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Abstract

Characterizations are obtained of those lattices that are isomorphic to the
lattice of zero-sets of the following types of Tychonoff spaces: (i) compact
" (Hausdorff), (ii) Lindeldf, (iii) realcompact and normal, (iv) realcompact.

Subject classification (Amer. Math. Soc. (MOS) 1970): 54 H 99, 06 A 20.

In this paper we obtain characterizations of those lattices that are lattice isomorphic
to the lattice of zero-sets of a compact Hausdorff, Lindeldf, realcompact and
normal, or realcompact topological space. All topological spaces considered are
assumed to be Tychonoff spaces (that is completely regular and Hausdorff).
T. P. Speed (1973) has independently obtained characterizations of those lattices
that are zero-set lattices of compact Hausdorff or realcompact spaces. The
characterization obtained by Speed of the zero-set lattice of a realcompact space
differs significantly from the one given here.

The Stone-Cech compactification of a completely regular and Hausdorff
topological space X is denoted BX. The basic references for compactifications are
Gillman and Jerison (1960) and Walker (1974). The basic references for lattice
theory that we use are Birkhoff (1948) and Gratzer (1971). We use without further
comment the topological and lattice theoretic notation therein. The lattice
operations of “meet” and “join” are denoted by A and v respectively. N denotes
the set of natural numbers.

1. DeFINITION. Let L be a lattice with a minimum (that is, 0 element). An

ultrafilter on L is a non-empty subset M< L such that:
(i) if a,be M then anbe M,

(ii) if ae M and a<b, then be M,

(iif) 0¢ M,

(iv) M is maximal with respect to (i), (ii) and (iii).

Let L be a bounded distributive lattice (that is, a distributive lattice with both a
0 and a 1 element). Let M(L) denote the set of ultrafilters on L. The Stone
topology on M(L) is the topology generated using the following family as a base
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for the closed sets: {A(z): zeL} where h(z) ={MeM(L): ze M}. With this
topology M(L) is a compact (not necessarily Hausdorff) space as in Gritzer (1971),
section 11.

We now introduce several lattice conditions which will occur frequently. The
symbols on the left will be used to denote the conditions. Let L be a bounded
lattice,

() If s,,eL and sAt=0, then there exist elements a,beL such that
shna=bat=0and avb=1.

(B) If s>t then there is an acL such that aans>0 and ant = 0.

(y) If {z;: ie N}< L then A{z;: ie N}€L.

(8) If zeL then there exist sequences {z;: i€ N}, {w;: ie N}cL such that
z=A{z:ieN},and forallieN z;, <z, z; yAw; =0, and z;vw; = 1.

2. LEMMA. Let L be a bounded distributive lattice. If L satisfies condition 8 then
L satisfies condition 8.

Proor. Suppose that L satisfies condition 8 and let s>¢ Let {f;: ie N} and
{w;: ie N} be sequences in L such that t = A{#;: ie N}, and for all ieN t;,;,<¢t,
tiaAw;=0and t;vw; = 1. Since <t for all ieN, tAw; =0 for all ie N. Then
there must be an i€ N such that sAw;>0. For if saw; = 0 for all ie N then

SAt;=(SAtYVO=(sAt)v(sAaw) =sa(t;vw) =sAl =s.

Thus s<¢; for all ie N and hence s< A{#;: ie N} =¢t. This contradiction shows
that s Aw; >0 for some i€ N and thus condition f is satisfied.

If X is a topological space, a zero-set in X is a set of the form f~1({0}) where
fis some continuous real-valued function on X. We denote by Z(X) the family
of all zero-sets of a topological space X. Under the operations of intersection and
union for meet and join, Z(X) becomes a bounded distributive lattice for any
topological space X. The structure of Z(X) is investigated in detail in Gillman and
Jerison (1960), Chapters 1-3.

By saying that an ultrafilter M on a lattice L is closed under countable meets,
we mean that if {z;: ie N}S M and A{z;: i€ N} exists in L then A {z;: ieN}e M.
Such ultrafilters are also referred to as real ultrafilters.

The characterization theorems that follow have similar proofs although certain
technical details differ for each proof. Therefore we provide only the proof of
Theorem 9.

3. THEOREM. Let L be a bounded distributive lattice. Then L = Z(X) for some

compact Hausdorff topological space X if and only if L satisfies conditions o« and &
and every ultrafilter on L is real.
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A topological space is called pseudocompact if every continuous real-valued
function on the space is bounded. The Hewitt realcompactification of a topological
space X is denoted vX. In Gillman and Jerison (1960), Chapter 8, it is shown that
for any topological space X, Z(X) and Z(vX) are lattice isomorphic, and if X is
pseudocompact then vX = BX. Since compact spaces are obviously pseudocompact,
we obtain the following corollary.

4. COROLLARY. Let L be a bounded distributive lattice. Then L = Z(X) for some
pseudocompact space X if and only if L satisfies conditions v and 6 and every
ultrafilter on L is real.

A filter F on a lattice L is a subset of L that satisfies conditions (i), (ii) and (iii)
in Definition 1, but not necessarily condition (iv). A filter F on the lattice L is said
to have the countable meet property if {z;: ie N}S F implies that A {z;: ie N}#0.
Recall that a topological space is called Lindeldf if every family of closed subsets
of the space with the countable intersection property (that is, every countable
subfamily has non-empty intersection) has non-empty intersection.

5. THEOREM. Let L be a bounded distributive lattice. Then L = Z(X) for some
Lindeléf space X if and only if L satisfies conditions o, vy, 8, and every filter on L
with the countable meet property is contained in a real ultrafilter.

6. COROLLARY. Let X be a topological space. Then vX is Lindeldf if and only if
every family of zero-sets of Z(X) with the countable intersection property is contained
in a real z-ultrafilter (that is, a real ultrafilter on Z(X)).

A topological space X is called realcompact if every real ultrafilter on Z(X) has
non-empty intersection in X. Recall that X is normal if disjoint closed sets in
X can be separated by disjoint open sets in X.

7. THEOREM. Let L be a bounded distributive lattice. Then L = Z(X) for some
normal realcompact space X if and only if L satisfies conditions o, y, 8 and the
Sfollowing two conditions:

@) If zeL and z#0, then there is a real ultrafilter M on L such that ze M.

(b) If S = AU B<L such that S is not contained in any real ultrafilter on L, then
there are elements s,t €L such that s v t = 1 and neither of the sets Au{s} or Bu{t}
is contained in any real ultrafilter on L.

8. COROLLARY. Let X be a topological space. Then vX is normal if and only if
Z(X) satisfies condition (b) of Theorem 7.
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The above corollary follows from Theorem 7 since every lattice of zero-sets ¢
topological space always satisfies condition (a).

If L is a bounded lattice, let Mu(L) denote the family of all real ultrafilters on
Note that Mv(L)c M(L).

9. THEOREM. Let L be a bounded distributive lattice. Then L = Z(X) for some re
compact space X if and only if L satisfies conditions «, v, 8 and the following 1
conditions.

(a) Every non-zero element of L is contained in a real ultrafilter on L.

(b) B(Mv(L)) = M(L) (that is, if Mv(L) is regarded as a subspace of M(L) t}
M(L) is the Stone-Cech compactification of Mv(L)).

PROOF. Necessity. Let X be a realcompact topological space. Let L = Z(X).
is well known (see Gillman and Jerison (1960), Chapter 1) that L satisfies conditio
a, v and 8. In Gillman and Jerison (1960), Chapter 8 it is shown that L satisf
condition (a). By the results of Gillman and Jerison (1960), Chapters 6 and 8,
know that M(L) = B8X, Mv(L)=vX and B(vX)=BX. Hence condition (b)
satisfied.

Sufficiency. Suppose L satisfies the above conditions. We regard Mu(L) as
subspace of M(L). Recall that the family {#(z): zeL} is taken as a base for ti
closed sets in M(L) where h(z) ={MeM(L): ze M} for each zeL. Thus t{
family {k(z): ze L} may be taken as a base for the closed subsets of Mv(L) whe
k(z) = h(z)n Mu(L) = {MeMv(L): ze M}. The family of closed subsets of
topological space X is denoted K(X) and becomes a bounded distributive latti
under the operations of intersection and union for meet and join. Since ultrafilte
in a bounded distributive lattice are prime, the mappings 4: L— K(M(L)) ar
k: L— K(Mu(L)) defined above are homomorphisms onto a base for the close
sets in M(L) and Muv(L) respectively. The homomorphism k& is one-to one-(as is A
For let s,teL such that s#¢. Then either svi>s or svi>t. Without loss ¢
generality let us assume that sv¢>s. By hypothesis, L satisfies condition 8. Henc
by Lemma 2, L satisfies condition §. That is to say there is an element ae L suc
that aa(sv#)>0 while aas = 0. Since

an(@svi)=(ars)v(aart)=0v(aat)=ant>0,

by condition (a) there is an M e Mu(L) such that ante M. Clearly Mek(ant
hence M ek(t) and M € k(a). But if M € k(s) then

Mek(s)nk(a) = k(sna) =k(0) =9

which is false. Thus M €k(z) but M ¢ k(s) and k is one-to-one.
We show that k actually maps onto Z(Mv(L)) and that Mu(L) is a realcompac
space so that & is an isomorphism between L and Z(X) for the realcompact spac
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My(L). Let ze L. We first show that k(z) e Z(Mv(L)). Let {z;: ie N}, {w;: ie N}<L
such that z = A{z;: ie N} and for all ie Nz; ., <z;, z;.,Aw; =0, and z;vw; = 1.
It is easily verified that M (L) is a compact Hausdorff space. In particular, M(L) is
normal. Thus by Urysohn’s Lemma any two disjoint closed sets in M(L) can be
separated by disjoint zero-sets in M(L). Since z;,, Aw; =0, h(z; . )nh(w,) =0
hence for each i€ N there is a zero-set Z; ., € Z(M(L)) such that

Mz;) S Zi = M(L)—h(w)).
ForieN let T; 4y = Z; ;10 Mv(L). Then T, , e Z(Mv(L)) and
k(zg1y) = bz O MUL)S Zy 43 0 Mu(L) = T,y < (ML) — h(wy)) 0 Mu(L)
= Muv(L)—k(w;).

In addition, for each ieN z;vw;=1 hence k(z))uk(w;) = Mv(L) and thus
Mu(L)—k(w)<k(zy). Thus for each ieN k(z,)< T3S Mu(L)—k(w,) < k(z)).
Now, z = A {z;: i€ N} and thus since we are dealing in Mv(L) with real ultrafilters,
k(2) = k(N{z;: ieNY) = N{k(z;): ieN}. Therefore k(z) = {T;;1: i€N}, and
since any countable intersection of zero-sets in a topological space is again a zero-
set, this shows that k(z) is a zero-set in Mv(L), that is, k(z) € Z(Mv(L)).

We now show that k maps L onto Z(Mv(L)). Let Z € Z(Mv(L)). Then there is a
continuous function f: Muv(L)— [0, 1] (where [0, 1] denotes the closed unit interval)
such that Z = f—1({0}). For each ieN let ¥, =f"([(1/i), 1)) e Z(Mv(L)). Then
ZnV;=0 for all ieN and Z=N{{Mv(L)-V,)):ieN}. By condition (b),
B(Mu(L)) = M(L) and hence Z and ¥; have disjoint closures in M(L) for all ie N.
Since {h(z): zeL} is a base for the closed subsets of M(L), there is a subset AL
such that clys,Z = N {A(2): z€ A}. Thus for each i€ N,

dunZ = N{h(z): ze Ay M(L)—clypy Vi

Since M(L) is compact there is a finite subset A;= A4 for each ie N such that
CIM(L) zZ< n {h(Z) L ze Ai}g M(L) - ClM(L) Vi' Thus

Z = clyyZao Mu(L)s N {h(z): z€ A} 0 Mu(L)
= N{k(2): ze A3<= (M(L)—clyyry Vo) 0 Mu(L) = Mu(L)~V;.

Let z; = A{z: ze A;} for ie N (which we can do since A, is finite). Then for each
ieN, Z<k(zpcsMu(L)—V; and since Z=N{Mv(L)-V)):icN} we have
Z=N{k(z): ieN}=k(A{z;: ieN}Y)eZ(Mv(L)) and k maps L onto Z(Mv(L)).
Thus k is an isomorphism between L and Z(Mv(L)).

Finally, we show that Muv(L) is a realcompact space. Let U be a real ultrafilter
on Z(Mv(L)). We must show that | U#©Q. Let M = k~(U). Then M is a real
ultrafilter on L since k is an isomorphism. Let Ze U. Then there is an element
zeL such that Z = k(2). Thus ze M so Mek(z) =Z. Therefore MeN) U.
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In view of the fact that for any topological space X the lattices Z(X) and Z(vX
are isomorphic, Theorem 9 characterizes the lattice of zero-sets of any topologic:
space.
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