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Coaxer Lattices

M. Sambasiva Rao

Abstract. _e notion of coaxers is introduced in a pseudo-complemented distributive lattice. Boo-
lean algebras are characterized in terms of coaxer ideals and congruences. _e concept of coaxer
lattices is introduced in pseudo-complemented distributive lattices and characterized in terms of
coaxer ideals and maximal ideals. Finally, the coaxer lattices are also characterized in topological
terms.

Introduction

_e theory of pseudo-complements in lattices, and particularly in distributive lattices,
was developed by M. H. Stone [8], O. Frink [4], and G. Gratzer [5]. Later, many au-
thors extended the study of pseudo-complements to characterize Stone lattices; see,
for example R. Balbes [1] andO. Frink [4]. Properties of various types of congruences
were studied in distributive lattices by W. H. Cornish [3] and T. P. Speed [6].

In this paper, the concept of coaxer ideals is introduced in pseudo-complemented
distributive lattices. Some properties of coaxer ideals are observed and then a set
of equivalent conditions is established for every coaxer ideal to be a principal ideal,
which leads to a characterization of Boolean algebras. _e concept of coaxer lattices
is introduced in pseudo-complemented distributive lattices. Coaxer lattices are then
characterized in terms ofmaximal ideals and coaxer ideals. A necessary and suõcient
condition is derived for every sublattice of a coaxer lattice to be a coaxer lattice,which
is not true in general. Coaxer ideals are also characterized in terms of kernels and an-
tikernels of congruences. Finally, coaxer lattices are also characterized in topological
terms.

_e reader is refered to [5] for deûnitions and notation. However, some pre-
liminary deûnitions and results are presented for the ready reference of the reader.
_roughout the rest of this note all lattices are bounded and pseudo-complemented
distributive lattices.

_e pseudo-complement b∗ of an element b is the greatest element disjoint from
b, if such an element exists. _e deûning property of b∗ is

a ∧ b = 0⇐⇒ a ∧ b∗ = a⇐⇒ a ≤ b∗ ,
where ≤ is a partial ordering relation on the lattice L.
A distributive lattice L in which every element has a pseudo-complement is called

a pseudo-complemented distributive lattice. For any two elements a, b of a pseudo-
complemented lattice, we have

Received by the editors February 21, 2014; revised October 27, 2015.
Published electronically February 28, 2017.
AMS subject classiûcation: 06D99.
Keywords: pseudo-complemented distributive lattice, coaxer ideal, coaxer lattice, maximal ideal,

congruence, kernel, antikernel.

https://doi.org/10.4153/CMB-2016-083-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-083-x


Coaxer Lattices 373

(1) a ≤ b implies b∗ ≤ a∗,
(2) a ≤ a∗∗,
(3) a∗∗∗ = a∗,
(4) (a ∨ b)∗ = a∗ ∧ b∗,
(5) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗.
An element a of L is called dense if a∗ = 0. _e set D of all dense elements of L

forms a ûlter in L.
A prime ideal P of a lattice L is called a minimal prime ideal if there is no prime

ideal Q such that Q ⊂ P. A prime ideal P of L is minimal [2] if and only if for each
x ∈ P there exists y ∉ P such that x ∧ y = 0. Let P be a prime ideal of L. _en the
following conditions are equivalent:
(a) P is aminimal prime ideal;
(b) x ∈ P implies x∗ ∉ P;
(c) P ∩ D = ∅.

1 Coaxer Ideals and Coaxer Lattices

In this section, the concepts of coaxer ideals and coaxer lattices are introduced in a
pseudo-complemented distributive lattice. Coaxer lattices are characterized in terms
ofmaximal ideals and coaxer ideals. Finally, coaxer lattices are characterized in topo-
logical terms.

Deûnition 1.1 Let L be a pseudo-complemented distributive lattice. For any a ∈ L,
the coaxer of a is deûned as the set (a)○ = {x ∈ L ∣ x∗ ∨ a = 1}.

Evidently, (0)○ = {0} and (1)○ = L.

Lemma 1.2 For any a ∈ L, (a)○ is an ideal of L.

Proof Clearly, 0 ∈ (a)○. Let x , y ∈ (a)○. _en x∗ ∨ a = 1 and y∗ ∨ a = 1. _erefore,
(x ∨ y)∗ ∨ a = (x∗ ∧ y∗)∨ a = (x∗ ∨ a)∧ (y∗ ∨ a) = 1∧ 1 = 1. Hence, x ∨ y ∈ (a)○. Let
x ∈ (a)○ and r ∈ L. _en x∗ ∨ a = 1, so 1 = x∗ ∨ a ≤ (x ∧ r)∗ ∨ a. _us, x ∧ r ∈ (a)○.
_erefore, (a)○ is an ideal of L.

In the following lemma, somemore properties of coaxers can be observed.

Lemma 1.3 For any a, b ∈ L, we have the following:
(i) a ≤ b⇒ (a)○ ⊆ (b)○;
(ii) a ∨ b = 1 implies a∗ ∈ (b)○;
(iii) (a)○ ⊆ (a];
(iv) (a)○ ∩ (b)○ = (a ∧ b)○;
(v) (a)○ = L if and only if a = 1.

Proof (i) Suppose a ≤ b. Let x ∈ (a)○. Hence, 1 = x∗ ∨ a ≤ x∗ ∨ b.
(ii) _is is clear.

https://doi.org/10.4153/CMB-2016-083-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-083-x


374 M. Sambasiva Rao

(iii) Let x ∈ (a)○. _en x∗ ∨ a = 1. Hence, we get a ∧ x = 0 ∨ (a ∧ x) =
(x∗ ∧ x) ∨ (a ∧ x) = (x∗ ∨ a) ∧ x = 1 ∧ x = x. _erefore, x ∈ (a].

(iv) Clearly, (a ∧ b)○ ⊆ (a)○ ∩ (b)○. Conversely, let x ∈ (a)○ ∩ (b)○. Hence,
x∗ ∨ (a ∧ b) = (x∗ ∨ a) ∧ (x∗ ∨ b) = 1 ∧ 1 = 1. Hence, x ∈ (a ∧ b)○.

(v) Suppose (a)○ = L. _enwe get 1 ∈ (a)○. Hence,we obtain a = 0∨a = 1∗∨a = 1.
_e converse is clear.

_e ideals (a)○ , a ∈ L in the above result are called coaxer ideals. _en we have
the following lemma.

Lemma 1.4 Every proper coaxer ideal of L is contained in aminimal prime ideal.

Proof Let (a)○ be a proper coaxer ideal of L. Suppose (a)○ ∩ D /= ∅ and
d ∈ (a)○ ∩ D. _en 0 ∨ a = d∗ ∨ a = 1. Hence, a = 1. _erefore, (a)○ = L, which
is a contradiction. Hence, (a)○ ∩ D = ∅. _en there exists a prime ideal P of L such
that (a)○ ⊆ P and P ∩D = ∅. Let x ∈ P. _en x ∨ x∗ ∈ D and hence x ∨ x∗ ∉ P. _us,
x∗ ∉ P. _erefore, P is aminimal prime ideal of L such that (a)○ ⊆ P.

Deûnition 1.5 For any maximal ideal M of L, deûne

π(M) = {x ∈ L ∣ x∗ ∉ M}.

Proposition 1.6 For any maximal ideal M of L, π(M) is an ideal of L such that
π(M) ⊆ M.

Proof Assume that M is a maximal ideal of L. _en M is a prime ideal. Clearly
0 ∈ π(M). Let x , y ∈ π(M). _en x∗ ∉ M and y∗ ∉ M. Since M is prime, we get
(x ∨ y)∗ = x∗ ∧ y∗ ∉ M. Hence, x ∨ y ∈ π(M). Let x ∈ π(M) and r ∈ L. _en x∗ ∉ M.
Hence, (x ∧ r)∗ ∉ M, otherwise x∗ ∈ M. _us, x ∧ r ∈ π(M). _erefore, π(M) is an
ideal of L. Let x ∈ π(M). _en x∗ ∉ M. Since M is prime and x ∧ x∗ = 0 ∈ M, we get
x ∈ M. _erefore, π(M) ⊆ M.

Let us denote the class of all maximal ideals of L by µ and let µa = {M ∈ µ ∣ a ∈ M}.
_en we have the following theorem.

_eorem 1.7 For any a ∈ L, (a)○ = ⋂M∈µa π(M).

Proof Let I0 = ⋂M∈µa π(M). Let x ∈ (a)○ and M ∈ µa . _en x∗ ∨ a = 1. If x∗ ∈ M,
then 1 = x∗ ∨ a ∈ M, which is a contradiction. Hence, x ∈ π(M). _is is true for all
M ∈ µa . Hence (a)○ ⊆ I0. Conversely, let x ∈ I0. _en x ∈ π(M) for all M ∈ µa .
Suppose x∗ ∨ a /= 1. _en there exists amaximal ideal M0 of L such that x∗ ∨ a ∈ M0.
Hence, x∗ ∈ M0 and a ∈ M0. Since a ∈ M0, by our assumption x ∈ π(M0). Hence, it
yields that x∗ ∉ M0, which is a contradiction. Hence, x∗ ∨ a = 1. _us, x ∈ (a)○ and
hence I0 ⊆ (a)○. _is completes the proof of the theorem.

Corollary 1.8 Let M ∈ µ. If a ∈ M, then (a)○ ⊆ π(M).
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In general, the set C○(L) of all coaxer ideals of L is not a sublattice of the lattice
I(L) of all ideals of L. However, we will establish a set of equivalent conditions for
C○(L) to be a sublattice of I(L). For this we need the following lemma.

Lemma 1.9 A proper ideal M of L is maximal if and only if for each x ∉ M, there
exists y ∈ M such that x ∨ y = 1.

Proof Assume that M ismaximal and let x ∉ M. _en M∨(x] = L. Hence, 1 = a∨x
for some a ∈ M. Conversely assume the condition and suppose M is not maximal.
_en there exists a proper ideal Q such that M ⊂ Q. Choose x ∈ Q −M. _en there
exists y ∈ M such that x ∨ y = 1. Since x ∈ Q and y ∈ M ⊂ Q, we get 1 = x ∨ y ∈ Q,
which is a contradiction.

We now introduce the concept of coaxer lattices.

Deûnition 1.10 A pseudo-complemented distributive lattice L is called a coaxer
lattice if π(M) = M for every M ∈ µ.

Example 1.11 Every Boolean algebra is a coaxer lattice. Let L be a Boolean algebra
and M a maximal ideal of L. Clearly π(M) ⊆ M. Conversely, let x ∈ M. _en there
exists some y ∈ L such that x ∧ y = 0 and x ∨ y = 1. Hence y ≤ x∗ and x ∨ y = 1 ∉ M,
which implies that y ∉ M. _us, x∗ ∉ M, and hence x ∈ π(M). _erefore, L is coaxer.

We ûrst characterize the class of coaxer lattices in the following theorem.

_eorem 1.12 _e following conditions are equivalent:
(i) L is coaxer;
(ii) for any a, b ∈ L, a ∨ b = 1 implies (a)○ ∨ (b)○ = L;
(iii) for any a, b ∈ L, (a)○ ∨ (b)○ = (a ∨ b)○;
(iv) for any two distinct maximal ideals M and N , π(M) ∨ π(N) = L;
(v) for any M ∈ µ,M is the uniquemember of µ such that π(M) ⊆ M;
(vi) for any M ∈ µ, π(M) is maximal.

Proof (i)⇒(ii) Assume that L is coaxer. Let a, b ∈ L be such that a ∨ b = 1. Suppose
(a)○ ∨ (b)○ /= L. _en there exists a maximal ideal M such that (a)○ ∨ (b)○ ⊆ M.
Hence, (a)○ ⊆ M and (b)○ ⊆ M. Now

(a)○ ⊆ M ⇒ ⋂
M∈µa

π(M) ⊆ M

⇒ π(M i) ⊆ M for some M i ∈ µa (since M is prime)
⇒ M i ⊆ M since L is coaxer
⇒ a ∈ M
⇒ a ∉ L −M

Similarly, we can get b ∉ L−M. Since L−M is a prime ûlter, we get 1 = a∨ b ∉ L−M,
which is a contradiction. _erefore, (a)○ ∨ (b)○ = L.

(ii)⇒(iii) Assume condition (ii). Let a, b ∈ L. Clearly, (a)○ ∨ (b)○ ⊆ (a ∨ b)○. Let
x ∈ (a ∨ b)○. _en (x∗ ∨ a) ∨ (x∗ ∨ b) = x∗ ∨ a ∨ b = 1. Hence, by condition (ii), we

https://doi.org/10.4153/CMB-2016-083-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-083-x


376 M. Sambasiva Rao

get (x∗ ∨ a)○ ∨ (x∗ ∨ b)○ = L. _us, x ∈ L = (x∗ ∨ a)○ ∨ (x∗ ∨ b)○. Hence, x = r ∨ s
for some r ∈ (x∗ ∨ a)○ and s ∈ (x∗ ∨ b)○. Now

r ∈ (x∗ ∨ a)○ ⇒ r∗ ∨ x∗ ∨ a = 1

⇒ 1 = (r∗ ∨ x∗) ∨ a ≤ (r ∧ x)∗ ∨ a
⇒ (r ∧ x)∗ ∨ a = 1
⇒ r ∧ x ∈ (a)○ .

Similarly, we can get s ∧ x ∈ (b)○. Hence,
x = x ∧ x = x ∧ (r ∨ s) = (x ∧ r) ∨ (x ∧ s) ∈ (a)○ ∨ (b)○ .

Hence, (a ∨ b)○ ⊆ (a)○ ∨ (b)○. _erefore, (a)○ ∨ (b)○ = (a ∨ b)○.
(iii)⇒(iv) Assume condition (iii). Let M ,N be two distinct maximal ideals of L.

Choose x ∈ M − N and y ∈ N −M. Now

x ∉ N ⇒ there exists x1 ∈ N such that x ∨ x1 = 1
y ∉ M ⇒ there exists y1 ∈ M such that y ∨ y1 = 1.

Hence, (x ∨ y1) ∨ (y ∨ x1) = (x ∨ x1) ∨ (y ∨ y1) = 1. Now

L = (1)○ = {(x ∨ y1) ∨ (y ∨ x1)}○

= (x ∨ y1)○ ∨ (y ∨ x1))○

⊆ π(M) ∨ π(N) since x ∨ y1 ∈ M , y ∨ x1 ∈ N

_erefore, π(M) ∨ π(N) = L.
(iv)⇒(v) Assume condition (iv). Let M ∈ µ. Suppose N ∈ µ such that N /= M

and π(N) ⊆ M. Since π(M) ⊆ M, by hypothesis, we get L = π(M) ∨ π(N) = M,
which is a contradiction. _erefore, M is the unique maximal ideal such that π(M)
is contained in M.

(v)⇒(vi) Assume condition (v). Let M ∈ µ. Suppose π(M) is not maximal. Let
M0 be a maximal ideal of L such that π(M) ⊆ M0. We have always π(M0) ⊆ M0,
which is a contradiction to the hypothesis.

(vi)⇒(i) _is is clear.

Corollary 1.13 If every chain of a lattice L has at most three elements, then L is a
coaxer lattice.

Proof Assume that every chain of L contains at most three elements. Let x , y ∈ L be
such that x ∨ y = 1. If x = 1 or y = 1, then clearly (x)○ ∨ (y)○ = L. Suppose x /= 1 and
y /= 1. _en x ∧ y ≤ x < 1. If x ∧ y = x, then y = (x ∧ y) ∨ y = x ∨ y = 1, which is a
contradiction. Hence, x ∧ y < x < 1. _erefore, by hypothesis, x ∧ y = 0. _us, x ≤ y∗

and y ≤ x∗. _erefore 1 = x ∨ y ≤ x ∨ x∗. _us, x ∈ (x)○. Similarly, we get y ∈ (y)○.
_erefore, 1 = x ∨ y ∈ (x)○ ∨ (y)○. _us, (x)○ ∨ (y)○ = L. _erefore, L is coaxer.

In the following, we observe that every sublattice of a coaxer lattice need not be a
coaxer lattice. Consider X = {a, b, c, d} and let

L = {∅, {a}, {b}, {a, b}, {a, b, c}}
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be a subset of the power set ℘(X) of X. _en clearly L is a sublattice of the Boolean
algebra ℘(X) (whoseHasse diagram is given in the following ûgure).

�
��

@
@@

@
@@

�
��

c
c c

c
c

∅

{a} {b}

{a, b}

{a, b, c}

Since ℘(X) is a Boolean algebra, it is coaxer. But L is not coaxer, because M =
{∅, {a}, {b}, {a, b}} is amaximal ideal of L and π(M) = {∅}.

However, we have the following theorem.

_eorem 1.14 Let L be a pseudo-complemented distributive lattice. _en every sub-
lattice of L is coaxer if and only if for all x , y ∈ L − {1}, x ∨ y = 1 implies that x ∧ y = 0.

Proof Assume that every sublattice of L is a coaxer lattice. Let x , y ∈ L − {1} such
that x ∨ y = 1. Suppose there exists z ∈ L such that 0 < z < x ∧ y. Consider L1 =
{0, z, x ∧ y, x , y, 1}. _en clearly L1 is a sublattice of L. But L1 is not a coaxer, because
M = {0, z, x ∧ y, x , y} is a maximal ideal of L1 and π(M) = {0} /= M, which is a
contradiction to the hypothesis. _erefore, wemust have x ∧ y = 0.
Conversely, assume the condition. Let L1 be a sublattice of L. Let x , y ∈ L1 be such

that x ∨ y = 1. Deûne (a)○L1
= (a)○ ∩ L1 for any a ∈ L1. If x = 1 or y = 1, then clearly

(x)○L1
∨ (y)○L1

= L1. Suppose x /= 1 and y /= 1. _en by the hypothesis, we get x ∧ y = 0.
Hence, x ≤ y∗ and y ≤ x∗. Now 1 = x ∨ y ≤ x ∨ x∗. Hence, x ∈ (x)○L1

. Similarly, we get
y ∈ (y)○L1

. _us, 1 = x ∨ y ∈ (x)○L1
∨ (y)○L1

. _erefore, (x)○L1
∨ (y)○L1

= L1. _erefore,
L1 is a coaxer lattice.

In the following proposition, we derive some equivalent conditions for a pseudo-
complemented distributive lattice to be a Boolean algebra. For that we ûrst observe
the following proposition whose proof is routine.

Proposition 1.15 For any a ∈ L, deûne a relation ψa on L as follows:

(x , y) ∈ ψa if and only if x ∧ a∗ = y ∧ a∗ .
_en ψa is a congruence on L.

We now establish a set of equivalent conditions for every coaxer ideal of a pseudo-
complemented distributive lattice to be a principal ideal, which will lead to a charac-
terization of Boolean algebras.

_eorem 1.16 _e following conditions are equivalent:
(i) for each a ∈ L, (a)○ = (a];
(ii) for each a ∈ L, (a)○ = Kerψa ;
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(iii) L is a Boolean algebra;
(iv) L is a Stone lattice in which every element is closed;
(v) every prime ideal is maximal;
(vi) every prime ideal is minimal.

Proof (i)⇒(ii): Assume that (a)○ = (a] for all a ∈ L. By the above result, ψa is
a congruence on L. Let x ∈ (a)○. _en x∗ ∨ a = 1. Hence, x ∧ a∗ ≤ x∗∗ ∧ a∗ =
(x∗ ∨ a)∗ = 1∗ = 0. Hence, x ∈ Kerψa . Conversely, let x ∈ Kerψa . _en x ∧ a∗ = 0.
Hence, a∗ ≤ x∗. By hypothesis, a ∈ (a] = (a)○ which implies that a ∨ a∗ = 1. Hence,
1 = a ∨ a∗ ≤ a ∨ x∗. _erefore x ∈ (a)○. _us, (a)○ = Kerψa .

(ii)⇒(iii): Assume condition (ii). Let a ∈ L. Since a ∧ a∗ = 0, we get a ∈ Kerψa =
(a)○. Hence, a ∨ a∗ = 1. _us, a∗ is the complement of a in L. _erefore, L is a
Boolean algebra.

(iii)⇒(iv): Assume that L is a Boolean algebra. Let x ∈ L. _en there exists y ∈ L
such that x∧y = 0 and x∨y = 1. Since x∧y = 0,we get y ≤ x∗. Now 1 = x∨y ≤ x∗∗∨x∗.
_us, L is a Stone lattice. Since x ∧ y = x∗∗ ∧ y = 0 and x ∨ y = x∗∗ ∨ y = 1, we get
x = x∗∗. _erefore, every element of L is closed.

(iv)⇒(v): Assume that L is a Stone lattice in which every element is closed. Let P
be a prime ideal of L, and suppose P is not maximal. _en there exists a proper ideal
Q of L such that P ⊂ Q. Choose x ∈ Q − P. _en 1 = x∗ ∨ x∗∗ = x∗ ∨ x ∈ P ∨ Q = Q,
which is contradiction.

(v)⇒(vi): _is is clear.
(vi)⇒(i): Assume that every prime ideal is minimal and let a ∈ L. We always have

(a)○ ⊆ (a]. Let x ∈ (a]. Suppose x∗ ∨ a /= 1. _en there exists a maximal ideal M
such that x∗ ∨ a ∈ M. Since M is prime, by hypothesis M is a minimal prime ideal.
Now x∗ ∨ a ∈ M implies x∗ ∈ M and a ∈ M. Hence, x ∉ M and x ∈ (a] ∈ M, which is
a contradiction. Hence, x∗ ∨ a = 1. _us, x ∈ (a)○. _erefore, (a)○ = (a].

We now characterize the coaxer ideals of L in terms of congruences. For this we
ûrst need the following congruences.

_eorem 1.17 For any a ∈ L, deûne a relation ψa on L as follows:

(x , y) ∈ ψa if and only if x ∨ a = y ∨ a.

_en ψa is a congruence on L.

Proof Clearly, ψa is an equivalence relation on L. Let (x , y) ∈ ψa . For any c ∈ L,
we get (x ∧ c) ∨ a = (x ∨ a) ∧ (c ∨ a) = (y ∨ a) ∧ (c ∨ a) = (y ∧ c) ∨ a. Hence,
(x ∧ c, y ∧ c) ∈ ψa . Also, (x ∨ c)∨ a = (x ∨ a)∨ c = (y ∨ a)∨ c = (y ∨ c)∨ a. Hence,
(x ∨ c, y ∨ c) ∈ ψa . _erefore, ψa is a congruence on L.

_eorem 1.18 For any ∧-closed subset F of L, deûne a relation ψF on L as follows:

(x , y) ∈ ψF if and only if x ∧ a = y ∧ a for some a ∈ F .

_en ψF is a congruence on L.
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It is a known fact that for any congruence θ of a distributive lattice, the kernel
θ∗ = {x ∈ L ∣ (x , 0) ∈ θ} is an ideal of L and the antikernel θ+ = {x ∈ L ∣ (x , 1) ∈ θ} is
a ûlter of L. For the above two congruences,we clearlyhave (ψa)+ = {x ∈ L ∣ x∨a = 1}
and (ψF)∗ = {x ∈ L ∣ x ∧ f = 0 for some f ∈ F}. Nowwe have the following theorem.

_eorem 1.19 For any a ∈ L, (a)○ = (ψa)+∗.

Proof Let x ∈ (a)○. _en x∗ ∨ a = 1. Hence, x∗ ∈ (ψa)+. Now x ∧ x∗ = 0 and x∗ ∈
(ψa)+ imply that x ∈ (ψa)+∗. _erefore (a)○ ⊆ (ψa)+∗. Conversely, let x ∈ (ψa)+∗.
_en x ∧ f = 0 for some f ∈ (ψa)+. Now f ∈ (ψa)+ implies that a ∨ f = 1. _en
1 = a ∨ f ≤ a ∨ x∗(since x ∧ f = 0). _us, x ∈ (a)○. _erefore, (a)○ = (ψa)+∗.

We now characterize a coaxer lattice in topological terms. For thatwemake use of
the following hypothesis from [7].

Let L be a pseudo-complemented bounded distributive lattice. Let us denote the
set of all prime ideals of L by Spec L. For any A ⊆ L, let K(A) = {P ∈ Spec L ∣ A ⊈ P},
and for any a ∈ L,K(a) = K({a}). _en from [7], we have the following lemma.

Lemma 1.20 For any x , y ∈ L, the following hold:
(i) ⋃x∈L K(x) = L,
(ii) K(x) ∩ K(y) = K(x ∧ y),
(iii) K(x) ∪ K(y) = K(x ∨ y).

From this lemma we can immediately say that the collection {K(x) ∣ x ∈ L}
forms a base for a topology on Spec L. _e topology generated by this base is pre-
cisely {K(A) ∣ A ⊆ L} and is called the hull-kernel topology on Spec L. We denote
the set of all maximal ideals of L by Max L. _en Max L ⊆ Spec L, and for any x ∈ L,
we write Km(x) = K(x) ∩Max L.

_eorem 1.21 If the intersection of all maximal ideals of L is {0} and for any a, b ∈ L
with a ∨ b = 1 there exists aminimal prime ideal P such that (a)○ ∨ (b)○ ⊆ P, then the
following conditions are equivalent:
(i) L is coaxer;
(ii) Max L is a Hausdorò space;
(iii) every prime ideal is contained in a uniquemaximal ideal;
(iv) every minimal prime ideal is contained in a uniquemaximal ideal.

Proof (i)⇒(ii): Assume that L is coaxer. Let M and N be two distinct elements of
Max L. Choose x ∈ M − N . _en N ∨ (x] = L. Hence, a ∨ x = 1 for some a ∈ N .
Since L is coaxer, we get (a)○ ∨ (x)○ = L. _us, there exists two elements s, t ∈ L
such that s∗ ∨ a = 1, t∗ ∨ x = 1 and s ∨ t = 1. If s∗ ∈ N , then 1 = s∗ ∨ a ∈ N , which
is a contradiction. If t∗ ∈ M, then 1 = t∗ ∨ x ∈ M (since x ∈ M), which is also a
contradiction. Hence, N ∈ Km(s∗) and M ∈ Km(t∗). Now

Km(s∗) ∩ Km(t∗) = Km(s∗ ∧ t∗) = Km((s ∨ t)∗) = Km(0) = ∅

Hence,Max L is aHausdorò space.
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(ii)⇒(iii): Assume that Max L is a Hausdorò space. Let P be a prime ideal of L.
Let M1 and M2 be two maximal ideals of L such that P ⊆ M1 and P ⊆ M2. Suppose
M1 /= M2. Since Max L is Hausdorò, there exists two elements x , y ∈ L such that
M1 ∈ Km(x),M2 ∈ Km(y) and Km(x) ∩ Km(y) = ∅. Hence, Km(x ∧ y) = ∅. _us,
x ∧ y = 0. Otherwise, there exists amaximal ideal M such that M ∈ H′

m(x ∧ y). Since
x ∉ M1 and y ∉ M2, we get that x ∉ P and y ∉ P. _erefore, we get 0 = x ∧ y ∉ P,
which is a contradiction. Hence, P is contained in a uniquemaximal ideal.

(iii)⇒(iv): _is is obvious.
(iv)⇒(i): Assume that everyminimal prime ideal is contained in a uniquemaximal

ideal. Let a, b ∈ L be such that a∨b = 1. Suppose (a)○∨(b)○ /= L. _en by hypothesis,
there exists a minimal prime ideal P such that (a)○ ∨ (b)○ ⊆ P. Since 1 = a ∨ b ∉ P,
we get that a ∉ P and b ∉ P. Suppose 1 ∈ P ∨ (a]. _en 1 = x ∨ a ≤ x∗∗ ∨ a for
some x ∈ P. Hence, x∗ ∈ (a)○ ⊆ (a)○ ∨ (b)○ ⊆ P, which is a contradiction to that
P is minimal. Hence, P ∨ (a] is a proper ideal of L. Similarly, we get that P ∨ (b]
is a proper ideal. _en there exist maximal ideals M ,N such that P ∨ (a] ⊆ M and
P ∨ (b] ⊆ N . Since a ∨ b = 1, we get M ,N must be distinct, which is a contradiction.
Hence, (a)○ ∨ (y)○ = L. _erefore, L is coaxer.
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