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DISTANCE FUNCTIONS ON CONVEX BODIES AND SYMPLECTIC
TORIC MANIFOLDS

HAJIME FUJITA , YU KITABEPPU and AYATO MITSUISHI

Abstract. In this paper we discuss three distance functions on the set of

convex bodies. In particular we study the convergence of Delzant polytopes,

which are fundamental objects in symplectic toric geometry. By using these

observations, we derive some convergence theorems for symplectic toric mani-

folds with respect to the Gromov–Hausdorff distance.

§1. Introduction

Convex polytopes, or more generally convex bodies, are classical and important objects in

geometry. There are many results in which structures or properties of convex polytopes are

shown to have deep connections with other objects, through algebraic or combinatorial

procedures. Among other such results, there is the Delzant construction [4], which is

well known in symplectic geometry. Using the Delzant construction one obtains a natural

bijective correspondence between the set of Delzant polytopes and the set of symplectic toric

manifolds. Under this correspondence, the geometric data of symplectic toric manifolds are

encoded as combinatorial or topological properties of their corresponding polytopes. For

example, the cohomology ring of symplectic toric manifolds can be recovered completely as

the Stanley–Reisner ring of the associated polytope. See (e.g., [3]) for more details on this

dictionary between Delzant polytopes and symplectic toric manifolds.

The purpose of our project is to further develop aspects of this kind of correspondence

from the viewpoint of Riemannian or metric geometry. The present paper contains two

parts. Firstly, we establish relationships between three natural distance functions on the set

of convex bodies. The first function dW is defined by the Wasserstein distance of probability

measures associated with convex bodies. The Wasserstein distance is a quite important tool

in recent developments of geometric analysis for metric measure spaces. The second distance

dV is defined by the Lebesgue volume of the symmetric difference of convex bodies. This

distance function is natural from the viewpoint of symplectic geometry and is studied in

[14] and [6]. The third function dH is the Hausdorff distance, which is a classical and basic

tool in geometry of convex bodies. The main result of the first part of this paper is as

follows.

Theorem 1 (Theorem 3.1.3). The metric topologies on the space of convex bodies

determined by the distance functions dW, dV, and dH coincide with each other.

Secondly, we investigate the relationship between the metric geometry of Delzant

polytopes and the Riemannian geometry of symplectic toric manifolds through the Delzant

construction. Here we equip each symplectic toric manifold with a Kähler metric which we

call the Guillemin metric [9], and we regard a symplectic toric manifold as a Riemannian

manifold. The main results in the second part of this paper are the following.
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Theorem 2 (Theorem 5.2.2). For a sequence of Delzant polytopes {Pi}i in R
n, suppose

that {Pi}i converges to a Delzant polytope P in R
n in the dH-topology (hence also in the

dW -topology and dV -topology), and the limit of the numbers of facets of {Pi}i coincides with
that of P. Then the sequence of symplectic toric manifolds {MPi}i converges to MP with

respect to the corresponding Guillemin metrics in the torus-equivariant Gromov–Hausdorff

topology.

As a corollary (Corollary 5.2.3), we also have a torus-equivariant stability theorem in the

setting of converging symplectic toric manifolds.

The above result suggests a continuity of the one direction of the Delzant construction,

from P to MP . We also have results concerning the converse direction. The following are

their rough statements.

Theorem 3 (Theorem 5.3.1, Theorem 5.3.2). For a sequence of Delzant polytopes {Pi}i
in R

n and a Delzant polytope P in R
n, suppose that the corresponding sequence of symplectic

toric manifolds {MPi}i converges to MP with respect to the corresponding Guillemin metrics

in the torus-equivariant measured Gromov–Hausdorff topology. Then we have:

• if {Pi}i is contained in a large ball, the fixed point set of MPi converges to that of MP .

In particular we have the lower semi-continuity of the Euler characteristic, and

• we have a sequence of maps {f̂i : Pi → P}i such that {f̂i(Pi)}i converges to P in dH-

topology by using the approximation maps for {MPi}i. See Theorem 5.3.2 for the precise

statement.

We emphasize that there are no hypotheses on the curvature in the statement of the

above theorem. By incorporating “potential functions”as in [1] we may treat more general

torus-invariant Riemannian metrics of symplectic toric manifolds which are not necessarily

Guillemin metrics.

In the present paper, we only consider the non-collapsing case. It is surely interesting to

attack the same problems under collapsing limit, and we will discuss this in a subsequent

paper. In addition, our general setting of convex bodies in the first part of this paper is

motivated by the fact that non-Delzant polytopes are increasingly important in the context

of toric degenerations of integrable systems or projective varieties as in [10], [13] and so on.

This paper is organized as follows. In Section 2, we introduce three distance functions

on the set of convex bodies. In Section 3, we show that the three corresponding metric

topologies coincide. Note that the equivalence between the distance function defined by the

volume and the Hausdorff distance is classically known, by [15] for example. In [14] Pelayo–

Pires–Ratiu–Sabatini studied several properties of the moduli space of Delzant polytopes

with respect to the natural action of integral affine transformations. This moduli space

arises naturally from an equivalence relation of symplectic toric manifolds known as weak

equivalence. We also give comments on the distance function and the associated topology

on this moduli space which were studied in [6]. In Section 4, we discuss the definition of

Delzant polytopes and the description of Guillemin metric on the corresponding symplectic

toric manifolds. In Section 5, we discuss the relation between the convergence of Delzant

polytopes and the convergence of symplectic toric manifolds. In Appendix A, we record

several facts on probability measures and Wasserstein distance. In Appendix B, we provide

a disintegration theorem which is important in the proof of Theorem 5.3.2.
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Notations. For a metric space (X,d), a subset Y of X, a point x in X and a positive

real number r we use the following notations.

• B(x,r) := {y ∈X | d(x,y)< r}: open ball of radius r centered at x.

• B(Y,r) :=

{
y ∈X

∣∣∣∣ inf
y′∈Y

d(y,y′)< r

}
: open r -neighborhood of Y.

• dist(x,Y ) := inf{d(x,y) | y ∈ Y }: distance between x and Y.

• Diam(Y ) := sup{d(y,y′) | y,y′ ∈ Y }: diameter of Y.

We use the notation ‖ · ‖ (resp. 〈·, ·〉) for the Euclidean norm (resp. inner product) on the

Euclidean spaces. We also use the notation |A| for the Lebesgue measure of a Lebesgue

measurable subset A.

§2. Three distance functions on the set of convex bodies

Let Cn be the set of all convex bodies in R
n, that is, Cn is the set of all bounded closed

convex sets obtained as closures of open subsets in R
n.

2.1 L2-Wasserstein distance

For each C ∈ Cn let mC be the probability measure on R
n with compact support defined

by

mC :=
χC

Hn(C)
Hn,

where χC is the characteristic function of C and Hn is the n-dimensional Hausdorff measure

on R
n. Of course Hn is equal to the n-dimensional Lebesgue measure Ln, however, since we

put on the field of view of collapsing phenomena of convex bodies into lower dimensional

objects, we prefer to use the Hausdorff measure.

Definition 2.1.1. Define a function dW : Cn×Cn → R≥0 by

dW (C1,C2) :=W2(mC1 ,mC2),

where W2 is the L2-Wasserstein distance on the set of all probability measures on R
n with

finite quadratic moment.

See Appendix A for basic definitions and facts on L2-Wasserstein distance.

Lemma 2.1.2. dW is a distance function on Cn.

Proof. Symmetricity, triangle inequality and non-negativity are clear. The non-

degeneracy follows from the equivalence between the conditions dW (C1,C2)=W2(mC1 ,mC2)=

0 and C1 = supp(mC1) = supp(mC2) = C2.

2.2 Lebesgue volume

For C1,C2 ∈ Cn, let dV (C1,C2) be the Lebesgue volume of the symmetric difference

C1�C2 := (C1 \C2)∪ (C2 \C1):

dV (C1,C2) := |C1�C2|=
∫
Rn

χC1�C2(x)Ln(dx).

This dV is indeed a distance function on Cn and used in a study of convex bodies classically.

See [5] or [15] for example.
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2.3 Hausdorff distance

Let dH be the Hausdorff distance on the set of all compact subsets in R
n.We also denote

the restriction of dH to Cn by the same letter dH :

dH(C1,C2) := max{max
x∈C1

min
y∈C2

‖x−y‖, max
y∈C2

min
x∈C1

‖x−y‖} (C1,C2 ∈ Cn).

§3. Relation of distance functions

3.1 Equivalence among dW, dV, and dH

It is known that two distance functions dV and dH give the same metric topology. More

precisely in [15] it is shown that a sequence {Pi}i in Cn converges to Q ∈ Cn in dV if and

only if it converges to Q in dH .

Lemma 3.1.1. For a sequence {Pi}i in Cn and Q ∈ Cn, if dV (Pi,Q)→ 0 (i→∞), then

we have dW (Pi,Q)→ 0 (i→∞).

Proof. Since lim
i→∞

dV (Pi,Q) = 0 implies lim
i→∞

dH(Pi,Q) = 0 we may assume that

Pi∩Q �= ∅,

Ki := Diam(Pi)≤ 100K := 100Diam(Q),

and | log(|Pi|/|Q|)|< ε for small ε > 0 and any i large enough.

If |Q| ≥ |Pi|, then we have mQ(Q∩Pi)≤mPi(Q∩Pi) and define new probability measures

ν0 :=
1

mQ(Q\Pi)
mQ|Q\Pi

,

ν1 :=
1

mQ(Q\Pi)

(
mPi |Pi\Q+

(
1− mQ(Pi∩Q)

mPi(Pi∩Q)

)
mPi |Q∩Pi

)
.

Since ν0,ν1 �Ln, by Theorem A.2.2, one can find a Borel map T :Rn →R
n with T∗ν0 = ν1

so that W 2
2 (ν0,ν1) =

∫
‖x−T (x)‖2 ν0(dx). By using the map T, we define a coupling ξ1 ∈

Cpl(mQ,mPi) by

ξ1 := (Id,T )∗mQ|Q\Pi
+(Id, Id)∗mQ|Q∩Pi .

Heuristically, the coupling ξ1 represents the transportation from mQ to mPi that

• the mass on Q∩Pi measured by mQ keep staying, and

• the mass on Q\Pi measured by mQ distributes on Pi along the map T.

Note that since supp(T∗ν0) = supp(ν1) ⊂ Pi, we have T (x) ∈ Pi for a.e. x ∈Q\Pi. It also

implies that ‖x−T (x)‖ ≤DiamQ+DiamPi ≤ 101K for a.e. x ∈Q\Pi, and hence, we have∫
Rn×Rn

‖x−y‖2ξ1(dx,dy) =
∫
Rn

‖x−T (x)‖2mQ|Q\Pi
(dx)≤ |Q\Pi|

|Q| · (101K)2.

On the other hand, if |Pi| ≥ |Q|, then for two probability measures

ν′0 :=
1

mPi(Pi \Q)
mPi |Pi\Q

ν′1 :=
1

mPi(Pi \Q)

(
mQ|Q\Pi

+

(
1− |Q|

|Pi|

)
mQ|Q∩Pi

)
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we can find a Borel map S : Rn → R
n with S∗ν

′
0 = ν′1 so that W 2

2 (ν
′
0,ν

′
1) =∫

‖x−S(x)‖2ν′0(dx). Then we have a coupling ξ2 ∈ Cpl(ν′0,ν
′
1) by

ξ2 := (Id,S)∗mPi |Pi\Q+(Id, Id)∗mPi |Q∩Pi .

Then we have

dW (Pi,Q)≤
√∫

Rn×Rn

‖x−y‖2ξ1(dx,dy) or
√∫

Rn×Rn

‖x−y‖2ξ2(dx,dy)

≤
√

|Q\Pi|
|Q| · (101K)2+

√
|Pi \Q|
|Pi|

· (101K)2

≤ 2 ·101K
√

|Q�Pi|
min{|Q|, |Pi|}

≤ 2 ·101K
√

dV (Q,Pi)

e−ε|Q| → 0 (as i→∞).

Lemma 3.1.2. For a sequence {Pi}i in Cn and Q ∈ Cn, if dW (Pi,Q)→ 0 (i→∞), then

we have dV (Pi,Q)→ 0 (i→∞).

Proof. Suppose that dW (Pi,Q) → 0 (i → ∞). Then, mi := mPi converges weakly to

m :=mQ, in particular, we have

mi(Q) =
|Pi∩Q|
|Pi|

→m(Q) = 1

by Theorem A.1.2. Since |Pi∩Q| ≤ |Q| we have |Pi| is bounded, and hence,

|Pi|
|Q| < c

for some c > 0. Corollary A.2.3 implies that for two probability measures mi and m

there exist a sequence of Borel measurable maps {Ti : R
n → R

n}i such that (id×Ti)∗m ∈
Opt(m,mi) for all i and

m({x ∈Q | ‖x−Ti(x)‖ ≥ a}) =m({x ∈ R
n | ‖x−Ti(x)‖ ≥ a})→ 0 (i→∞)

for all a > 0. Let us fix an arbitrary positive number ε and set

ξ :=
ε

(c+1)(|Q|+1)
.

Choose η small enough so that

|B(Q,η)\Q|< ξ.

There exists N ∈ N such that

m({x ∈Q | ‖Ti(x)−x‖ ≥ η})< ξ
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for all i ≥ N . Take and fix i > N . For x ∈ Q we put rix := ‖x− Ti(x)‖. Then we have

Q⊂
⋃
x∈Q

B(x,rix). We put

U i :=
⋃

x∈Q,rix≤η

B(x,rix).

We have

|U i \Q| ≤ |B(Q,η)\Q|< ξ,

|Q\U i|= |Q|m(Q\U i)

≤ |Q|m({x ∈Q | ‖x−Ti(x)‖)≥ η})
< |Q|ξ,

and hence, |Q�U i|< (|Q|+1)ξ. On the other hand we have

|Pi \U i|= |Pi|mi(Pi \U i)

= |Pi|(Ti)∗m(Pi \U i)

= |Pi|m(T−1
i (Pi)\T−1

i (U i)).

Since (Ti)∗m = mi we have that T−1
i (Pi) = Q (m-a.e.). This fact and T−1

i (B(x,rix)) � x

imply that

T−1
i (U i)⊃ {x ∈Q | ‖x−Ti(x)‖ ≤ η}.

In particular we have

|Pi \U i| ≤ |Pi|m({x ∈Q | ‖x−Ti(x)‖> η})≤ |Pi|ξ.

Similarly we have

|U i \Pi|= |Pi|mi(U
i \Pi) = |Pi|m(T−1

i (U i)\Q)

≤ |Pi|m(B(Q,η)\Q) =
|Pi|
|Q| |B(Q,η)\Q|

<
|Pi|
|Q| ξ ≤ cξ,

and hence |U i�Pi| ≤ (|Pi|+ c)ξ. Therefore we have

dV (Pi,Q) = |Q�Pi| ≤ |Q�U i|+ |U i�Pi|
≤ (|Q|+ |Pi|+ c+1)ξ ≤ ((1+ c)|Q|+ c+1)ξ = (1+ c)(|Q|+1)ξ

= ε.

Since ε > 0 is arbitrary, we obtain the conclusion, that is, dV (Pi,Q)→ 0.

As a corollary of Lemmas 3.1.1 and 3.1.2 we have the following by Kratowski’s axiom

and the coincidence between the metric topology of dV and dH as shown in [15].

Theorem 3.1.3. Three metric topologies on Cn determined by dW , dV , and dH coincide

with each other.

https://doi.org/10.1017/nmj.2025.13 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2025.13


DISTANCE FUNCTIONS ON CONVEX BODIES AND SYMPLECTIC TORIC MANIFOLDS 7

3.2 Moduli space of convex bodies and its topology

We introduce the moduli space of convex bodies following [6] and [14]. Let Gn :=

AGL(n,Z) be the integral affine transformation group. Namely Gn is the direct product

GL(n,Z)×R
n as a set and the multiplication on Gn is defined by

(A1, t1) · (A2, t2) := (A1A2,A1t2+ t1)

for each (A1, t1),(A2, t2) ∈Gn. This group Gn acts on Cn in a natural way, and C ∈ Cn and

C ′ ∈ Cn are called Gn-congruent if C and C ′ are contained in the same Gn-orbit.

Definition 3.2.1. The moduli space of convex bodies C̃n with respect to the Gn-

congruence is defined by the quotient

C̃n := Cn/Gn.

Let π be the natural projection from Cn to C̃n.

Definition 3.2.2. Define a function DV : C̃n×C̃n → R by

DV (α,β) := inf{dV (P1,P2) | π(P1) = α,π(P2) = β}

for (α,β) ∈ C̃n×C̃n.

Theorem 3.2.3 [6]. DV is a distance function on C̃n and its metric topology coincides

with the quotient topology induced from π.

This Gn-action and the moduli space C̃n arise naturally in the context of the geometry

of symplectic toric manifolds. In the subsequent sections we will discuss from such point of

view.

Remark 3.2.4. As it is noted in [6] we can not define a distance function on C̃n by

using the infimum of dH (or dW ) among all representatives, though, one may hope that by

considering infimum of dH among only “standard”representatives we can define a distance

function on C̃n. One possible candidates of “standard”representatives are the minimum

variance (or quadratic moment) elements in the following sense.

For each C ∈ Cn define its variance by

Var(C) :=
1

|C|

∫
C

‖x−b(C)‖2Ln(dx),

where b(C) is the barycenter of C which is determined uniquely by the condition

〈b(C),y〉=
∫
Rn

〈x,y〉Ln(dx)

for any y ∈ R
n. See [17] for example. The minimum variance element C ∈ Cn is an element

of

argmin{Var(C ′) | C ′ ∈ Cn is Gn-congruent to C} .

One can see that for any C ∈ Cn there exist at least one and finitely many minimum variance

elements which have the common barycenter are Gn-congruent to C.
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§4. Delzant polytopes and symplectic toric manifolds.

4.1 Delzant polytopes, symplectic toric manifolds and their moduli space

Definition 4.1.1. A convex polytope P in R
n is called a Delzant polytope if P satisfies

the following conditions:

• P is simple, that is, each vertex of P has exactly n edges.

• P is rational, that is, at each vertex all directional vectors of edges can be taken as integral

vectors in Z
n.

• P is smooth, that is, at each vertex we can take integral directional vectors of edges as a

Z-basis of Zn in R
n.

We denote the subset of Cn consisting of all Delzant polytopes by Dn and define their

moduli space by D̃n :=Dn/Gn.

Recall that the data of a (compact) symplectic toric manifold (M,ω,ρ,μ) consists of

• a compact connected symplectic manifold (M,ω) of dimension 2n,

• a homomorphism ρ from the n-dimensional torus Tn to the group of symplectomorphisms

of M which gives a Hamiltonian action of Tn on M and

• a moment map μ :M → R
n = (Lie(Tn))∗.

The famous Delzant construction gives a correspondence between Delzant polytopes and

symplectic toric manifolds.

Theorem 4.1.2 [12]. The Delzant construction gives a bijective correspondence between

D̃n and the set of all weak isomorphism classes of 2n-dimensional symplectic toric

manifolds.

Here two symplectic toric manifolds (M1,ω1,ρ1,μ1) and (M2,ω2,ρ2,μ2) are weakly

isomorphic1 if there exist a diffeomorphism f : M1 → M2 and a group isomorphism

φ : Tn → Tn such that

f∗ω2 = ω1 and ρ1(g)(x) = ρ2(φ(g))(f(x)) for all (g,x) ∈ Tn×M1.

Based on the above fact the moduli space D̃n is also called the moduli space of toric

manifolds in [14]. In [14] they show that (Dn,d
V ) is neither complete nor locally compact

and D̃2 is path connected.

4.2 Brief review on the Delzant construction

For later convenience we give a brief review on the Delzant construction here.

Let P be an n-dimensional Delzant polytope and

l(r)(x) := 〈x,ν(r)〉−λ(r) = 0 (r = 1, . . . ,N) (4.1)

a system of defining affine equations on R
n of facets of P, each ν(r) being inward pointing

normal vector of rth facet and N is the number of facets of P. In other words P can be

described as

P =
N⋂
r=1

{x ∈ R
n | l(r)(x)≥ 0},

1 In [12] the equivalence relation “weakly isomorphism” is called just “equivalent”. In this paper we follow
the terminology in [14].
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and we do not allow redundant inequalities. We may assume that each ν(r) is primitive2 and

they form a Z-basis of Zn. Consider the standard Hamiltonian action of the N -dimensional

torus TN on C
N with the moment map

μ̃ : CN → (RN )∗ = Lie(TN )∗, (z1, . . . , zN ) �→ −1

2
(|z1|2, . . . , |zN |2)+(λ(1), . . . ,λ(N)).

Let π̃ : RN → R
n be the linear map defined by er �→ ν(r), where er (r = 1, . . . ,N) is the

rth standard basis of R
N . Note that π̃ induces a surjection π̃ : ZN → Z

n between the

standard lattices by the last condition in Definition 4.1.1, and hence it induces a surjective

homomorphism between tori, still denoted by π̃,

π̃ : TN = R
N/ZN → Tn = R

n/Zn.

Let H be the kernel of π̃ which is an (N −n)-dimensional subtorus of TN and h its Lie

algebra. We have exact sequences

1→H
ι→ TN π̃→ Tn → 1,

0→ h
ι→ R

N π̃→ R
n → 0

and its dual

0→ (Rn)∗
π̃∗
→ (RN )∗

ι∗→ h∗ → 0,

where ι is the inclusion map. Then the composition ι∗ ◦ μ̃ : CN → h∗ is the associated

moment map of the action of H on C
N . It is known that (ι∗ ◦ μ̃)−1(0) is a compact

submanifold of C
N and H acts freely on it. We obtain the desired symplectic manifold

MP := (ι∗ ◦ μ̃)−1(0)/H equipped with a natural Hamiltonian TN/H = Tn-action. Note that

the standard flat Kähler structure on C
N induces a Kähler structure on MP

3. We call the

associated Riemannian metric the Guillemin metric.

There exists an explicit description of the Guillemin metric. We give the description

following [1]. Consider a smooth function

gP :=
1

2

N∑
r=1

l(r) log l(r) : P ◦ → R, (4.2)

where P ◦ is the interior of P. It is known that M◦
P := μ−1

P (P ◦) is an open dense subset of

MP on which Tn acts freely and there exists a diffeomorphism M◦
P
∼= P ◦×Tn. Under this

identification ωP |M◦
P
can be described as

ωP |M◦
P
= dx∧dy =

n∑
i=1

dxi∧dyi

using the standard coordinate4 (x,y) = (x1, . . . ,xn,y1, . . . ,yn) ∈ P ◦×Tn. The coordinate on

M◦
P induced from (x,y) ∈ P ◦×Tn is called the symplectic coordinate on MP .

2 An integral vector u in R
n is called primitive if u cannot be described as u = ku′ for another integral

vector u′ and k ∈ Z with |k|> 1.
3 In [1] this Kähler structure is called the canonical toric Kähler structure.
4 Here we regard T = Tn = (S1)n and S1 = R/Z.
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Theorem 4.2.1 [9]. Under the symplectic coordinates (x,y)∈P ◦×Tn ∼=M◦
P ⊂MP , the

Guillemin metric can be described as (
GP 0

0 G−1
P

)
,

where GP := Hessx(gP ) =

(
∂2gP
∂xk∂xl

)
k,l=1,...,n

is the Hessian of gP .

Remark 4.2.2. If P and P ′ in Dn are Gn-congruent, then the corresponding Rieman-

nian manifolds MP and MP ′ are isometric to each other. In fact as it is noted in [1, Section

3.3], for ϕ ∈Gn we have an isomorphism between MP and Mϕ(P ) as Kähler manifolds. The

isomorphism is induced by the map P ×T → ϕ(P )×T , (x,t) �→ (ϕ(x),((ϕ∗)
−1)T (t)), where

( )T is the transpose and ϕ∗ is the automorphism of T which is induced by ϕ.

Example 4.2.3. We demonstrate the Delzant construction in dimension 1. For α ≥ 1

consider the inequalities

ξ ≥ 0, 2α− ξ ≥ 0

on R. These inequalities determine a 1-dimensional Delzant polytope Pα = [0,2α].

Let μ̃ : C2 → R
2 be the moment map defined by

μ̃(z1, z2) :=

(
−1

2
|z1|2,−

1

2
|z2|2+2α

)
.

The inequalities determines a linear map π̃ : R2 → R defined by

π̃(e1) = 1, π̃(e2) =−1.

Let H be the kernel of the induced homomorphism π̃ : T 2 → T 1, which is given by

H = {(t, t) ∈ T 2 | t ∈ U(1)} ∼= S1.

Let μH : C2 → (Lie(H))∗ ∼= R be the induced moment map with respect to the H -action,

which is given by

μH(z1, z2) =−1

2
(|z1|2+ |z2|2)+2α.

One can see that 0∈R is a regular value of μH and the induced action of H on Z := μ−1
H (0)

is free, and hence, the quotient Mα := μ−1
H (0)/H has a structure of compact 2-dimensional

symplectic manifold equipped with Hamiltonian T := T 2/H ∼= S1-action.

On the other hand the Hessian of the function

gPα(ξ) :=
1

2
(ξ logξ+(2α− ξ) log(2α− ξ))

gives the Guillemin metric described as(
1

ξ(2α−ξ) 0

0 ξ(2α− ξ)

)
on P ◦

α ×T . By the direct computation we have that the (Gauss) curvature of this metric

is constant 1
α . It turns out that M is isomorphic to the unit sphere with the standard

S1-action and the round metric.

https://doi.org/10.1017/nmj.2025.13 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2025.13


DISTANCE FUNCTIONS ON CONVEX BODIES AND SYMPLECTIC TORIC MANIFOLDS 11

By taking the limit α → 1, we see that Pα converges to P1 = [0,2]. On the other hand

the curvature of Mα converges to the constant 1. In fact by Theorem 5.2.2 Mα converges

to the unit sphere M1 in the T -equivariant Gromov–Hausdorff topology.

§5. Convergence of polytopes and symplectic toric manifolds

Hereafter we do not often distinguish a sequence itself and a subsequence of it.

5.1 Convergence of polytopes and related quantities

For a convex polytope P in R
n let Nk(P ) be the number of k -dimensional faces of P. We

denote the set of all k -dimensional faces of P by

{F (r)
k (P ) | r}= {F (r)

k (P ) | r = 1, . . . ,Nk(P )}.

We often omit the superscript r for simplicity and denote each face by Fk(P ) for example.

Remark 5.1.1. Since the Hausdorff distance between two convex bodies is equal to

that between the boundaries of them, the following holds :

For a sequence {Pi}i ⊂ Dn suppose that dH(Pi,P ) → 0 (i → ∞) for P ∈ Dn. Then for

any x ∈ F
(r)
n−1(P ) there exists a sequence {xi ∈ F

(ri)
n−1(Pi)}i such that xi → x (i→∞).

This fact implies the following corollaries.

Corollary 5.1.2. For a sequence {Pi}i ⊂ Dn suppose that dH(Pi,P ) → 0 (i → ∞)

for P ∈ Dn. For any k = 0,1, . . . ,n− 1 and a point x ∈ F
(r)
k (P ) there exists a sequence

{xi ∈ F
(ri)
k (Pi)}i such that xi → x (i→∞).

Proof. For any x ∈ F
(r)
n−2(P ) let F

(r′)
n−1(P ) be a facet of P which contains x ∈ F

(r)
n−2(P ).

By the fact in Remark 5.1.1 F
(r′)
n−1(P ) can be described as a limit of a union of facets of Pi.

It also implies that F
(r)
n−2(P ) can be described as a limit of (n−2)-dimensional faces of Pi.

One can prove the claim in an inductive way.

Corollary 5.1.3. For a sequence {Pi}i ⊂Dn suppose that dH(Pi,P )→ 0 (i→∞) for

P ∈ Dn. Then the number of k-dimensional faces is lower semi-continuous for any k:

Nk(P )≤ liminf
i→∞

Nk(Pi).

Corollary 5.1.4. For a sequence {Pi}i ⊂Dn suppose that dH(Pi,P )→ 0 (i→∞) for

P ∈ Dn. For any facet F
(r)
n−1(P ) there exists a sequence of facets {F (ri)

n−1(Pi)}i such that

the corresponding defining affine functions converge to that of F
(r)
n−1(P ), that is, l

(ri)
i → l(r)

(i→∞).

Proof. For any x ∈ F
(r)
n−1(P ) of P, one can take a sequence {xi ∈ F

(ri)
n−1(Pi)}i of Pi which

converges to x. We may assume that the sequence of unit normal vectors of F
(ri)
n−1(Pi)

converges to that of F
(r)
n−1(P ). It implies that the corresponding defining affine functions

l
(ri)
i converge to l(r).

We say a sequence of k -dimensional faces {F (ri)
k (Pi)}i of a sequence {Pi}i in Dn converges

essentially to a k-dimensional face F
(r)
k (P ) of P ∈ Dn if

lim
i→∞

Hk(F
(ri)
k (Pi))> 0
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( )
( )
( )

Figure 1.

A sequence of polytopes which has facets converging essentially.

and

lim
i→∞

dH(F
(ri)
k (Pi),F ) = 0

for a closed subset F of F
(r)
k (P ) with respect to the relative topology, where Hk is the

k -dimensional Hausdorff measure on R
n. The following Figure 1 gives an example of a

sequence of facets which converges essentially to a facet. On the other hand the sequence

of slanting facets of the pentagon in Figure 3 converges in a non-essential way.

Next we consider the 2-dimensional case D2.

Theorem 5.1.5. For a sequence {Pi}i ⊂ D2 suppose that dH(Pi,P ) → 0 (i → ∞) for

some P ∈D2. If sup
i

N1(Pi)<∞, then for each facet F
(r)
1 (P ) of P and its primitive normal

vector ν(r), there exists ri ∈ {1, · · · ,N1(Pi)} such that a subsequence of primitive normal

vectors {ν(ri)i }i of F (ri)
1 (Pi) such that ν

(ri)
i → ν(r) (i→∞).

Proof. We may assume that r = 1. By Corollary 5.1.3 and the semi-continuity of the

Hausdorff measure in the non-collapsing limit we may assume that for each facet (=edge)

F
(r)
1 (P ) there exists a sequence {F (ri)

1 (Pi)}i of facets of {Pi}i which converges essentially

to F
(r)
1 (P ). We rearrange the indices so that ri = 1 for all i and may assume that the facets

are numbered in a counterclockwise way.

Since {F (1)
1 (Pi)}i converges essentially to F

(1)
1 (P ) the sequence of inward unit normal

vectors converges:

ν
(1)
i

‖ν(1)i ‖
→ ν(1)

‖ν(1)‖ (i→∞).

Since {ν(1)i }i is a sequence of integral vectors if {‖ν(1)i ‖}i is a bounded sequence, then

ν
(1)
i = ν(1) for sufficiently large i, and hence, we have the required subsequence.

We consider the case that {ν(1)i }i is unbounded. By taking a subsequence we have∣∣∣∣∣det
(

ν
(1)
i

‖ν(1)i ‖
,
ν
(2)
i

‖ν(2)i ‖

)∣∣∣∣∣= 1

‖ν(1)i ‖‖ν(2)i ‖
|det(ν(1)i ,ν

(2)
i )| ≤ 1

‖ν(1)i ‖
→ 0 (i→∞), (5.1)
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and hence, we have

ν
(2)
i

‖ν(2)i ‖
→± ν(1)

‖ν(1)‖ (i→∞). (5.2)

We first show the following claim.

Claim. There exists a subsequence of {F (2)
1 (Pi)}i which converges to a point or a

segment in F
(1)
1 (P ).

Proof of the claim. Let A = lim
i→∞

F
(1)
1 (Pi). If lim

i→∞
diam(F

(2)
1 (Pi)) = 0, then F

(2)
1 (Pi)

converges to a point. In this case F
(1)
1 (Pi)∪F

(2)
1 (Pi) converges to A, and hence F

(2)
1 (Pi)

converges to a point in A. If limsup
i→∞

diam(F
(2)
1 (Pi)) > 0, then a subsequence of F

(2)
1 (Pi)

converges to an interval B with positive length. Suppose that
ν
(2)
i

‖ν(2)
i ‖

converges to − ν(1)

‖ν(1)‖ . If

so then (5.1) implies that for any ε > 0 the interior angle between F
(1)
1 (Pi) and F

(2)
1 (Pi) is

smaller than ε for any i� 0. Then we have |Pi|< (diam(Pi))ε, which contradicts to Pi → P

in dH-topology, and hence, we have
ν
(2)
i

‖ν(2)
i ‖

→ ν(1)

‖ν(1)‖ . In particular the interior angle between

F
(1)
1 (Pi) and F

(2)
1 (Pi) converges to π, and hence, B is contained in the line which contains

A. It implies the claim, A∪B ⊂ F
(1)
1 (P ).

By taking a subsequence we may assume that N1(Pi) is constant for i � 1, say

supiN1(Pi). We can take the smallest number s so that 2 ≤ s ≤ supiN1(Pi) and {ν(s)i }i
is bounded. In fact, if not, then by repeating the argument in the proof of the above claim

inductively we see that Pi converges to a subset of F
(1)
1 (P ), which is a contradiction. By

using the minimality of s and the argument (5.1) repeatedly we have

ν
(s)
i

‖ν(s)i ‖
→± ν(1)

‖ν(1)‖ (i→∞).

Again, by using the argument in the proof of the above claim repeatedly, we see that by

taking a subsequence, ⋃
1≤t≤s−1

F
(t)
1 (Pi)

converges to a segment in F
(1)
1 (P ) and

ν
(s)
i

‖ν(s)
i ‖

converges to ν(1)

‖ν(1)‖ as i→∞. The boundedness

of {ν(s)i }i implies that this is the required subsequence.

Remark 5.1.6. In Theorem 5.1.5 the boundedness of each sequence of primitive normal

vectors {ν(ri)i }i implies that it contains a constant subsequence. In other words, only the

constant terms vary in the defining equations of the (sub)sequence {Pi}i. See Figure 2.

By the same argument we have the following convergence in the higher dimensional

non-degenerate case.

Theorem 5.1.7. For a sequence {Pi}i ⊂ Dn suppose that dH(Pi,P ) → 0 (i → ∞) for

some P ∈Dn and Nn−1(P ) = lim
i→∞

Nn−1(Pi). For each facet F (r)(P ) of P and its primitive
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( )
( )

Figure 2.

A sequence of polytopes with constant normal vectors.

normal vector ν(r), there exists a sequence of primitive normal vectors {ν(ri)i }i of F (ri)(Pi)

such that ν
(ri)
i → ν(r) (i→∞).

Proof. As in the proof of Theorem 5.1.5 we can take a sequence of primitive normal

vectors {ν(1)i }i of {F (1)(Pi)}i, and it suffices to show that {‖ν(1)i ‖}i is bounded. Suppose

that {‖ν(1)i ‖}i is unbounded. Consider a vertex of F
(1)
n−1(Pi) and facets around it. We may

assume that they are numbered as r = 2,3, · · · ,n. Then for their primitive normal vectors

we have ∣∣∣∣∣det
(

ν
(1)
i

‖ν(1)i ‖
,
ν
(2)
i

‖ν(2)i ‖
, · · · , ν

(n)
i

‖ν(n)i ‖

)∣∣∣∣∣≤ 1

‖ν(1)i ‖
→ 0 (i→∞).

It contradicts to our assumption Nn−1(P ) = lim
i→∞

Nn−1(Pi).

5.2 From convergence of polytope to convergence of Guillemin metric

We first give the definition of equivariant (measured) Gromov–Hausdorff convergence as

a special case of [7, Definition 1-3].

Definition 5.2.1. Let X = (X,d) be a compact metric space and {Xi = (Xi,di)}i be
a sequence of compact metric spaces. Suppose that there exists a group G which acts on

X and each Xi in an effective and isometric way. Then {Xi}i converges to X in the G-

equivariant Gromov–Hausdorff topology if there exist sequences of maps {fi : Xi → X}i,
group automorphisms {ρi : G → G}i and positive numbers {εi}i such that the following

conditions hold.

1. εi → 0 as i→∞.

2. |di(x,y)−d(fi(x),fi(y))|< εi for all x,y ∈Xi.

3. For any p ∈X there exists x ∈Xi such that d(p,fi(x))< εi.

4. d(fi(gx),ρi(g)fi(x))< εi for all x ∈Xi and g ∈G.

When a map fi :Xi →X satisfies 2, 3, and 4, respectively, we say that fi is almost isometric,

almost surjective and almost equivariant, respectively. This situation will be denoted by

Xi
G-eqGH−−−−−→X (or Xi →X for simplicity) and fi’s are called approximation maps.

Moreover if X (resp. {Xi}i) is equipped with a G-invariant measure m (resp. mi) in

such a way that (X,m) (resp. (Xi,mi)) is a metric measure space and the push forward
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measure (fi)∗mi converges to m weakly, then we say {(Xi,mi)}i converges to (X,m) in the

G-equivariant measured Gromov–Hausdorff topology and we will denote Xi
G-eqmGH−−−−−−→X.

When we consider about equivariant (measured) Gromov–Hausdorff convergence for

Riemannian manifolds, we always assume that the manifolds are equipped with Riemannian

distance and Riemannian measure.

As a corollary of Theorem 5.1.7 we have the following convergence theorem of symplectic

toric manifolds. We emphasize that we do not put any assumptions on curvatures in our

theorem below.

Theorem 5.2.2. For a sequence {Pi}i ⊂Dn suppose that dH(Pi,P )→ 0 (i→∞) for P ∈
Dn and Nn−1(P ) = lim

i→∞
Nn−1(Pi), where Nn−1(·) is the number of the facets. Then there

exists a subsequence of {MPi}i which converges to MP with respect to the corresponding

Guillemin metrics in the T-equivariant Gromov–Hausdorff topology.

Proof. We use the same notations as in Section 4.2 with suffix i. We may assume N =

Nn−1(P ) =Nn−1(Pi) =Ni. The proof of Theorem 5.1.7 implies that hi = h and Hi =H for

i� 0. Moreover as a corollary of Theorem 5.1.7 we have λ
(r)
i →λ(r) (i→∞) for the constants

of the defining equations of Pi (after renumbering the facets). As a consequence (ι∗i ◦μ̃i)
−1(0)

converges to (ι∗ ◦ μ̃)−1(0) in the equivariant Gromov–Hausdorff topology5. Then {MPi =

(ι∗i ◦μ̃i)
−1(0)/Hi}i converges toMP =(ι∗◦μ̃)−1(0)/H in the Gromov–Hausdorff topology by

[7, Theorem 2-1]. Moreover the identifications Hi =H induce identifications Tn
i = TN/Hi =

TN/H = Tn, which makes the above convergence into the T -equivariant Gromov–Hausdorff

topology.

Corollary 5.2.3. Under the same assumptions in Theorem 5.2.2, take a subsequence

in {MPi}i which converges to MP . Then MPi are T-equivariantly diffeomorphic to MP for

i� 0.

Proof. By Theorem 5.1.7 we may assume that ν
(r)
i = ν(r) for i� 0. On the other hand

each MPi is T -equivariantly diffeomorphic to the toric variety associated with the fan ΣPi .

Note that ΣPi is determined by the normal vectors {ν(r)i }r and it does not depend on

{λ(r)
i }r (See [3] for example). It implies the claim.

Remark 5.2.4. The following example shows that it cannot be expected that a

convergence of Guillemin metrics to a Guillemin metric as in Theorem 5.2.2 occurs without

the assumption Nn−1(P ) = lim
i→∞

Nn−1(Pi).

Consider a sequence of Delzant pentagon {Pi}i defined by 5 inequalities,

ξ1 ≥ 0, 1− ξ1 ≥ 0, ξ2 ≥ 0, 1− ξ2 ≥ 0, −ξ1− ξ2+(2−1/i)≥ 0,

which converges to a rectangle P as in Figure 3.

It is known that the symplectic toric manifolds MPi corresponding to each pentagon Pi

are (diffeomorphic to) a 1 point blow-up of CP 1×CP 1. On the other hand the symplectic

toric manifold MP corresponding to P is isometric to CP 1 ×CP 1 equipped with the

Guillemin metric which is the product metric on CP 1.

5 In fact this convergence is nothing other than the Hausdorff convergence of a sequence of compact subsets
in R

N .
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Figure 3.

A sequence of pentagons which converges to a rectangle.

The limiting process i→∞ gives a smooth convex function

g∞(ξ1, ξ2) =
1

2
(ξ1 logξ1+(1− ξ1) log(1− ξ1)+ ξ2 logξ2+(1− ξ2) log(1− ξ2)

+(2− ξ1− ξ2) log(2− ξ1− ξ2))

on P ◦. This g∞ does not give the Guillemin metric on MP . To deal with these subtle

phenomena we have to consider finer structures on Dn or D̃n and incorporate potential

functions. We will discuss such formulation in a subsequent paper.

5.3 From convergence of Guillemin metrics to convergence of polytopes

Now let us discuss the convergence of the opposite direction.

Hereafter for each P ∈ Dn we denote the symplectic toric manifold equipped with the

Guillemin metric by MP = (MP ,ωP ), and we use the Liouville volume form volMP
:= (ωP )∧n

n!

on the symplectic toric manifold MP . In this way we think MP as a metric measure space.

Theorem 5.3.1. Let {Pi}i be a sequence in Dn. Suppose that a sequence of symplectic

toric manifolds {MPi}i converges to MP for some P ∈ Dn with respect to their Guillemin

metrics in the T-equivariant measured Gromov–Hausdorff topology. Let {fi :MPi →MP }i be
a sequence of approximation maps of the convergence. If {Pi}i are contained in a sufficiently

large ball in R
n, then we have

lim
i→∞

fi(M
T
Pi
) =MT

P ,

where MT
Pi

and MT
P are the fixed point sets of T-actions. In particular we have

liminf
i→∞

χ(MPi)≥ χ(MP ),

where χ(·) denotes the Euler characteristic.

Proof. For simplicity we denote Mi :=MPi and M :=MP .

Fix an arbitrary δ > 0. We show that for any sequence {xi ∈ MT
i }i there exists I ∈ N

such that fi(xi)∈B(MT , δ) for any i > I. Suppose that there exists δ > 0 such that fi(xi) /∈
B(MT , δ) for infinitely many i. For ε > 0, we define δε as the minimal δ′ > 0 such that if

y �∈ B(MT , δ′), then Diam(T · y) ≥ ε. Note that since M is compact such δε > 0 exists and

δε → 0 as ε→ 0. Since fi is almost T -equivariant we have

εi > d(ρi(t)fi(xi),fi(txi)) = d(ρi(t)fi(xi),fi(xi))
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for all t ∈ T , where {εi}i is a sequence of positive numbers as in Definition 5.2.1 and d

is the Riemannian distance of M. It implies that Diam(T · fi(xi)) < 2εi → 0 as i → ∞. If

we take i large enough so that δεi < δ, then we have fi(xi) ∈ B(MT , δεi). It contradicts to

fi(xi) /∈B(MT , δ).

Next we show that for any δ > 0 there exists i0 ∈ N such that

f−1
i (MT )⊂B(MT

i , δ)

holds for all i > i0. If not then there exists δ > 0 such that we can take xi ∈ f−1
i (MT ) and

xi /∈ B(MT
i , δ) for infinitely many i. Since fi is almost isometry and almost T -equivariant

we have

di(txi,xi)< d(fi(txi),fi(xi))+ εi

< d(fi(txi), tfi(xi))+ εi

< 2εi

for all t ∈ T , where di is the Riemannian distance of Mi. It implies Diam(T ·xi)< 4εi. On

the other hand it is known that each T · xi is a flat torus, and hence, Diam(T · xi) → 0

(i→∞) implies Vol(T ·xi)→ 0 (i→∞), where Vol is the Riemannian volume with respect

to the induced Riemannian metric. Now consider a compact subset P ′
i := μi(Mi \B(MT

i , δ))

of Pi. Since {Mi}i converges to M in the measured Gromov–Hausdorff topology {Vol(Mi)}i
converges to Vol(M). Duistermaat–Heckman’s theorem implies that the Euclidean volumes

of {Pi}i converge to that of P. In particular they are bounded below by a positive constant.

Moreover since we assume that {Pi}i are contained in a ball, the sequence of convex

polytopes {Pi}i converges to some convex body Q in the Hausdorff distance. As in the

same way {P ′
i}i converges to some compact subset Q′ of Q. Let Q(0) be the limit point set

of μi(M
T
i ) = P

(0)
i . Then we have Q(0)∩Q′ = ∅. When we take δ′ > 0 small enough so that

dist(Q(0),Q′)> 2δ′ we have dist(P
(0)
i ,P ′

i )> δ′. The formula of volumes of the orbits in [11]

implies6 that

liminf
i→∞

Vol(T ·xi)> 0.

It contradicts to lim
i→∞

Vol(T ·xi) = 0.

The inequality

lim
i→∞

χ(MPi)≥ χ(MP ),

follows from the fact that the Euler characteristic of symplectic toric manifold is equal to

the number of fixed points.

Hereafter we discuss the convergence of polytopes under the assumption in Theorem 5.3.1

without boundedness of {Pi}i.

Theorem 5.3.2. Let {Pi}i be a sequence in Dn. Suppose that a sequence of symplectic

toric manifolds {MPi}i converges to MP for some P ∈ Dn with respect to their Guillemin

6 Strictly speaking the formula in [11] can be applied when μi(xi) is in the interior part of Pi. So the
above argument shows that {xi}i cannot be taken in such an interior part. As the next step we assume
that {xi}i sits in the inverse image of the interior part of codimension one face, and we deduce the
contradiction. We proceed the same step for higher codimension face.
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metrics in the T-equivariant measured Gromov–Hausdorff topology. Let {fi :MPi →MP }i
be a sequence of approximation maps of the convergence. We take and fix a section7 Si :

Pi →MPi of the moment map μi :MPi → Pi for each i. For each i we define f̂i : Pi → P by

the composition f̂i := μ◦fi ◦Si.

Under the above set-up there exists a subsequence of {f̂i(Pi)}i which converges to P in

the dH-topology.

To show Theorem 5.3.2 we prepare two lemmas. Consider the same setting as in

Theorem 5.3.2. Let μi :MPi →Pi ⊂R
n and μ :MP →P ⊂R

n be the moment maps. For any

ϕ∈Cb(R
n) we define ϕ̃∈C(MP ) by ϕ̃ :=ϕ◦μ. Let {fi}i be a family of approximation maps

for MPi

T -eqmGH−−−−−−→MP . We define a sequence of measurable functions {ϕ̃i :MPi → R}i by
ϕ̃i := ϕ̃◦fi. Let {(volMPi

)y}y∈Pi (resp. {(volMP
)y}y∈P ) be a disintegration (See Appendix

B) for μi : MPi → Pi (resp. μ : MP → P ) and define a sequence of measurable functions

{ϕi : Pi → R}i by

ϕi(y) :=

∫
MPi

ϕ̃i(x)(volMPi
)y(dx). (5.3)

Lemma 5.3.3. For any ϕ ∈ Cb(R
n) the sequence of measurable maps {ϕi : Pi → R}i

satisfies

lim
i→∞

∫
Pi

ϕi dLn =

∫
P

ϕ dLn.

Proof. Note that by Duistermaat–Heckman’s theorem we have (μi)∗(volMPi
) = Ln|Pi .

Since (fi)∗(volMPi
) converges to volMP

the claim follows as follows.∫
Pi

ϕi(y)Ln(dy) =

∫
Pi

(∫
MPi

ϕ̃i(x)(volMPi
)y(dx)

)
Ln(dy)

=

∫
MPi

ϕ̃i(x)volMPi
(dx)

=

∫
MPi

ϕ̃(fi(x))volMPi
(dx)

−−−→
i→∞

∫
MP

ϕ̃(x)volMP
(dx)

=

∫
P

(∫
MP

ϕ̃(x)(volMP
)y(dx)

)
Ln(dy)

=

∫
P

(∫
μ−1(y)

ϕ(μ(x))(volMP
)y(dx)

)
Ln(dy)

=

∫
P

(∫
μ−1(y)

ϕ(y)(volMP
)y(dx)

)
Ln(dy)

=

∫
P

ϕ(y)Ln(dy).

7 We do not assume the continuity of Si. We only need the measurability of it.
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Lemma 5.3.4. As in the same setting in Theorem 5.3.2 we have

lim
i→∞

1

|Pi|

∫
Pi

ϕidLn = lim
i→∞

1

|Pi|

∫
Pi

ϕ◦ f̂idLn.

for any ϕ ∈ Cb(R
n), where ϕi are as in (5.3).

Proof. Let {ρi : Tn → Tn}i be a sequence of automorphisms as in Definition 5.2.1 for

MPi

eq−mGH−−−−−−→MP . Fix η > 0 and ϕ ∈ Cb(R
n). For any y ∈ Pi we have

|ϕi(y)−ϕ(Fi(y))| ≤
∫
μ−1
i (y)

|ϕ(μ(fi(x)))−ϕ(μ(fi(Si(y))))|(volMPi
)y(dx). (5.4)

Since for any x ∈ μ−1
i (y) there exists tx ∈ T such that x= tx ·Si(y) we have

‖μ(fi(x))−μ(fi(Si(y)))‖= ‖μ(fi(tx ·Si(y)))−μ(fi(Si(y)))‖
= ‖μ(fi(tx ·Si(y)))−μ(ρi(tx) ·fi(Si(y)))‖.

On the other hand since ϕ and μ are uniformly continuous and {MPi}i converges to MP in

the T -equivariant Gromov–Hausdorff topology there exists i0 ∈ N such that if i > i0, then

|ϕ(μ(fi(x)))−ϕ(μ(fi(Si(y))))|= |ϕ(μ(fi(x)))−ϕ(μ(ρi(tx) ·fi(Si(y))))|< η.

In particular we have

|ϕi(y)−ϕ(f̂i(y))|< η

in (5.4), and hence,

1

|Pi|

∣∣∣∣∫
Pi

(ϕi(y)−ϕ(f̂i(y)))Ln(dy)

∣∣∣∣< η.

Note that our assumption MPi

T -eqmGH−−−−−−→ MP and Duistermaat–Heckman’s theorem

imply |Pi| = volMPi
(MPi) → |P | = volMP

(MP ). Since η > 0 is arbitrary the limit of
1

|Pi|

∫
Pi

ϕi(y)Ln(dy) exists and we have the required equality

lim
i→∞

1

|Pi|

∫
Pi

ϕi(y)Ln(dy) = lim
i→∞

1

|Pi|

∫
Pi

ϕ(f̂i(y))Ln(dy).

Proof of Theorem 5.3.2. Let ϕ∈Cb(R
n). By Lemmas 5.3.3 and 5.3.4, we have a sequence

of measurable maps {f̂i : Pi → P}i and measurable functions {ϕi : Pi → R}i such that

lim
i→∞

∫
P

ϕ(y)(f̂i)∗(Ln)(dy) = lim
i→∞

∫
Pi

ϕi(y)Ln(dy) =

∫
P

ϕ(y)Ln(dy).

Note that we have |Pi| → |P | (i→∞) under our assumption, measured Gromov–Hausdorff

convergence, and Duistermaat–Heckman’s theorem. This equality implies that the sequence

of probability measures {(f̂i)∗mPi}i converges weakly to mP .

Now we show that

inf
i

inf
x∈P

(f̂i)∗(mi)(Bε(x))> 0 (5.5)
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for all ε > 0. If not, then there exists ε0 > 0, a sequence of natural numbers {ij}j and a

sequence of points {xj}j in P such that

(f̂ij )∗(mij )(Bε0(xj))→ 0 (j →∞).

Since P is compact there is an accumulation point x∞ of {xj}j and we have

Bε0/2(x∞)⊂Bε0(xj)

for infinitely many j. Then we have a contradiction

0<mP (Bε/2(x∞))≤ liminf
j

(f̂ij )∗(mij )(Bε0/2(x∞))

≤ liminf
j

(f̂ij )∗(mij )(Bε0(xj)) = 0.

The weak convergence of {(f̂i)∗mPi}i to mP implies the �-convergence of a sequence

of metric measure spaces {(P,(f̂i)∗mPi)} to (P,mP ) by [16, Proposition 4.12]. Moreover

the �-convergence and (5.5) imply the measured Gromov–Hausdorff convergence of

{(P,(f̂i)∗mPi)} to (P,mP ) by [16, Remark 4.34], which in particular implies the Hausdorff

convergence of {supp((f̂i)∗mPi) = f̂i(Pi)}i to supp(mP ) = P .

Remark 5.3.5. Regarding Theorem 5.3.2 it is natural to consider the convergence

of {Pi}i itself to P in the Gromov–Hausdorff or dH-topology. One can see that this is

not true in the literal sense because of the ambiguity of the affine transformation groups

Gn. We could address these problems in terms of the moduli space. Namely one may

hope that if {MPi}i converges to MP in the T -equivariant measured Gromov–Hausdorff

topology, then there exists a sequence {ϕi}i in Gn such that {ϕi(Pi)}i converges to P in

the Gromov–Hausdorff or dH-topology. It would be useful to consider minimum variance

elements explained in Remark 3.2.4.

§A. Preliminaries on probability measures and L2-Wasserstein distance.

In this appendix we summarize several facts on probability measures and L2-Wasserstein

distance. For more details consult [18] for example.

Let P(Rn) be the set of all complete Borel probability measures on R
n. Consider the

subset of P(Rn) consisting of measures with finite quadratic moment,

P2(R
n) :=

{
m ∈ P(Rn)

∣∣∣∣ ∃o ∈ R
n,

∫
Rn

‖x−o‖2m(dx)<∞
}
.

A.1. Weak convergence and Prokhorov’s theorem

Definition A.1.1. A sequence {mi}i in P(Rn) converges weakly to m ∈ P(Rn)

lim
i→∞

∫
Rn

f(x)mi(dx) =

∫
Rn

f(x)m(dx)

for any bounded continuous function f on R
n.

Theorem A.1.2. For a sequence {mi}i in P(Rn) and m ∈ P(Rn) the followings are

equivalent.
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1. {mi}i converges weakly to m.

2. For any open subset U in R
n we have liminf

i→∞
mi(U)≥m(U).

3. For any closed subset C in R
n we have limsup

i→∞
mi(C)≤m(C).

4. For any Borel subset A in R
n with m(A\A◦) = 0 we have lim

i→∞
mi(A) =m(A).

Theorem A.1.3 (Prokhorov’s theorem). A subset K⊂P(Rn) is relatively compact with

respect to the weak convergence topology if and only if for all ε > 0 there exists a compact

subset K ⊂ R
n such that8

sup
m∈K

m(Rn \K)< ε.

For a weak convergent sequence of probability measure the following is well-known. See

[2] for example.

Theorem A.1.4. If {mi}i ⊂ P(Rn) has a weak convergent limit m ∈ P(Rn), then for

any x ∈ supp(m) there exists xi ∈ supp(mi) such that xi → x.

A.2. L2-Wasserstein distance of probability measures

For m,m′ ∈P2(R
n) let Cpl(m,m′) be the set of all couplings between m and m′. Namely

Cpl(m,m′) is the set of measures ξ ∈ P(Rn×R
n) such that for any Borel subset A of Rn

it satisfies {
ξ(A×R

n) =m(A)

ξ(Rn×A) =m′(A).

The L2-Wasserstein distance between m,m′ ∈ P2(R
m) is defined by

W2(m,m′) := inf

{(∫
Rn×Rn

‖x−y‖2ξ(dx,dy)
)1/2

∣∣∣∣∣ ξ ∈ Cpl(m,m′)

}
.

It is known that W2 is a metric on P2(R
n) and (P2(R

n),W2) is a complete separable

metric space with the following properties.

Theorem A.2.1. For a sequence {mi}i in P2(R
n) and m ∈P2(R

n) the followings are

equivalent.

1. W2(mi,m)→ 0 (i→∞).

2. {mi}i converges weakly to m and

lim
R→∞

limsup
i→∞

∫
Rn\B(o,R)

‖x−o‖2mi(dx) = 0.

3. For any continuous function ϕ such that |ϕ(x)| ≤ C(1+ ‖x0 − x‖)2 for some C > 0,

x0 ∈ R
n the following holds

lim
i→∞

∫
Rn

ϕdmi =

∫
Rn

ϕdm.

Recall that if for m,m′ ∈P2(R
n) there exists a Borel measurable map T :Rn →R

n such

that T∗m=m′ and (id×T )∗m∈Opt(m,m′), then we say that the Monge problem for m,m′

admits a solution and T is called a solution of the Monge problem.

8 A subset K ⊂ P(Rn) with this property is often called tight.
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Theorem A.2.2. For m,m′ ∈P2(R
n) if m�Ln, then there is a solution of the Monge

problem for m and m′. The solution is unique in the following sense. For another solution

S : Rn → R
n we have m({T �= S}) = 0.

Corollary A.2.3. For m,m′ ∈P2(R
n) with m�Ln and a sequence {m′

i}i in P2(R
n)

which converges weakly to m′, there exists a solution T :Rn →R
n of the Monge problem for

m, m′ and a sequence {Ti}i of solutions of the Monge problem for m, m′
i with

m({x ∈ R
n | |Ti(x)−T (x)| ≥ ε})→ 0 (i→∞).

§B. Disintegration theorem

We use the following type of disintegration theorem. See [8, Theorem 16.10.1] for example.

Theorem B.0.1. Let X and Y be complete separable metric spaces. Let m be a σ-finite

Borel probability measure and f : X → Y a Borel measurable map. Suppose that the push

forward f∗m is a σ-finite measure on Y. Then there exists a family of probability measures

{my}y∈Y on X such that for each Borel subset A the map

Y � y �→my(A) ∈ [0,1]

is Borel measurable and for each Borel measurable function ϕ on X we have∫
X

ϕ dm=

∫
Y

(∫
X

ϕ(x)my(dx)

)
f∗m(dy).

Moreover we have

my(f
−1(y)) = 1 (y ∈ Y (f∗m-a.e)).

The above family of measures {my}y∈Y is called a disintegration for f :X → Y .
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