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Coaxer Lattices

M. Sambasiva Rao

Abstract. 'The notion of coaxers is introduced in a pseudo-complemented distributive lattice. Boo-
lean algebras are characterized in terms of coaxer ideals and congruences. The concept of coaxer
lattices is introduced in pseudo-complemented distributive lattices and characterized in terms of
coaxer ideals and maximal ideals. Finally, the coaxer lattices are also characterized in topological
terms.

Introduction

The theory of pseudo-complements in lattices, and particularly in distributive lattices,
was developed by M. H. Stone [8], O. Frink [4], and G. Gratzer [5]. Later, many au-
thors extended the study of pseudo-complements to characterize Stone lattices; see,
for example R. Balbes [1] and O. Frink [4]. Properties of various types of congruences
were studied in distributive lattices by W. H. Cornish [3] and T. P. Speed [6].

In this paper, the concept of coaxer ideals is introduced in pseudo-complemented
distributive lattices. Some properties of coaxer ideals are observed and then a set
of equivalent conditions is established for every coaxer ideal to be a principal ideal,
which leads to a characterization of Boolean algebras. The concept of coaxer lattices
is introduced in pseudo-complemented distributive lattices. Coaxer lattices are then
characterized in terms of maximal ideals and coaxer ideals. A necessary and sufficient
condition is derived for every sublattice of a coaxer lattice to be a coaxer lattice, which
is not true in general. Coaxer ideals are also characterized in terms of kernels and an-
tikernels of congruences. Finally, coaxer lattices are also characterized in topological
terms.

The reader is refered to [5] for definitions and notation. However, some pre-
liminary definitions and results are presented for the ready reference of the reader.
Throughout the rest of this note all lattices are bounded and pseudo-complemented
distributive lattices.

The pseudo-complement b* of an element b is the greatest element disjoint from
b, if such an element exists. The defining property of b* is

anb=0<anb* =a<=a<b",

where < is a partial ordering relation on the lattice L.

A distributive lattice L in which every element has a pseudo-complement is called
a pseudo-complemented distributive lattice. For any two elements a, b of a pseudo-
complemented lattice, we have
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(1) a < bimplies b* < a*,
(2) a<a*,

(3) arr = a*’

(4) (avb)* = a* Ab*,
(5) (anb)*™ = a** Ab*".

An element a of L is called dense if a* = 0. The set D of all dense elements of L
forms a filter in L.

A prime ideal P of a lattice L is called a minimal prime ideal if there is no prime
ideal Q such that Q c P. A prime ideal P of L is minimal [2] if and only if for each
x € P there exists y ¢ P such that x A y = 0. Let P be a prime ideal of L. Then the
following conditions are equivalent:

(a) Pisaminimal prime ideal;
(b) x € Pimplies x* ¢ P;
(c) PnD=g2.

1 Coaxer Ideals and Coaxer Lattices

In this section, the concepts of coaxer ideals and coaxer lattices are introduced in a
pseudo-complemented distributive lattice. Coaxer lattices are characterized in terms
of maximal ideals and coaxer ideals. Finally, coaxer lattices are characterized in topo-
logical terms.

Definition 1.1  Let L be a pseudo-complemented distributive lattice. For any a € L,
the coaxer of a is defined as the set (a)° ={x e L |x* va=1}.

Evidently, (0)° = {0} and (1)° = L.
Lemma 1.2 Foranyac€L, (a)°isan ideal of L.

Proof Clearly, 0 € (a)°. Letx,y € (a)°. Then x* va =1and y* v a = 1. Therefore,
(xvy)*va=(x*Ay*)va=(x*va)A(y*va)=1A1=1 Hence,xVv ye (a)°. Let
xe(a)’andreL. Thenx*va=Lsol=x*va<(xAar)*va. Thus,x Are(a).
Therefore, (a)° is an ideal of L. ]

In the following lemma, some more properties of coaxers can be observed.

Lemma 1.3  Forany a,b € L, we have the following:
(i) a<b=(a)°c(b);

(i) avb=1impliesa* € (b)°

(iii) (a)° < (a];

(iv) (a)°n(b)°=(anb)%

(v) (a)°=Lifandonlyifa=1

Proof (i) Suppose a < b. Let x € (a)°. Hence,1=x*va <x*vb.
(ii) This is clear.
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(iii) Let x € (a)°. Then x* va = 1. Hence, wegetanx = 0V (aAx) =
(x*Ax)v(anx)=(x*va)Arx=1Ax=x. Therefore, x € (a].

(iv) Clearly, (a A b)° <€ (a)° n (b)°. Conversely, let x € (a)° n (b)°. Hence,
x*v(anb)=(x*va)a(x*vb)=1A1=1 Hence, x € (a A b)°.

(v) Suppose (a)° = L. Then we get1 € (a)°. Hence, we obtaina =0va =1"va =1.
The converse is clear. ]

The ideals (a)°, a € L in the above result are called coaxer ideals. Then we have
the following lemma.

Lemma 1.4  Every proper coaxer ideal of L is contained in a minimal prime ideal.

Proof Let (a)° be a proper coaxer ideal of L. Suppose (a)° n D # @ and
de(a)°nD. Then0vVa =d*va =1 Hence, a = 1. Therefore, (a)° = L, which
is a contradiction. Hence, (a)° n D = @. Then there exists a prime ideal P of L such
that (a)° c Pand PnD = @. Let x € P. Then x vV x* € D and hence x v x* ¢ P. Thus,
x* ¢ P. Therefore, P is a minimal prime ideal of L such that (a)°® c P. [ |

Definition 1.5 For any maximal ideal M of L, define
(M) ={xel|x" ¢ M}

Proposition 1.6  For any maximal ideal M of L, n(M) is an ideal of L such that
n(M) < M.

Proof Assume that M is a maximal ideal of L. Then M is a prime ideal. Clearly
0 € n(M). Let x,y € n(M). Then x* ¢ M and y* ¢ M. Since M is prime, we get
(xvy)* =x"Ay* ¢ M.Hence,xVyen(M).Letx € r(M) and r € L. Then x* ¢ M.
Hence, (x A1)* ¢ M, otherwise x* € M. Thus, x A r € 7(M). Therefore, (M) is an
ideal of L. Let x € m(M). Then x* ¢ M. Since M is prime and x A x* = 0 € M, we get
x € M. Therefore, (M) € M. [ |

Let us denote the class of all maximal ideals of Lby pandlet g, = {M € y | a € M}.
Then we have the following theorem.

Theorem 1.7 Foranya €L, (a)° = Nyeyp, 7(M).

Proof Let Io = Nyey, 7(M). Let x € (a)° and M € p,. Then x* va =1.If x* € M,
then1 = x* v a € M, which is a contradiction. Hence, x € 7(M). This is true for all
M € p,. Hence (a)° ¢ Iy. Conversely, let x € Iy. Then x € (M) for all M € p,.
Suppose x* v a # 1. Then there exists a maximal ideal My of L such that x* v a € M.
Hence, x* € My and a € M. Since a € My, by our assumption x € (M, ). Hence, it
yields that x* ¢ My, which is a contradiction. Hence, x* v a = 1. Thus, x € (a)° and
hence Iy € (a)°. This completes the proof of the theorem. [ |

Corollary 1.8 Let M € y. Ifa € M, then (a)° € n(M).
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In general, the set C°(L) of all coaxer ideals of L is not a sublattice of the lattice
J(L) of all ideals of L. However, we will establish a set of equivalent conditions for
C°(L) to be a sublattice of J(L). For this we need the following lemma.

Lemma 1.9 A proper ideal M of L is maximal if and only if for each x ¢ M, there
exists y € M such thatx v y =1.

Proof Assume that M is maximal and let x ¢ M. Then M v (x] = L. Hence,1=avx
for some a € M. Conversely assume the condition and suppose M is not maximal.
Then there exists a proper ideal Q such that M c Q. Choose x € Q — M. Then there
exists y € M suchthatx v y =1 Sincex e Qand ye M c Q,wegetl=xVvyeQ,
which is a contradiction. [ |

We now introduce the concept of coaxer lattices.

Definition 1.10 A pseudo-complemented distributive lattice L is called a coaxer
lattice if 1(M) = M for every M € p.

Example 1.11  Every Boolean algebra is a coaxer lattice. Let L be a Boolean algebra
and M a maximal ideal of L. Clearly (M) ¢ M. Conversely, let x € M. Then there
exists some y € Lsuchthatx Ay =0andxv y=1.Hencey<x*andxvy=1¢ M,
which implies that y ¢ M. Thus, x* ¢ M, and hence x € n(M). Therefore, L is coaxer.

We first characterize the class of coaxer lattices in the following theorem.

Theorem 112 The following conditions are equivalent:

(i) L is coaxer;

(ii) foranya,beL, avb=1implies (a)°v (b)° =L;

(iii) foranya,belL, (a)°v(b)°=(avb);

(iv) for any two distinct maximal ideals M and N, n(M) v n(N) = L;
(v) forany M € y, M is the unique member of u such that n(M) € M;
(vi) forany M € y, n(M) is maximal.

Proof (i)=(ii) Assume that L is coaxer. Let a, b € L be such that a v b = 1. Suppose
(a)° v (b)° # L. Then there exists a maximal ideal M such that (a)° v (b)° ¢ M.
Hence, (a)° € M and (b)° € M. Now

(a)°EM:>Mﬂ n(M) <M

o
=a(M;)cM for some M; € u, (since M is prime)
= M;cM since L is coaxer

=aeM

=a¢lL-M

Similarly, we can get b ¢ L — M. Since L — M is a prime filter, wegetl=av b ¢ L - M,
which is a contradiction. Therefore, (a)° v (b)° = L.

(ii)=(iii) Assume condition (ii). Let a, b € L. Clearly, (a)° v (b)° c (a Vv b)°. Let
x € (avb)°. Then (x*va)v (x*vb)=x"vavb=1 Hence, by condition (ii), we
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get (x*va)°v(x*vb)°=L Thus,x € L=(x*va)°v(x*vb)° Hence,x=rVs
for somer e (x*va)®andse (x*vb)°. Now
re(x*va)’=r"vx*va=1

=1=(r"vx")va<(rax)'va

= (rax)"va=1

=rAaxe(a)’.
Similarly, we can get s A x € (b)°. Hence,

x=xAx=xnA(rvs)=(xar)v(xnas)e(a)’v(b)°.

Hence, (a Vv b)° < (a)° v (b)°. Therefore, (a)° v (b)° = (a Vv b)°.
(iii)=>(iv) Assume condition (iii). Let M, N be two distinct maximal ideals of L.
Choose x e M — N and y € N — M. Now

x ¢ N = there exists x; € N suchthatx v x; =1

y ¢ M = thereexists y; € M suchthat yv y; =1.
Hence, (x v y1) vV (yvx) =(xVvx)v(yVvy) =1 Now

L= ={(xvy)v(yva)}
=(xvy)’v(yva))”
cn(M)va(N) sincexVy,e M,yVvx € N

Therefore, (M) v 7(N) = L.

(iv)=(v) Assume condition (iv). Let M € u. Suppose N € p such that N # M
and 7(N) € M. Since n(M) S M, by hypothesis, we get L = n(M) v n(N) = M,
which is a contradiction. Therefore, M is the unique maximal ideal such that (M)
is contained in M.

(v)=>(vi) Assume condition (v). Let M € u. Suppose (M) is not maximal. Let
M be a maximal ideal of L such that 7(M) € M. We have always n(My) S Mo,
which is a contradiction to the hypothesis.

(vi)=(i) This is clear. [ |

Corollary 1.13  If every chain of a lattice L has at most three elements, then L is a
coaxer lattice.

Proof Assume that every chain of L contains at most three elements. Let x, y € L be
such that x v y = 1. If x = 1 or y = 1, then clearly (x)° v ()° = L. Suppose x # 1 and
y#LThenxAy<x<lLIfxAy=x,theny=(xAy)vy=xvy=1whichisa
contradiction. Hence, x A y < x < 1. Therefore, by hypothesis, x A y = 0. Thus, x < y*
and y < x*. Therefore1 = x v y < x v x*. Thus, x € (x)°. Similarly, we get y € (y)°.
Therefore, 1 =x v y € (x)° v (y)°. Thus, (x)° v (¥)° = L. Therefore, L is coaxer. M

In the following, we observe that every sublattice of a coaxer lattice need not be a
coaxer lattice. Consider X = {a, b, ¢, d} and let

L= {@, {a},{b},{a, b}, {a,b,c}}
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be a subset of the power set p(X) of X. Then clearly L is a sublattice of the Boolean
algebra p(X) (whose Hasse diagram is given in the following figure).

{a, b, ¢}
{a, b}
{a} {b}
(%}

Since p(X) is a Boolean algebra, it is coaxer. But L is not coaxer, because M =
{@,{a},{b},{a,b}} is a maximal ideal of L and (M) = {@}.
However, we have the following theorem.

Theorem 1.14  Let L be a pseudo-complemented distributive lattice. Then every sub-
lattice of L is coaxer if and only if for all x, y € L — {1}, x v y = L implies that x A y = 0.

Proof Assume that every sublattice of L is a coaxer lattice. Let x, y € L — {1} such
that x v y = 1. Suppose there exists z € L such that 0 < z < x A y. Consider L, =
{0,2z,x A y,x, y,1}. Then clearly L, is a sublattice of L. But L; is not a coaxer, because
M = {0,z,x A y,x,y} is a maximal ideal of L; and n(M) = {0} # M, whichisa
contradiction to the hypothesis. Therefore, we must have x A y = 0.

Conversely, assume the condition. Let L; be a sublattice of L. Let x, y € L; be such
that x v y = 1. Define (a)7 = (a)° n L, forany a € L. If x = 1 or y = 1, then clearly
(x)7, v (»), = L. Suppose x # 1and y # 1. Then by the hypothesis, we get x A y = 0.
Hence, x < y*and y < x*. Now1l=xVvy < xVvx”. Hence, x € (x)7 . Similarly, we get
ye(p)g, Thus,1=x v ye (x)7 v (y)i, Therefore, (x)7 v (y)7, = Li. Therefore,
L, is a coaxer lattice. [ |

In the following proposition, we derive some equivalent conditions for a pseudo-
complemented distributive lattice to be a Boolean algebra. For that we first observe
the following proposition whose proof is routine.

Proposition 1.15  For any a € L, define a relation y* on L as follows:
(x,y) ey ifandonlyifx na* =yna”.

Then y* is a congruence on L.

We now establish a set of equivalent conditions for every coaxer ideal of a pseudo-
complemented distributive lattice to be a principal ideal, which will lead to a charac-
terization of Boolean algebras.

Theorem 1.16  The following conditions are equivalent:

(i) foreachaclL, (a)°=(a);
(ii) foreachacL, (a)° =Kery%
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(iii) L is a Boolean algebra;

(iv) L is a Stone lattice in which every element is closed;
(v) every prime ideal is maximal;

(vi) every prime ideal is minimall.

Proof (i)=-(ii): Assume that (a)° = (a] for all a € L. By the above result, y* is
a congruence on L. Let x € (a)°. Then x* va = 1. Hence, x A a* < x™* Aa* =
(x*va)* =1" = 0. Hence, x € Kery?. Conversely, let x € Ker y*. Then x A a* = 0.
Hence, a* < x*. By hypothesis, a € (a] = (a)°® which implies that a v a* = 1. Hence,
l=ava* <avx*. Therefore x € (a)°. Thus, (a)° = Kery*.

(ii)=(iii): Assume condition (ii). Let a € L. Since a A a* = 0, we get a € Kery® =
(a)°. Hence, a v a* = 1. Thus, a* is the complement of a in L. Therefore, L is a
Boolean algebra.

(iii)=(iv): Assume that L is a Boolean algebra. Let x € L. Then there exists y € L
suchthatxAy =0andxvy =1. Sincexny = 0,weget y < x*. Nowl=xvy < x*"vx™.
Thus, L is a Stone lattice. Sincex A y = x™* Ay =0andx v y = x™ v y = 1, we get
x = x**. Therefore, every element of L is closed.

(iv)=(v): Assume that L is a Stone lattice in which every element is closed. Let P
be a prime ideal of L, and suppose P is not maximal. Then there exists a proper ideal
Qof Lsuchthat Pc Q. Choose x € Q —P. Thenl=x*vx** =x*vxePvQ=Q,
which is contradiction.

(v)=(vi): This is clear.

(vi)=(i): Assume that every prime ideal is minimal and let a € L. We always have
(a)° < (a]. Let x € (a]. Suppose x* v a # 1. Then there exists a maximal ideal M
such that x* v a € M. Since M is prime, by hypothesis M is a minimal prime ideal.
Now x* v a € M implies x* € M and a € M. Hence, x ¢ M and x € (a] € M, which is
a contradiction. Hence, x* v a = 1. Thus, x € (a)°. Therefore, (a)° = (a]. [ |

We now characterize the coaxer ideals of L in terms of congruences. For this we
first need the following congruences.

Theorem 1.17  For any a € L, define a relation y, on L as follows:
(x,y)evaifandonlyifxva=yva.
Then vy, is a congruence on L.

Proof Clearly, y, is an equivalence relation on L. Let (x, y) € y,. Forany c € L,
weget (xAc)va=(xva)a(cva)=(yva)a(cva)=(yAc)Va. Hence,
(xAc,ync) ey, Also,(xve)va=(xva)ve=(yva)ve=(yVvc)Va. Hence,
(x Ve, yVec) € y,. Therefore, ¥, is a congruence on L. [ |

Theorem 1.18  For any A-closed subset F of L, define a relation y* on L as follows:
(x,y) ey’ ifand only ifx Aa = y A a for some a € F.

Then yF is a congruence on L.
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It is a known fact that for any congruence 6 of a distributive lattice, the kernel
0* ={xeL|(x,0) € 0} is an ideal of L and the antikernel 0% = {x € L | (x,1) € 6} is
afilter of L. For the above two congruences, we clearly have (y,)* = {x e L | xva =1}
and (y)* = {x e L | x A f = 0 for some f € F}. Now we have the following theorem.

Theorem 119 ForanyacL, (a)® = (y,)"".

Proof Letx € (a)°. Then x* va =1 Hence,x* € (y,)*. Nowx Ax* = 0and x* ¢
(w,)* imply that x € (y,)**. Therefore (a)°® ¢ (y,)**. Conversely, let x € (y,)**.
Then x A f = 0 for some f € (y,)*. Now f € (y,)" implies that a v f = 1. Then
l=av f<avx*(sincex A f =0). Thus, x € (a)°. Therefore, (a)°® = (y,)**. [ |

We now characterize a coaxer lattice in topological terms. For that we make use of
the following hypothesis from [7].

Let L be a pseudo-complemented bounded distributive lattice. Let us denote the
set of all prime ideals of L by Spec L. Forany A € L,let K(A) = {P € SpecL | A ¢ P},
and forany a € L, K(a) = K({a}). Then from [7], we have the following lemma.

Lemma 1.20  For any x, y € L, the following hold:

(i) User K(x) =1L,
(ii) K(x)nK(y)=K(xnry)
(iii) K(x)UK(y)=K(xVy).

From this lemma we can immediately say that the collection {K(x) | x € L}
forms a base for a topology on Spec L. The topology generated by this base is pre-
cisely {K(A) | A ¢ L} and is called the hull-kernel topology on Spec L. We denote
the set of all maximal ideals of L by Max L. Then Max L ¢ SpecL, and for any x € L,
we write K,,; (x) = K(x) n Max L.

Theorem 1.21  If the intersection of all maximal ideals of L is {0} and for any a,b € L
with a v b = 1 there exists a minimal prime ideal P such that (a)° v (b)° C P, then the
following conditions are equivalent:

(i) L is coaxer;

(ii) MaxL is a Hausdorff space;

(iii) every prime ideal is contained in a unique maximal ideal;

(iv) every minimal prime ideal is contained in a unique maximal ideal.

Proof (i)=(ii): Assume that L is coaxer. Let M and N be two distinct elements of
Max L. Choose x € M — N. Then N v (x] = L. Hence, a v x = 1 for some a € N.
Since L is coaxer, we get (a)° v (x)° = L. Thus, there exists two elements s, ¢ € L
suchthats* va=1t*vx =1landsvt=1Ifs* € N, thenl = s* va e N, which
is a contradiction. If t* € M, then1 = t* v x € M (since x € M), which is also a
contradiction. Hence, N € K,,(s*) and M € K, (¢*). Now

Ko (5°) 0 K (1*) = Ko (s* A £7) = K ((sV £)*) = Ky (0) = @

Hence, Max L is a Hausdorff space.
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(ii)=(iil): Assume that Max L is a Hausdorft space. Let P be a prime ideal of L.
Let M; and M, be two maximal ideals of L such that P € M; and P € M,. Suppose
M, # M,. Since Max L is Hausdorff, there exists two elements x, y € L such that
M; € Kiy(x), My € Kyy(y) and Ky, (x) N K, (y) = @. Hence, K,y (x A y) = @. Thus,
x Ay = 0. Otherwise, there exists a maximal ideal M such that M € H,, (x A y). Since
x ¢ My and y ¢ M,, we get that x ¢ P and y ¢ P. Therefore, we get 0 = x A y ¢ P,
which is a contradiction. Hence, P is contained in a unique maximal ideal.

(iii)=>(iv): This is obvious.

(iv)=(i): Assume that every minimal prime ideal is contained in a unique maximal
ideal. Leta, b € Lbesuch thatavb = 1. Suppose (a)° Vv (b)° # L. Then by hypothesis,
there exists a minimal prime ideal P such that (a)° v (b)° € P. Sincel=aVv b ¢ P,
we get that a ¢ Pand b ¢ P. Supposel € Pv (a]. Thenl = xVva < x** v a for
some x € P. Hence, x* € (a)° € (a)° v (b)° € P, which is a contradiction to that
P is minimal. Hence, P v (a] is a proper ideal of L. Similarly, we get that P v (b]
is a proper ideal. Then there exist maximal ideals M, N such that P v (a] ¢ M and
Pv (b] € N. Since a v b =1, we get M, N must be distinct, which is a contradiction.
Hence, (a)° v (y)° = L. Therefore, L is coaxer. [ |
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