
JFP 14 (6): 727–739, 2004. c© 2004 Cambridge University Press

DOI: 10.1017/S0956796804005209 Printed in the United Kingdom

727

FUNCTIONAL PEARL

Pickler combinators

ANDREW J. KENNEDY

Microsoft Research, 7 J J Thomson Avenue, Cambridge CB3 0FB, UK

(e-mail: akenn@microsoft.com)

Abstract

The tedium of writing pickling and unpickling functions by hand is relieved using a combinator

library similar in spirit to the well-known parser combinators. Picklers for primitive types are

combined to support tupling, alternation, recursion, and structure sharing. Code is presented

in Haskell; an alternative implementation in ML is discussed.

1 Introduction

Programs frequently need to convert data from an internal representation (such as

a Haskell or ML datatype) into a persistent, portable format (typically a stream

of bytes) suitable for storing in a file system or transmitting across a network.

This process is called pickling (or marshalling, or serializing) and the corresponding

process of transforming back into the internal representation is called unpickling.

Writing picklers by hand is a tedious and error-prone business. It’s easy to make

mistakes, such as mapping different values to the same pickled representation, or

covering only part of the domain of values, or unpickling components of a data

structure in the wrong order with respect to the pickled format.

One way of avoiding these problems is to build pickling support into the

programming language’s run-time system (Sun Microsystems, 2002; Leroy, 2003).

The main drawback of this approach is the lack of programmer control over how

values get pickled. Pickling may be version-brittle, dependent on a particular version

of the compiler or library and on the concrete implementation of abstract data types

such as sets. Opportunities for compact pickling of shared structure will be missed:

run-time pickling of heap values will pick up on “accidental” sharing evident in

the heap, but will ignore sharing implied by a programmer-specified equivalence of

values.

In this paper we use functional programming techniques to build picklers and

unpicklers by composing primitives (for base types such as Int and String) using

combinators (for constructed types such as pairs and lists). The consistency of

pickling with unpickling is ensured by tying the two together in a pickler/unpickler

pair. The resulting picklers are mostly correct by construction, with additional proof

obligations generated by some combinators.

https://doi.org/10.1017/S0956796804005209 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005209

728 A. J. Kennedy

pickle :: PU a -> a -> String
unpickle :: PU a -> String -> a

unit :: PU ()
bool :: PU Bool
char :: PU Char
string :: PU String
nat :: PU Int
zeroTo :: Int -> PU Int

pair :: PU a -> PU b -> PU (a,b)
triple :: PU a -> PU b -> PU c -> PU (a,b,c)
quad :: PU a -> PU b -> PU c -> PU d -> PU (a,b,c,d)
pMaybe :: PU a -> PU (Maybe a)
pEither :: PU a -> PU b -> PU (Either a b)
list :: PU a -> PU [a]
wrap :: (a->b, b->a) -> PU a -> PU b
alt :: (a -> Int) -> [PU a] -> PU a

Fig. 1. The pickler interface.

Custom pickling of abstract data types is easily performed through wrapper

combinators, and we extend the core library with support for representation of

shared structure. Building particular picklers from a core set of primitives and

combinators also makes it easy to change the implementation, if, for example, better

compression is required at some performance cost.

The pickler library is implemented in Haskell using just its core features of

parameterized datatypes and polymorphic, higher-order functions. Porting the code

to ML raises some issues which are discussed in section 5.

This pearl was practically motivated: an SML version of the pickler library is

used inside the SML.NET compiler (Benton et al., 2004). A variety of data types are

pickled, including source dependency information, Standard ML type environments,

and types and terms for the typed intermediate language which serves as object code

for the compiler. The combinatory approach has proved to be very effective.

2 Using picklers

Figure 1 presents Haskell type signatures for the pickler interface. The type PU a

encapsulates both pickling and unpickling actions in a single value: we refer to values

of type PU a as “picklers for a”. The functions pickle and unpickle respectively

use a pickler of type PU a to pickle or unpickle a value of type a, using strings (lists

of characters) as the pickled format.

First we specify picklers for built-in types: unit, booleans, characters, strings,

non-negative integers (nat), and integers between 0 and n inclusive (zeroTo n).

Next we have pickler constructors for tuple types (pair, triple and quad),

optional values (pMaybe)1, binary alternation (pEither), and lists (list).

1 We use pMaybe and pEither because functions maybe and either already exist in the Standard
Prelude.

https://doi.org/10.1017/S0956796804005209 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005209

Functional pearl 729

Finally there are a couple of general combinators: wrap for pre- and post-

composing functions with a pickler, and alt for using different picklers on disjoint

subsets of a type.

Let’s look at some examples. First, consider a browser application incorporating

bookmarks that pair descriptions with URL’s. A URL consists of a protocol, a host,

an optional port number, and a file name. Here are some suitable type definitions:

type URL = (String, String, Maybe Int, String)
type Bookmark = (String, URL)
type Bookmarks = [Bookmark]

Picklers for these simply follow the structure of the types:

url :: PU URL
url = quad string string (pMaybe nat) string

bookmark :: PU Bookmark
bookmark = pair string url

bookmarks :: PU Bookmarks
bookmarks = list bookmark

In a real program we’re more likely to use a record datatype for URLs. Then

we can apply the wrap combinator to map back and forth between values of this

datatype and quadruples:

data URL = URL {protocol::String, host::String, port::Maybe Int, file::String}
url = wrap (\ (pr,h,po,f) -> URL {protocol=pr, host=h, port=po, file=f},

\ URL {protocol=pr,host=h,port=po,file=f} -> (pr,h,po,f))
(quad string string (pMaybe nat) string)

We might prefer a hierarchical folder structure for bookmarks:

data Bookmark = Link (String, URL) | Folder (String, Bookmarks)

Here we must address two aspects of datatypes: alternation and recursion. Recursion

is handled implicitly – we simply use a pickler inside its own definition. (For call-

by-value languages such as ML we instead use an explicit fix operator; see later).

Alternation is handled using alt, as shown below:

bookmark :: PU Bookmark
bookmark = alt tag [wrap (Link, \(Link a) -> a) (pair string url),

wrap (Folder, \(Folder a) -> a) (pair string bookmarks)]
where tag (Link _) = 0; tag (Folder _) = 1

The alt combinator takes two arguments: a tagging function that partitions the

type to be pickled into n disjoint subsets, and a list of n picklers, one for each subset.

For datatypes, as here, the tagging function simply identifies the constructor.

Here is another example: a pickler for terms in the untyped lambda calculus.

data Lambda = Var String | Lam (String, Lambda) | App (Lambda, Lambda)

lambda = alt tag [wrap (Var, \(Var x) -> x) string,
wrap (Lam, \(Lam x) -> x) (pair string lambda),
wrap (App, \(App x) -> x) (pair lambda lambda)]

where tag (Var _) = 0; tag (Lam _) = 1; tag (App _) = 2

An alternative to alt is to define maps to and from a “sum-of-products” type built

from tuples and the Either type, and then to define a pickler that follows the

structure of this type using tuple picklers and pEither. The picklerfor lambda terms

https://doi.org/10.1017/S0956796804005209 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005209

730 A. J. Kennedy

module CorePickle (PU, pickle, unpickle, lift, sequ, base, belowBase) where

type St = [Char]
data PU a = PU { appP :: (a,St) -> St,

appU :: St -> (a,St) }

pickle :: PU a -> a -> String
pickle p value = appP p (value, [])

unpickle :: PU a -> String -> a
unpickle p stream = fst (appU p stream)

base :: Int
base = 256

belowBase :: PU Int
belowBase = PU (\ (n,s) -> toEnum n : s)

(\ (c:s) -> (fromEnum c, s))

lift :: a -> PU a
lift x = PU snd (\s -> (x,s))

sequ :: (b->a) -> PU a -> (a -> PU b) -> PU b
sequ f pa k = PU (\ (b,s) -> let a = f b

pb = k a
in appP pa (a, appP pb (b,s)))

(\ s -> let (a,s’) = appU pa s
pb = k a

in appU pb s’)

Fig. 2. The core pickler implementation.

then becomes

lambda :: PU Lambda
lambda = wrap (sumlam,lamsum)

(pEither string (pEither (pair string lambda) (pair lambda lambda)))
where

lamsum (Var x) = Left x
lamsum (Lam x) = Right (Left x)
lamsum (App x) = Right (Right x)
sumlam (Left x) = Var x
sumlam (Right (Left x)) = Lam x
sumlam (Right (Right x)) = App x

3 Implementing picklers

Figure 2 presents the core of a pickler implementation, defining types and a very

small number of functions from which all other picklers can be derived. The pickler

type PU a is declared to be a pair consisting of a pickling action (labelled appP) and

unpickling action (labelled appU). The pickling action is a function which transforms

state and consumes a value of type a; conversely, an unpickling action is a function

which transforms state and produces a value of type a. In both cases the accumulated

state St is a list of bytes, generated so far (during pickling) or yet to be processed

(during unpickling).

The pickle function simply applies a pickler to a value, with the empty list as

the initial state. The unpickle function does the converse, feeding a list of bytes to

https://doi.org/10.1017/S0956796804005209 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005209

Functional pearl 731

the unpickler, and returning the resulting data. Any dangling bytes are ignored; a

more robust implementation could signal error.

Now to the picklers themselves. The basic pickler belowBase pickles an integer

i in the range 0 � i < base. We have chosen bytes as our unit of pickling, so we

define base to be 256. It is easy to change the implementation to use bit-streams

instead of byte-streams and thereby achieve better compression.

The lift combinator produces a no-op pickler for a particular value. It has

a trivial definition, leaving the state unchanged, producing the fixed value when

unpickling, and ignoring its input when pickling. (A more robust implementation

would compare the input against the expected value and assert on failure).

Finally we define the sequ combinator, used for sequential composition of picklers.

It is more general than pair in that it supports sequential dependencies in the pickled

format: the encoding of a value of type a pickled using pa precedes the encoding

of a value of type b whose encoding depends on the first value, as given by the

parameterized pickler k. When pickling, the value of type a is obtained by applying

the projection function f. Notice how pb is applied before pa: this ensures that bytes

end up in the list in the correct order for unpickling. If instead pa was applied first

when pickling then the pickle function would need to reverse the list after applying

appP.

Readers familiar with monadic programming in Haskell will have noticed that

lift and sequ bear a striking resemblance to the return and >>= combinators in

the Monad class (also known as unit and bind). This is no coincidence: considering

just their unpickling behaviour, PU, lift and sequ do make a monad.

Figure 3 completes the implementation, building all remaining combinators from

Figure 1 using the primitives just described.

The combinators pair, triple and quad use sequ and lift to encode the

components of a tuple in sequence. The wrap combinator pre- and post-composes a

pickler for a with functions of type a->b and b->a in order to obtain a pickler for

b. It is defined very concisely using sequ and lift.

The zeroTo n pickler encodes a value between 0 and n in as few bytes as

possible, as determined by n. For example, zeroTo 65535 encodes using two bytes,

most-significant first. Picklers for bool and char are built from zeroTo using wrap.

In contrast with the zeroTo combinator, the nat pickler assumes that small

integers are the common case, encoding n < 128 = base/2 as a single byte

n, and encoding n� 128 as the byte 128 + n mod 128 followed by �n/128� − 1

encoded through a recursive use of nat. Signed integers can be encoded in a similar

fashion.

Lists of known length are pickled by fixedList as a simple sequence of values.

The general list pickler first pickles the length using nat and then pickles the

values themselves using fixedList. As the Haskell String type is just a synonym

for [Char], its pickler is just list char.

The alternation combinator alt takes a tagging function and a list of picklers, an

element of which is determined by the result of applying the tagging function (when

pickling) or by the encoded tag (when unpickling). Picklers for Maybe and Either

type constructors follow easily.

https://doi.org/10.1017/S0956796804005209 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005209

732 A. J. Kennedy

Fig. 3. Completed pickler implementation.

https://doi.org/10.1017/S0956796804005209 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005209

Functional pearl 733

01 [
00 Link(
06 41 6e 64 72 65 77 "Andrew",
04 68 74 74 70 URL { protocol = "http",
16 72 65 73 65 61 72 63 68 2e
6d 69 63 72 6f 73 6f 66 74 2e 63 6f 6d host = "research.microsoft.com",
00 port = Nothing,
0b 75 73 65 72 73 2f 61 6b 65 6e 6e file = "users/akenn" })]

Fig. 4. Example of pickling for bookmark lists.

Figure 4 presents a value of type Bookmarks, pickled using the above implement-

ation.

4 Structure sharing

The picklers constructed so far use space proportional to the size of the input

when expressed as a tree. They take no account of sharing of structure in the data,

either implicit but non-observable (because the runtime heap representation is a

graph), or, implicit but observable (because there is a programmer-defined equality

between values), or, in the case of an impure language like ML, explicit and directly

observable (using ref). At the very least, pickled formats usually have some kind of

symbol table mechanism to ensure that strings occur once only.

We would like to share arbitrary structures, for example encoding the definition

of k just once when pickling the value kki of type Lambda shown below:

x = Var "x"
i = Lam("x", x)
k = Lam("x", Lam("y", x))
kki = App(k, App(k, i))

We can encode sharing in the following way. Suppose that some data D pickles

to a byte sequence P . The first occurrence of D is pickled as def (P) and subsequent

occurrences are pickled as ref (i) if D was the i’th definition of that type to be

pickled in some specified order. For def (P) we use a zero value followed by P , and

for ref (i) we use our existing zeroTo n pickler on 1 � i� n, where n is the number

of def occurrences encoded so far. The technique is reminiscent of Lempel-Ziv

text compression (Bell et al., 1990), which utilises the same ‘on-the-fly’ dictionary

construction.

The following function implements this encoding for a fixed dictionary dict,

transforming a dictionary-unaware pickler into a dictionary-aware pickler:

tokenize :: Eq a => [a] -> PU a -> PU a
tokenize dict p = sequ (\x -> case List.elemIndex x dict of

Just i -> n-i ; Nothing -> 0)
(zeroTo n)
(\i -> if i==0 then p else lift (dict !! (n-i)))

where n = length dict

https://doi.org/10.1017/S0956796804005209 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005209

734 A. J. Kennedy

Fig. 5. Core pickler implementation with structure sharing.

For homogeneous lists of values, the dictionary can be constructed on-the-fly simply

by threading it through a recursive call:

add :: Eq a => a -> [a] -> [a]
add x d = if elem x d then d else x:d

memoFixedList :: Eq a => [a] -> PU a -> Int -> PU [a]
memoFixedList dict pa 0 = lift []
memoFixedList dict pa n = sequ head (tokenize dict pa) (\x ->

sequ tail (memoFixedList (add x dict) pa (n-1))
(\xs -> lift (x:xs)))

memoList :: [a] -> PU a -> PU [a]
memoList dict = sequ length nat . memoFixedList dict

Here the function memoList takes an initial value for the dictionary state (typically

[]) and a pickler for a, and returns a pickler for [a] that extends the dictionary as

it pickles or unpickles.

With heterogeneous structures such as the Lambda type defined above, it becomes

much harder to thread the state explicitly. Instead, we can adapt the core pickler

combinators to thread the state implicitly (Figure 5). Picklers are now parameterized

https://doi.org/10.1017/S0956796804005209 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005209

Functional pearl 735

module SPickle (PU, pickle, unpickle, unit, char, bool, string, nat, zeroTo,
wrap, sequ, pair, triple, quad, pMaybe, pEither, list, share) where

import SCorePickle; import Maybe; import List
...

add :: Eq a => a -> [a] -> [a]
add x d = if elem x d then d else x:d

tokenize :: Eq a => [a] -> PU a s -> PU a s
tokenize dict p = sequ (\x -> case List.elemIndex x dict of

Just i -> n-i; Nothing -> 0)
(zeroTo n)
(\i -> if i==0 then p else lift (dict !! (n-i)))

where n = length dict

share :: Eq a => PU a [a] -> PU a [a]
share p = useState add (\dict -> tokenize dict p)

Fig. 6. Completed pickler implementation with structure sharing.

on the type a of values being pickled and the type s of state used for the dictionary.

The pickle and unpickle functions take an additional parameter for the initial

state, discarding the final state on completion. The belowBase and lift combinators

simply plumb the state through unchanged. The plumbing in sequ is more subtle:

during pickling the dictionary state must be threaded according to the sequencing

required by sequ, passing it through pickler pa and then through pickler pb, but the

list of bytes must be threaded in the opposite direction, because bytes produced by

pa are prepended to a list which already contains bytes produced by pb. Fortunately

laziness supports this style of circular programming (Bird, 1984).

The useState combinator provides access to the state. It takes two parameters:

update, which provides a means of updating the state, and spa, which is a state-

parameterized pickler for a. The combinator returns a new pickler in which spa

is first applied to the internal state value, the pickling or unpickling action is then

applied, and finally the state is updated with the pickled or unpickled value.

Figure 6 presents the remainder of the implementation. We omit the definitions

for most of the combinators as they are identical to those of Figure 3 except that

every use of PU in type signatures takes an additional state type parameter. The new

combinator share makes use of useState to provide an implementation of sharing

using a list for the dictionary and the tokenize function that we saw earlier. A

more efficient implementation would, for instance, use some kind of balanced tree

data structure.

We can then apply the share combinator to pickling of lambda terms:

slambda = share (alt tag [wrap (Var, \(Var x) -> x) string,
wrap (Lam, \(Lam x) -> x) (pair string slambda),
wrap (App, \(App x) -> x) (pair slambda slambda)])

Figure 7 presents an application of it to kki. The superscripted figures represent

the indices that the pickler generates for subterms, allocated in depth-first order.

Notice how the two occurrences of terms k and x have been shared; also note that

https://doi.org/10.1017/S0956796804005209 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005209

736 A. J. Kennedy

x = Var "x"
i = Lam("x", x)
k = Lam("x", Lam("y", x))
kki = App(k, App(k, i))

02 6App(

01 01 78 3Lam("x",

01 01 79 2Lam("y",

00 01 78 1Var "x")),

00 02 5App(
03 k,

00 01 01 78 4Lam("x",
01 x)))

Fig. 7. Sharing example (superscripts represent dictionary indices).

terms pickled under an empty dictionary have no preceding zero byte because the

pickler zeroTo 0 used to encode the zero is a no-op.

It is interesting to note that pickling followed by unpickling – for example,

unpickle slambda [] . pickle slambda [] – acts as a compressor on values,

maximizing sharing in the heap representation. Of course, this sharing is not

observable to the programmer.

Sometimes it is useful to maintain separate symbol tables for separately-shared

structure. This can be done using tuples of lists for p in PU a p. For example, we

can write variants of share that use the first or second component of a pair of

states:

shareFst :: Eq a => PU a ([a],s) -> PU a ([a],s)
shareFst p = useState (\x -> \(s1,s2) -> (add x s1, s2))

(\(s1,s2) -> tokenize s1 p)
shareSnd :: Eq a => PU a (s,[a]) -> PU a (s,[a])
shareSnd p = useState (\x -> \(s1,s2) -> (s1, add x s2))

(\(s1,s2) -> tokenize s2 p)

These combinators can then be used to share both variable names and lambda terms

in the type Lambda:

lambda = shareFst (
alt tag [wrap (Var, \(Var x) -> x) var,

wrap (Lam, \(Lam x) -> x) (pair var lambda),
wrap (App, \(App x) -> x) (pair lambda lambda)])

where tag (Var _) = 0; tag (Lam _) = 1; tag (App _) = 2
var = shareSnd string

5 Discussion

Pickler combinators were inspired very much by parser combinators (Wadler, 1985;

Hutton & Meijer, 1998), which encapsulate parsers as functions from streams to

values and provide combinators similar in spirit to those discussed here. The essential

new ingredient of pickler combinators is the tying together of the pickling and

unpickling actions in a single value.

Parser combinators also work well in call-by-value functional languages such as

ML (Paulson, 1996). However, they suffer from a couple of wrinkles which re-occur

in the ML implementation of picklers.

First, it is not possible to define values recursively in ML, e.g. the following is

illegal:

https://doi.org/10.1017/S0956796804005209 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005209

Functional pearl 737

val rec bookmark =
alt tag
[wrap (Link, fn Link x => x) (pair string url),

wrap (Folder, fn Folder x => x) (pair string (list bookmark))]

The problem is that recursive definition is only valid for syntactic functions. Here

we have a value with abstract type ’a PU. This problem is overcome in ML

implementations of parser combinators (Paulson, 1996) by exposing the concrete

function type of parsers, and then abstracting on arguments. So instead of writing

a parser for integers sequences as

val rec intseq = int || int -- $"," -- intseq

one writes

fun intseq s = (int || int -- $"," -- intseq) s

We can’t apply this trick because the concrete type for ’a PU is a pair of functions.

Instead, it is necessary to be explicit about recursion, using a fixpoint operator whose

type is (’a PU -> ’a PU) -> ’a PU. This is somewhat cumbersome, especially

with mutual recursion, for a family of fixpoint combinators fix_n are required,

where n is the number of functions defined by mutual recursion.

The second problem is ML’s “polymorphic value restriction”, which restricts

polymorphic typing to syntactic values. This is particularly troublesome in the

implementation of state-parameterized picklers (Figure 5), in which every combinator

or primitive pickler is polymorphic in the state. For example, the ML version of

char might be written

val char = wrap (Char.chr, Char.ord) (zeroTo 255)

but char cannot be assigned a polymorphic type because its right-hand-side is not

a syntactic value.

In the implementation of structure sharing we made essential use of laziness in

order to thread the dictionary state in the opposite direction to the accumulated list

of bytes (function sequ). An ML version cannot do this: instead, both dictionary

and bytes are threaded in the same direction, with bytes produced by pickler pa

prepended first, then bytes produced by pickler pb prepended. The pickle function

must then reverse the list in order to produce a format ready for unpickling.

The representation we use for picklers of type PU a can be characterized as an

embedding-projection pair (p, u) where p is an embedding from a into a ‘universal’

type String, and u is a projection out of the universal type into a. To be a true

projection-embedding it would satisfy the following ‘round-trip’ properties:

u ◦ p = id (1)

p ◦ u � id (2)

where id is the identity function on the appropriate domain, and � denotes the

usual definedness ordering on partial functions. (Strictly speaking, given a pickler

pa, it is p = pickle pa and u = unpickle pa which have this property). More

concretely, (1) says “pickling followed by unpickling generates the original value”,

and (2) says “successful (i.e. exhaustive and terminating) unpickling followed by

https://doi.org/10.1017/S0956796804005209 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005209

738 A. J. Kennedy

pickling produces the same list of bytes”. Note that (1) is valid only if values pickled

by combinators such as lift, zeroTo and nat are in the intended domain; also

observe that (2) is broken by structure sharing, as the pickler could produce a string

that has different sharing from the one that was unpickled.

Combinators over embedding-projection pairs have been studied in the context

of embedding interpreters for little languages into statically-typed functional lan-

guages (Benton, 2004; Ramsey, 2003); indeed some of the combinators are the same

as those defined here.

Pickling has been studied as an application of generic programming (Morrisett &

Harper, 1995; Jansson & Jeuring, 2002; Hinze, 2002), in which pickling and unpick-

ling functions are defined by induction on the structure of types. Using a language

such as as Generic Haskell (Clarke et al., 2001), we can extend our combinator

library to provide default picklers for all types, but leaving the programmer the

option of custom pickling where more control is required.

Following submission of the final version of this article, Martin Elsman brought

to the author’s attention a combinator library (Elsman, 2004) somewhat similar to

the one described here. Elsman’s library is for Standard ML, and takes a slightly

different approach to structure sharing, maintaining a single dictionary for all shared

values. Values of different types are stored in the dictionary using an encoding of

dynamic types. The library also supports the pickling of values containing ML

references, possibly containing cycles.

Acknowledgements

Thanks are due to Nick Benton, Simon Peyton Jones, and Claudio Russo for

their helpful comments on this paper and its previous incarnation as an SML

implementation. I would also like to thank Ralf Hinze and the anonymous referees

for their constructive comments.

References

Bell, T. C., Cleary, J. G. and Witten, I. H. (1990) Text Compression. Prentice Hall.

Benton, P. N. (2004) Embedded interpreters. J. Funct. Program. To appear.

Benton, P. N., Kennedy, A. J. and Russo, C. V. (2004) Adventures in Interoperability: The

SML.NET Experience. Proceedings of 6th ACM – SIGPLAN International Conference on

Principles and Practice of Declarative Programming, (to appear).

Bird, R. S. (1984) Using circular programs to eliminate multiple traversals of data. Acta

Informatica, 21, 239–250.

Clarke, D., Hinze, R., Jeuring, J., Löh, A. and de Wit, J. (2001) Generic Haskell. See

http://www.generic-haskell.org/.

Elsman, M. (2004) Type-Specialized Serialization with Sharing. IT Universty of Copenhagen

Technical Report Series, TR-2004-43.

Hinze, R. (2002) Polytypic values possess polykinded types. Sci. Comput. Program. 43, 129–159.

Hutton, G. and Meijer, E. (1998) Monadic parsing in Haskell. J. Func. Program. 8(4), 437–444.

Jansson, P. and Jeuring, J. (2002) Polytypic data conversion programs. Sci. Comput. Program.

43(1), 35–75.

https://doi.org/10.1017/S0956796804005209 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005209

Functional pearl 739

Leroy, X. (2003) The Objective Caml System. http://caml.inria.fr.

Morrisett, G. and Haroer, R. (1995) Compiling polymorphism using intensional type analysis.

ACM Symposium on Principles of Programming Languages, pp. 130–141.

Paulson, L. C. (1996) ML for the Working Programmer, 2nd ed. Cambridge University Press.

Ramsey, N. (2003) Embedding an interpreted language using higher-order functions and type.

ACM SIGPLAN Workshop on Interpreters, Virtual Machines and Emulators.

Sun Microsystems (2002) Java Object Serialization Specification. http://java.sun.com/

j2se/1.4.1/docs/guide.serialization/.

Wadler, P. (1985) How to replace failure by a list of successes. Proceedings of Functional

Programming and Computer Architecture: LNCS 201. Springer-Verlag.

https://doi.org/10.1017/S0956796804005209 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005209

