Abstract
This work explores two famous conjectures in number theory: Fermat's Last Theorem and Beal's Conjecture. Fermat's Last Theorem, posed by Pierre de Fermat in the 17th century, states that there are no positive integer solutions for the equation $a^{n} + b^{n} = c^{n}$, where $n$ is greater than $2$. This theorem remained unproven for centuries until Andrew Wiles published a proof in 1994. Beal's Conjecture, formulated in 1997 by Andrew Beal, generalizes Fermat's Last Theorem. It states that for positive integers $A$, $B$, $C$, $x$, $y$, and $z$, if $A^{x} + B^{y} = C^{z}$ (where $x$, $y$, and $z$ are all greater than $2$), then $A$, $B$, and $C$ must share a common prime factor. Beal's Conjecture remains unproven, and a significant prize is offered for a solution. This paper provides a concise introduction to both conjectures, highlighting their connection and presenting a short proof of the Beal's Conjecture.



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www-cambridge-org.demo.remotlog.com/engage/assets/public/coe/logo/orcid.png)