop students' physical intuition as he guides them through the mathematical methods required to study upper-level physics. Based on the undergraduate Math Methods course he has taught for many years at Occidental College, the text encourages a symbiosis through which the physics illuminates the math, which in turn informs the physics. Appropriate for both classroom and self-study use, the text begins with a review of useful techniques to ensure students are comfortable with prerequisite material. It then moves on to cover vector fields, analytic functions, linear algebra, function spaces, and differential equations. Written in an informal and engaging style, it also includes short supplementary digressions ('By the Ways') as optional boxes showcasing directions in which the math or physics may be explored further. Extensive problems are included throughout, many taking advantage of Mathematica, to test and deepen comprehension.
This rigorous yet accessible textbook provides broad and systematic coverage of linear multivariable control systems, including several new approaches to design. In addition to standard state space theory, it provides a new measurement-based approach to linear systems, including a generalization of Thevenin's Theorem, a new single-input single-output approach to multivariable control, and analytical design of PID controllers developed by the authors. Each result is rigorously proved and combined with specific control systems applications, such as the servomechanism problem, the fragility of high order controllers, multivariable control, and PID controllers. Illustrative examples solved using MATLAB and SIMULINK, with easily reusable programming scripts, are included throughout. Numerous end-of-chapter homework problems enhance understanding. Based on course-tested material, this textbook is ideal for a single or two-semester graduate course on linear multivariable control systems in aerospace, chemical, electrical and mechanical engineering.
This rigorous yet accessible textbook provides broad and systematic coverage of linear multivariable control systems, including several new approaches to design. In addition to standard state space theory, it provides a new measurement-based approach to linear systems, including a generalization of Thevenin's Theorem, a new single-input single-output approach to multivariable control, and analytical design of PID controllers developed by the authors. Each result is rigorously proved and combined with specific control systems applications, such as the servomechanism problem, the fragility of high order controllers, multivariable control, and PID controllers. Illustrative examples solved using MATLAB and SIMULINK, with easily reusable programming scripts, are included throughout. Numerous end-of-chapter homework problems enhance understanding. Based on course-tested material, this textbook is ideal for a single or two-semester graduate course on linear multivariable control systems in aerospace, chemical, electrical and mechanical engineering.
Contract Law: Cases and Materials presents a selection of well-chosen cases and illuminating commentary ideal for introducing students to the study of contract law in Australia. Developed to accompany Stewart, Swain and Fairweather's Contract Law: Principles and Context, this casebook maintains the accessibility of the principles text while providing the depth and analysis of topics required to learn contract law. Following the structure of the principles text, this text explores areas not traditionally covered in other casebooks, such as resolving disputes, preparing to make a contract, preliminary agreements, and interpreting contracts. Each chapter also briefly explores contracts in international contexts. Containing well-chosen, carefully curated cases and extracts, Contract Law: Cases and Materials takes a practical approach to student learning and integrates rich pedagogy to build critical thinking and analysis skills, making it an invaluable resource for contract law students.
Contract Law: Cases and Materials presents a selection of well-chosen cases and illuminating commentary ideal for introducing students to the study of contract law in Australia. Developed to accompany Stewart, Swain and Fairweather's Contract Law: Principles and Context, this casebook maintains the accessibility of the principles text while providing the depth and analysis of topics required to learn contract law. Following the structure of the principles text, this text explores areas not traditionally covered in other casebooks, such as resolving disputes, preparing to make a contract, preliminary agreements, and interpreting contracts. Each chapter also briefly explores contracts in international contexts. Containing well-chosen, carefully curated cases and extracts, Contract Law: Cases and Materials takes a practical approach to student learning and integrates rich pedagogy to build critical thinking and analysis skills, making it an invaluable resource for contract law students.
Get up to speed with this robust introduction to the aerothermodynamics principles underpinning jet propulsion, and learn how to apply these principles to jet engine components. Suitable for undergraduate students in aerospace and mechanical engineering, and for professional engineers working in jet propulsion, this textbook includes consistent emphasis on fundamental phenomena and key governing equations, providing students with a solid theoretical grounding on which to build practical understanding; clear derivations from first principles, enabling students to follow the reasoning behind key assumptions and decisions, and successfully apply these approaches to new problems; practical examples grounded in real-world jet propulsion scenarios illustrate new concepts throughout the book, giving students an early introduction to jet and rocket engine considerations; and online materials for course instructors, including solutions, figures, and software resources, to enhance student teaching.
Get up to speed with this robust introduction to the aerothermodynamics principles underpinning jet propulsion, and learn how to apply these principles to jet engine components. Suitable for undergraduate students in aerospace and mechanical engineering, and for professional engineers working in jet propulsion, this textbook includes consistent emphasis on fundamental phenomena and key governing equations, providing students with a solid theoretical grounding on which to build practical understanding; clear derivations from first principles, enabling students to follow the reasoning behind key assumptions and decisions, and successfully apply these approaches to new problems; practical examples grounded in real-world jet propulsion scenarios illustrate new concepts throughout the book, giving students an early introduction to jet and rocket engine considerations; and online materials for course instructors, including solutions, figures, and software resources, to enhance student teaching.
Suitable for both graduate and senior undergraduate students, this textbook offers a logical progression through the underlying principles and practical applications of nonlinear photonics. Building up from essential physics, general concepts, and fundamental mathematical formulations, it provides a robust introduction to nonlinear optical processes and phenomena, and their practical applications in real-world devices and systems. Over 45 worked problems illustrate key concepts and provide hands-on models for students, and over 160 end-of-chapter exercises supply students with plenty of scope to master the material. Accompanied by a complete solutions manual for instructors, including detailed explanations of each result, and drawing on the author's 35 years of teaching experience, this is the ideal introduction to nonlinear photonics for students in electrical engineering.
Suitable for both graduate and senior undergraduate students, this textbook offers a logical progression through the underlying principles and practical applications of nonlinear photonics. Building up from essential physics, general concepts, and fundamental mathematical formulations, it provides a robust introduction to nonlinear optical processes and phenomena, and their practical applications in real-world devices and systems. Over 45 worked problems illustrate key concepts and provide hands-on models for students, and over 160 end-of-chapter exercises supply students with plenty of scope to master the material. Accompanied by a complete solutions manual for instructors, including detailed explanations of each result, and drawing on the author's 35 years of teaching experience, this is the ideal introduction to nonlinear photonics for students in electrical engineering.
Presenting a fresh look at process control, this new text demonstrates state-space approach shown in parallel with the traditional approach to explain the strategies used in industry today. Modern time-domain and traditional transform-domain methods are integrated throughout and explain the advantages and limitations of each approach; the fundamental theoretical concepts and methods of process control are applied to practical problems. To ensure understanding of the mathematical calculations involved, MATLAB® is included for numeric calculations and MAPLE for symbolic calculations, with the math behind every method carefully explained so that students develop a clear understanding of how and why the software tools work. Written for a one-semester course with optional advanced-level material, features include solved examples, cases that include a number of chemical reactor examples, chapter summaries, key terms, and concepts, as well as over 240 end-of-chapter problems, focused computational exercises and solutions for instructors.
Presenting a fresh look at process control, this new text demonstrates state-space approach shown in parallel with the traditional approach to explain the strategies used in industry today. Modern time-domain and traditional transform-domain methods are integrated throughout and explain the advantages and limitations of each approach; the fundamental theoretical concepts and methods of process control are applied to practical problems. To ensure understanding of the mathematical calculations involved, MATLAB® is included for numeric calculations and MAPLE for symbolic calculations, with the math behind every method carefully explained so that students develop a clear understanding of how and why the software tools work. Written for a one-semester course with optional advanced-level material, features include solved examples, cases that include a number of chemical reactor examples, chapter summaries, key terms, and concepts, as well as over 240 end-of-chapter problems, focused computational exercises and solutions for instructors.
Build on the foundations of elementary mechanics of materials texts with this modern textbook that covers the analysis of stresses and strains in elastic bodies. Discover how all analyses of stress and strain are based on the four pillars of equilibrium, compatibility, stress-strain relations, and boundary conditions. These four principles are discussed and provide a bridge between elementary analyses and more detailed treatments with the theory of elasticity. Using MATLAB® extensively throughout, the author considers three-dimensional stress, strain and stress-strain relations in detail with matrix-vector relations. Based on classroom-proven material, this valuable resource provides a unified approach useful for advanced undergraduate students and graduate students, practicing engineers, and researchers.
Build on the foundations of elementary mechanics of materials texts with this modern textbook that covers the analysis of stresses and strains in elastic bodies. Discover how all analyses of stress and strain are based on the four pillars of equilibrium, compatibility, stress-strain relations, and boundary conditions. These four principles are discussed and provide a bridge between elementary analyses and more detailed treatments with the theory of elasticity. Using MATLAB® extensively throughout, the author considers three-dimensional stress, strain and stress-strain relations in detail with matrix-vector relations. Based on classroom-proven material, this valuable resource provides a unified approach useful for advanced undergraduate students and graduate students, practicing engineers, and researchers.
Active student engagement is key to this classroom-tested combinatorics text, boasting 1200+ carefully designed problems, ten mini-projects, section warm-up problems, and chapter opening problems. The author – an award-winning teacher – writes in a conversational style, keeping the reader in mind on every page. Students will stay motivated through glimpses into current research trends and open problems as well as the history and global origins of the subject. All essential topics are covered, including Ramsey theory, enumerative combinatorics including Stirling numbers, partitions of integers, the inclusion-exclusion principle, generating functions, introductory graph theory, and partially ordered sets. Some significant results are presented as sets of guided problems, leading readers to discover them on their own. More than 140 problems have complete solutions and over 250 have hints in the back, making this book ideal for self-study. Ideal for a one semester upper undergraduate course, prerequisites include the calculus sequence and familiarity with proofs.
Active student engagement is key to this classroom-tested combinatorics text, boasting 1200+ carefully designed problems, ten mini-projects, section warm-up problems, and chapter opening problems. The author – an award-winning teacher – writes in a conversational style, keeping the reader in mind on every page. Students will stay motivated through glimpses into current research trends and open problems as well as the history and global origins of the subject. All essential topics are covered, including Ramsey theory, enumerative combinatorics including Stirling numbers, partitions of integers, the inclusion-exclusion principle, generating functions, introductory graph theory, and partially ordered sets. Some significant results are presented as sets of guided problems, leading readers to discover them on their own. More than 140 problems have complete solutions and over 250 have hints in the back, making this book ideal for self-study. Ideal for a one semester upper undergraduate course, prerequisites include the calculus sequence and familiarity with proofs.
The first process-based textbook on how soils form and function in biogeochemical cycles, offering a self-contained and integrated overview of the field as it now stands for advanced undergraduate and graduate students in soil science, environmental science, and the wider Earth sciences. The jargon-free approach quickly familiarises students with the field's theoretical foundations before moving on to analyse chemical and other numerical data, building the necessary skills to develop questions and strategies for original research by the end of a single semester course. The field-based framework equips students with the essential tools for accessing and interpreting the vast USDA soil dataset, allowing them to establish a working knowledge of the most important modern developments in soil research. Complete with numerous end-of-chapter questions, figures and examples, students will find this textbook a multidisciplinary toolkit invaluable to their future careers.
The first process-based textbook on how soils form and function in biogeochemical cycles, offering a self-contained and integrated overview of the field as it now stands for advanced undergraduate and graduate students in soil science, environmental science, and the wider Earth sciences. The jargon-free approach quickly familiarises students with the field's theoretical foundations before moving on to analyse chemical and other numerical data, building the necessary skills to develop questions and strategies for original research by the end of a single semester course. The field-based framework equips students with the essential tools for accessing and interpreting the vast USDA soil dataset, allowing them to establish a working knowledge of the most important modern developments in soil research. Complete with numerous end-of-chapter questions, figures and examples, students will find this textbook a multidisciplinary toolkit invaluable to their future careers.