Abstract
In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. For every prime number $p_{n}$, we define the sequence $X_{n} = \prod_{q \leq p_{n}} \frac{q}{q-1} - e^{\gamma} \times \log \theta(p_{n})$, where $\theta(x)$ is the Chebyshev function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. The Nicolas criterion states that the Riemann hypothesis is true if and only if $X_{n} > 0$ holds for all primes $p_{n} > 2$. For every prime number $p_{k} > 2$, $X_{k} > 0$ is called the Nicolas inequality. We prove that the Nicolas inequality holds for all primes $p_{n} > 2$. In this way, we demonstrate that the Riemann hypothesis is true.



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www-cambridge-org.demo.remotlog.com/engage/assets/public/coe/logo/orcid.png)