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Abstract

Characterizations are obtained of those lattices that are isomorphic to the
lattice of zero-sets of the following types of Tychonoff spaces: (i) compact

' (Hausdorff), (ii) Lindelof, (iii) realcompact and normal, (iv) realcompact.

Subject classification (Amer. Math. Soc. (MOS) 1970): 54 H 99, 06 A 20.

In this paper we obtain characterizations of those lattices that are lattice isomorphic
to the lattice of zero-sets of a compact Hausdorff, Lindelof, realcompact and
normal, or realcompact topological space. All topological spaces considered are
assumed to be Tychonoff spaces (that is completely regular and Hausdorff).
T. P. Speed (1973) has independently obtained characterizations of those lattices
that are zero-set lattices of compact Hausdorff or realcompact spaces. The
characterization obtained by Speed of the zero-set lattice of a realcompact space
differs significantly from the one given here.

The Stone-tech compactification of a completely regular and Hausdorff
topological space X is denoted fix. The basic references for compactifications are
Gillman and Jerison (1960) and Walker (1974). The basic references for lattice
theory that we use are Birkhoff (1948) and Gratzer (1971). We use without further
comment the topological and lattice theoretic notation therein. The lattice
operations of "meet" and "join" are denoted by A and v respectively. N denotes
the set of natural numbers.

1. DEFINITION. Let Z, be a lattice with a minimum (that is, 0 element). An
ultrafilter on L is a non-empty subset M^L such that:

(i) if a,beM then a Abe M,
(ii) if a e M and a^b, then beM,

(iii) 0$M,
(iv) M is maximal with respect to (i), (ii) and (iii).
Let L be a bounded distributive lattice (that is, a distributive lattice with both a

0 and a 1 element). Let M(L) denote the set of ultrafilters on L. The Stone
topology on M(L) is the topology generated using the following family as a base

189

https://doi.org/10.1017/S1446788700038763 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038763


190 S. Broverman [2]

for the closed sets: {h(z):zeL} where h{z) = {MeM(L): zeM}. With this
topology M(L) is a compact (not necessarily Hausdorff) space as in Gratzer (1971),
section 11.

We now introduce several lattice conditions which will occur frequently. The
symbols on the left will be used to denote the conditions. Let L be a bounded
lattice.

(a) If s,teL and SAt = 0, then there exist elements a,beL such that
SAa = bht = 0 and avb = 1.

OS) If s>t then there is an aeL such that aAs>0 and a At = 0.
(y) If for ieN}^L then A(z<: ieN}eL.
(8) If zeL then there exist sequences {z4: ieN}, {wf: ieN}c.L such that

z = A(zt : 'G-W}> a nd for all ieN zi+1<,ziy zi+1Awt — 0, and zfvwf = 1.

2. LEMMA. Le/ L be a bounded distributive lattice. IfL satisfies condition 8 then
L satisfies condition j3.

PROOF. Suppose that L satisfies condition 8 and let s>t. Let {tf ieN} and
{w :̂ ieN} be sequences in L such that t — /^{tt: ieN}, and tor all ieN ti+1^ti,
ti+1AWi = 0 and ^vwf = 1. Since t^tf for all ieN, tAwt — 0 for all ieN. Then
there must be an ieN such that SA wi>0. For if SAW{ = 0 for all ieN then

Wi) = JA 1 = S.

Thus j<ff for all ieN and hence s^A{*i: *'e-N} = '• This contradiction shows
that 5A wf >0 for some ieN and thus condition /3 is satisfied.

If X is a topological space, a zero-set in jf is a set of the form /~1({0}) where
/ is some continuous real-valued function on X. We denote by Z(X) the family
of all zero-sets of a topological space X. Under the operations of intersection and
union for meet and join, Z(X) becomes a bounded distributive lattice for any
topological space X. The structure of Z(X) is investigated in detail in Gillman and
Jerison (1960), Chapters 1-3.

By saying that an ultrafilter M on a lattice L is closed under countable meets,
we mean that if {zt: ieN}^M and f\{zt: ieN} exists in L then Afe : ieN}eM.
Such ultrafilters are also referred to as real ultrafilters.

The characterization theorems that follow have similar proofs although certain
technical details differ for each proof. Therefore we provide only the proof of
Theorem 9.

3. THEOREM. Let L be a bounded distributive lattice. Then L — Z(X) for some
compact Hausdorff topological space X if and only if L satisfies conditions a and 8
and every ultrafilter on L is real.
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A topological space is called pseudocompact if every continuous real-valued
function on the space is bounded. The Hewitt realcompactification of a topological
space Z i s denoted vX. In Gillman and Jerison (1960), Chapter 8, it is shown that
for any topological space X, Z{X) and Z(vX) are lattice isomorphic, and if X is
pseudocompact then vX = fiX. Since compact spaces are obviously pseudocompact,
we obtain the following corollary.

4. COROLLARY. Let L be a bounded distributive lattice. Then L = Z(X) for some
pseudocompact space X if and only if L satisfies conditions y and 8 and every
ultrafilter on L is real.

A. filter F o n a lattice L is a subset of L that satisfies conditions (i), (ii) and (iii)
in Definition 1, but not necessarily condition (iv). A filter F o n the lattice L is said
to have the countable meet property if {zi: ieN}<^F implies that /\{zt: ieN}=£0,
Recall that a topological space is called Lindelof if every family of closed subsets
of the space with the countable intersection property (that is, every countable
subfamily has non-empty intersection) has non-empty intersection.

5. THEOREM. Let L be a bounded distributive lattice. Then L — Z{X) for some
Lindelof space X if and only if L satisfies conditions a, y, S, and every filter on L
with the countable meet property is contained in a real ultrafilter.

6. COROLLARY. Let X be a topological space. Then vX is Lindelof if and only if
every family of zero-sets ofZ(X) with the countable intersection property is contained
in a real z-ultrafilter {that is, a real ultrafilter on Z(X)).

A topological space X is called realcompact if every real ultrafilter on Z{X) has
non-empty intersection in X. Recall that X is normal if disjoint closed sets in
X can be separated by disjoint open sets in X.

7. THEOREM. Let L be a bounded distributive lattice. Then L = Z{X) for some
normal realcompact space X if and only if L satisfies conditions a, y, S and the
following two conditions:

(a) IfzeL and z^O, then there is a real ultrafilter M on L such that zeM.
(b) IfS = AvB^L such that S is not contained in any real ultrafilter on L, then

there are elements s,t&L such that s v t = 1 and neither of the sets Au{s} or Bu {/}
is contained in any real ultrafilter on L.

8. COROLLARY. Let X be a topological space. Then vX is normal if and only if
Z(X) satisfies condition (b) of Theorem 1.
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The above corollary follows from Theorem 7 since every lattice of zero-sets c
topological space always satisfies condition (a).

If L is a bounded lattice, let A/i>(Z,) denote the family of all real ultrafilters on
Note that Mv(L)cM(L).

9. THEOREM. Let Lbea bounded distributive lattice. Then L — Z(X) for some re
compact space X if and only if L satisfies conditions a., y, 8 and the following t
conditions.

(a) Every non-zero element ofL is contained in a real ultrafilter on L.
(b) fi(Mv(L)) = M(L) (that is, if Mv(L) is regarded as a subspace of M(L) tl

M(L) is the Stone-Cech compactification ofMv(L)).

PROOF. Necessity. Let X be a realcompact topological space. Let L = Z(X).
is well known (see Gillman and Jerison (1960), Chapter 1) that L satisfies conditio
a, y and S. In Gillman and Jerison (1960), Chapter 8 it is shown that L satisf
condition (a). By the results of Gillman and Jerison (1960), Chapters 6 and 8, i
know that M(L) = $X, Mv(L) = vX and p(vX) = fiX. Hence condition (b)
satisfied.

Sufficiency. Suppose L satisfies the above conditions. We regard Mv(L) as
subspace of M(L). Recall that the family {h(z): zeL} is taken as a base for ti
closed sets in M(L) where h(z) = {MeM{L): zeM} for each zeL. Thus tl
family {k(z): z eL} may be taken as a base for the closed subsets of Mv(L) whe
k(z) = h(z)nMv(L) = {MeMv(L):zeM}. The family of closed subsets of
topological space X is denoted K(X) and becomes a bounded distributive lattii
under the operations of intersection and union for meet and join. Since ultrafilte
in a bounded distributive lattice are prime, the mappings h: L^-K(M(JL)) ar
k: L->K(Mv(L)) defined above are homomorphisms onto a base for the close
sets in M(L) and Mv(L) respectively. The homomorphism k is one-to one(as is h
For let s,teL such that s=£t. Then either svt>s or svt>t. Without loss (
generality let us assume that svt>s. By hypothesis, L satisfies condition S. Hem
by Lemma 2, L satisfies condition /3. That is to say there is an element a eL sue
that aA(svt)>0 while OAS = 0. Since

aA(svt) = (aAs)v(aAt) = 0V(OA t) = aAt>0,

by condition (a) there is an MeMv(L) such that aAteM. Clearly Mek(aAt
hence Mek(t) and Mek(d). But if Mek(s) then

M e k(s) n k(a) = k(s AO) = k(0) = 0

which is false. Thus Mek(t) but M$k(s) and k is one-to-one.
We show that k actually maps onto Z(Mv(L)) and that Mv(L) is a realcompac

space so that k is an isomorphism between L and Z(X) for the realcompact spao
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Mv(L). Let zeL. We first show that k{z)eZ(Mv(L)). Let {zt: ieN}, {w<: i
such that z = A(zi : ieN} and for all ieNz^^Zi, zi+1Awt = 0, and zivwi = 1.
It is easily verified that M(L) is a compact Hausdorff space. In particular, M(L) is
normal. Thus by Urysohn's Lemma any two disjoint closed sets in M(L) can be
separated by disjoint zero-sets in M{L). Since zi+1 A wt = 0, h(zi+1) n h{w{) = 0
hence for each i e N there is a zero-set Zj+1 eZ(M(L)) such that

For ieN let T,+1 = Zi+1nMw(L). Then Ti+1eZ(Mv(L)) and

jt(Zf+1) = h(zi+1) n Mw(L) £ Zi+1 n Mv(L) = Ti+1

In addition, for each ieN zivwi = l hence A^z^uA:^) = Mu(Z,) and thus
Mu^-A^cA:^). Thus for each ieN k(zi+{)^Ti+1zMv(L)-k(w^k(z^.
Now, z = A(zt: ''e^V} and thus since we are dealing in Mv(L) with real ultrafilters,
Wi = K A(zi: i e JV}) = 0 {*(*<): i e iV}. Therefore )t(z) = fl {Ti+i: i e N}, and
since any countable intersection of zero-sets in a topological space is again a zero-
set, this shows that k{z) is a zero-set in Mv(L), that is, k(z)eZ(Mv(L)).

We now show that A: maps L onto Z(Mv{L)). Let ZGZ(MV{L)). Then there is a
continuous function/: Mv(L)^ [0,1] (where [0,1] denotes the closed unit interval)
such that Z=/-1({0}). For each ieN let ^ =/"1([(l/0, l])eZ(Mu(L)). Then
ZnF i = 0 for all ieN and Z = f| (OM^)-*i) : ieiV}. By condition (b),
fi(Mv(L)) = M(L) and hence Z and F{ have disjoint closures in M(L) for all ieN.
Since {A(z): zeL} is a base for the closed subsets of M{L), there is a subset AzL
such that c\mL)Z = f| {A(z): z e 4 Thus for each ieN,

C1M(D Z = fl W?) -zeA}^ M(L) - c\mL) Vt.

Since M(L) is compact there is a finite subset A^A for each ieN such that
£ fl (*(z):ze^}£M(L)-clM(z,, Ff. Thus

Z = clM(i)ZnMu(L)

Let zf = A( z : z G ^ J f°r I G N (which we can do since v^ is finite). Then for each
ieN, Z^kizJcMvilj-Vi and since Z = ^\{{Mv{L)-V^:ieN} we have
Z = 0{&fe): i"e#} = ^(AK: ieN})eZ(Mv(L)) and A: maps Z, onto Z(Mv(L)).
Thus fc is an isomorphism between L and Z(Mv(L)).

Finally, we show that Mv(L) is a realcompact space. Let U be a real ultrafilter
on Z(Mv(L)). We must show that fj f /^0. Let M = A:-X(C/). Then M is a real
ultrafilter on L since A: is an isomorphism. Let ZeU. Then there is an element
zeL such that Z = A;(z). Thus zeM so MeA:(z) = Z. Therefore Mef] U.
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194 S. Broverman [<

In view of the fact that for any topological space X the lattices Z(X) and Z(yX
are isomorphic, Theorem 9 characterizes the lattice of zero-sets of any topologies
space.
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