
Can. J. Math., Vol. X X X I I , No. 3, 1980, pp. 714-733 

MODULAR REPRESENTATIONS OF FINITE GROUPS 
WITH UNSATURATED SPLIT (B5N)-PAIRS 

N. B. T I N B E R G 

1. Introduction. Let p be a prime number. A finite group G = 
(G, B} N, R, U) is called a split (B, N)-pair of characteristic p and rank n 
if 

(i) G has a (B, iV)-pair (see [3, Définition 2.1, p. B-8]) where 
H = B r\ N and the Weyl group W = N/H is generated by the set 
R = {wi, . . . , wn) of "special generators." 

(ii) H = f W n~lBn. 
(iii) There exists a ^-subgroup U of G such that 5 = £/i? is a semi-

direct product, U <^ B and if is abelian with order prime to p. 

A (B, iV)-pair satisfying (ii) is called a saturated (B, 7V)-pair. We call 
a finite group G which satisfies (i) and (iii) an unsaturated split (B, N)-
pair. (Unsaturated means "not necessarily saturated".) If C = 
C\n£N n~lUn then G has a (saturated) split (5 , iV)-pair if and only if 
C = 1. 

We are interested in studying the irreducible modular representations 
of unsaturated split (B, N)-pairs over an algebraically closed field k of 
characteristic p. Curtis ([3]) and Richen ([7]) have dealt with the 
saturated case. Unsaturated split (B, N)-pairs arise, for example, as the 
(J5, N)-pairs of parabolic subgroups of groups with split (B, N)-pairs. It 
is true that any unsaturated split (B, iV)-pair G can be replaced by a 
saturated pair (B, N) where N = NH and H = CH (see [3, Proposition 
2.6, p. B-10]) and the two pairs have isomorphic Weyl groups. However, 
B = UH may no longer satisfy (iii) above and we cannot apply the 
Curtis-Richen results on irreducible &G-modules directly. 

However, if C < G then (G/C, B/C, N, R, U/C) is a saturated split 
(B, TV)-pair and since C is a ^-group there exists a bisection between the 
set of isomorphism classes of irreducible fcG-modules and the set of iso­
morphism classes of irreducible k(G/C) -modules. So in the case when 
C < G we could apply the Curtis-Richen theory to the group G/C. 

There are three major advantages in a theory where we only assume G 
has an unsaturated split (B, iV)-pair: 

(1) Unsaturated groups appear even in the course of the Curtis-
Richen treatment of the saturated case (see [3, Corollary 5.1, p. B-24] 
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MODULAR REPRESENTATIONS 715 

and [7, Lemma 3.23, p. 453]) and so we get some simplification of proofs 
by dealing with unsaturated groups from the start. 

(2) The unsaturated theory applies at once to parabolic subgroups 
Gj (JQR) of G (see [9]). 

(3) In case p = 2 there exist unsaturated G for which the group C is 
not normal in G (see below). The irreducible &G-modules for such a group 
G cannot be reached by the ' 'saturated" theory. 

Let G = (G, B, N, R, U) be an unsaturated split (B, iV)-pair. All k-
spaces are assumed to be finite dimensional. We study the modular rep­
resentations of G over k in the following way: Let Y = Ind uG(ku) and 
E = EndkG(Y) where kv is the trivial /[/-module k. Sawada ([8]) was the 
first to examine Y and E for groups with split (B, N)-pairs and he 
established a bijective correspondence between the set of isomorphism 
classes of irreducible left &G-modules and the set of isomorphism classes 
of irreducible right E-modules. In doing so, Sawada relied upon work done 
by Curtis and Richen. We begin by discussing the right ^-modules 
directly, and we are able to recover most of the results of Curtis, Richen 
and Sawada by using a recent theorem of Green ([5]). By this method we 
are able to discard the saturation condition from the general theory. 

The main results of this paper are the following theorems concerning 
the algebra E: 

a) E is Frobenius (3.7). 
b) Every simple right E-module is one-dimensional and is thus given 

by a multiplicative character \p:E —» k (3.13). 
c) Each such \p is determined by a vector (%, Mi, . . . , /O where % is a 

linear character of B and /** £ k (1 ^ i ^ n) (3.22). 
These vectors (x, Mi, . . . , M») correspond exactly to Curtis' "weights" 

(see [3, Definition 4.2, p. B-17, B-18]) and many, but not all, of the 
arguments used in the proofs of b) and c) are based on Curtis' work. The 
application of our results concerning the irreducible representations of E, 
to the irreducible representations of G, is given at the end of Section 3. 

Using a result of Kantor and Seitz on 2-transitive permutation groups 
we show that if p is odd the group C is normal in G for all unsaturated split 
(B, N)-pairs (4.5). Lastly we give an example of a rank one unsaturated 
split (B, /V)-pair when p = 2 but C is not normal in G. 

Notations. Since H is abelian, B = UH and [/is a£-group all modular 
irreducible characters of B are linear. Let k* = k\{l} and B = 
Hom(B, k*). If x, g G G then x9 = g~lxg. For any subset T of G, 
IT] = îlttT t G kG and Tg = g~lTg. Let w £ W and (w) G N be such 
that (w)H = w. For X any subgroup of G containing H, we write Xw 
for X(w) (similarly for wX, XwX). If A is any subgroup of G normalized 
by H, then Aw = AhW for any h G H so we write Aw. The Weyl group 
W acts on the elements of H by hw = h(w) since H is abelian. If H is a 
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716 N. B. TINBERG 

subgroup of G and M is any &G-module, M\H denotes the restriction of M 

to H and we sometimes write p\H if p is the character afforded by M. 
T h e results of this paper formed pa r t of the au thor ' s doctoral thesis 

submit ted a t the Universi ty of Warwick. T h e au thor is most grateful to 
her thesis adviser, Professor J. A. Green, for suggesting the subject deal t 
with in this work and for his help and encouragement during the research 
and preparat ion of this paper. 

2. U n s a t u r a t e d sp l i t (B, N)-pairs. Let p be a prime number and 
let G = (G, B, N, R, U) be an unsa tura ted split (B, iV)-pair of charac­
teristic p and rank n. Therefore, we allow tha t C\neN Bn ^ H. W e assume, 
unless otherwise s tated, t ha t k is an algebraically closed field of character­
istic p. Let v:N —» W be the natura l epimorphism where W = N/H is 
the Weyl group of the (B, iV)-pair. T h e set R = {wi, . . . , wn) generates 
W and the length of w 6 W as a product of such generators is denoted 
l(w). T h e unique element of maximal length in W will be denoted WQ. 

Let Y = lndu
G(ku) and let y correspond to the element 1KG® ku 1*> 

If {gi\ i £ /} is a left transversal for the cosets of U in G, then Y = kG • y 
has &-basis {gty\ i G / } . Let E = EndkG(Y). 

We assume tha t {(w)\ w Ç W] is a fixed, bu t arbi t rary , set of coset 
representatives of H in iV. 

In this preliminary section we s ta te results which, though proved in 
[3] and [7] under the assumption of saturat ion, do not actually depend on 
tha t condition. For example, s ta tements in [7, Chapte r II] which do not 
involve H = B C\ N will be t rue in the unsa tura ted case. We also make 
adjus tments to other results when necessary to suit our unsa tu ra ted 
hypothesis. 

T h e reader will notice t ha t the proofs of certain technical lemmas in 
Sections 1 and 2 have been deferred to Section 5 where the specific rank 1 
case is discussed. 

Notation. Let w e W. Then WB+ = B P\ BW;WU+ = U C\ UW;WB~ = 
B C\ Bw°w; and WV~~ = U C\ Uw«w. Wri te £/£, U~ for w-iC/+, « - i r ­
respectively. 

Remark 1. Notice t ha t WB+ = WU+H, WB~ = WU~H (see [7, proof of 
Theorem 3.3 (b), p . 444] ) and t h a t H normalizes w U+, w U~ for any w G W. 

2.1 LEMMA. The intersection of the N-conjugates of B is B C\ Bw°. Also 

Hn^N un = r w uw = un uw\ 
Proof. W e need only show tha t B C\ Bw° C WB+ for all w 6 W. A proof 

of this fact can be found in [7, proof of L e m m a 2.4, p . 441]. T h e second 
s ta tement follows from the remark above. 

Remark 2. Let C = WQU+. Then Cw = C for all w Ç W by 2.1. 
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2.2 LEMMA. Let wv G W satisfy l(vw) — l(v) + l(w). Then 

vWU- = wU-(vU~)wandwU-r\ (VU~)W = C. 

Proof. The first part follows by an easy induction on l(w) from [7, proof 
of Theorem 3.3(a), p. 444]. By 2.1, C Ç „ [ / - n (,£/-)" and 

^zy-n („£/-)* = ur\ UWQW n uwQVwr\ uw 

= (pon to* 
= C by remark 2. 

2.3 COROLLARY. Let w £ W. Then U = WU+
WU- and WU+ C\ WU~ = C. 

Hence \U\c = \WU+\\WU~\ where c = \C\. 

Proof. Let v = wtfw~l and apply 2.2. 

2.4 LEMMA. Let w £ W. Let Uw be a left transversal (containing 1) of 
Uw~ by C. Then Slw is automatically a transversal of U by Uw

+ by 2.3 and 
|S4| = \Uw-\/C. Also BwB = UwB = ttwwB. 

Notation. For wt G R, write Oz for Ow., Bi for Wii3~ and £/* for w. U~. 

The following short lemmas are consequences of results proven in the 
rank one case (see 5.1-5.4) and the Bruhat Decomposition Theorem (see 
[1, Theorem 1, p. 25]). 

2.5 LEMMA. Let w G W. Then ^w) C\ B = 1. 

2.6 LEMMA. Let w\, w2 G W, uly u2 G U, hi, h2 G H. Then 

Uihi(wi)U = u2h2(w2)U <=>Wi = w2, u2~
lUi G Utlt hi = h2. 

The set Y = {uwh(w)\ h G H, uw G iïW} w G W) is a transversal for the left 
co s et s of U in G. 

2.7 LEMMA. Every element of G can be uniquely expressed as g = u (w)huf 

where w G W, u G Œ«,, h G H and u' G U. 

The next lemma is a consequence of 2.6 and 2.7. 

2.8 LEMMA. The elements of N form a transversal for the U-U double 
co sets of G. 

3. The endomorphism algebra E. In this section we characterize the 
simple right E-modules. 

By 2.8 E has &-basis {An\ n £ N] where An(y) = pny and pn is the sum 
of those 7 G r which lie in UnU (see, for example, [8, p. 32]). The 
elements An (n G N) are clearly independent of the choice of transversal 
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of the cosets of U in G. Therefore, using 2.6, 

3.1 An(y) = [ilw]ny 
Pn = [Œ«,]w where u(w) = w. 

Clearly ph = h for all h £ H. Multiplication in E is given by the formulae 

3.2 AmAn = X cmrê 4« (tn,neN) 

where cmnt = zmntlk and zmnf G Z is the number of pairs (7, £) G r X T 
such that 7 G UnU, £ £ UmU and 7^ G f̂/ since 4̂ t(y) is the sum of all 
the distinct {/-translates of ty and gy = g'y <?=* gU = g'Ufor any g, g' G G. 
The following lemma is immediate. 

3.3 LEMMA. / / t, m, n G N are such that Util Çt UnUmU, then the 
coefficient of At in AmAn is zero. 

3.4 LEMMA. Let n,nt£ N with v(n) = v, v(m) = w be such that 
l(vw) = l(v) + l(w). Then AmAn = Anm. 

Proof. We know 

AmAniy) = [ttv]n[tiw]my 
= [U^ni^l^n^nmy. 

By 2.2 Uvw~ = Uv~ • nUyTn-1 and \Uvw~\c = | f/„"| • l ^ - ] . We see that 
AmAn(y) is the sum of |1^||£4,| U-translates of nmy by our choice of trans­
versals (2.4). Therefore AmAn = \Anm where X is the integer ll^Hl^l/ll^J. 
By 2.4 

x = \u*~\\y»~~\. c _ 
c2 \UVW I 

so that X = 1 as required. 

3.5. COROLLARY. Let h G H, n G N. Then 

AnAh = A^ = ^•n~1hnAn. 

3.6 COROLLARY. The set {Ah} A(W{)\ h G H,wt G R\ k-algebra generates 
E. 

We can nowr state and prove one of the main results of this paper. The 
proof is due to Green who proved it for the saturated case. Notice that 
the proof relies only on 3.4 and is therefore true for any field. 

3.7 PROPOSITION. Let G be a finite group with an unsaturated split 
(B, N)-pair of characteristic p and rank n. Let k be any field. Then E is a 
Frobenius algebra. 

Proof. Let q G N satisfy v(q) = Wo, the unique element of maximal 
length in W. L e t / : E X E —» k be given as follows: For a, /3 G E, f(a, 0) 
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is to be the coefficient of A q in the expression of a/3 as a linear combination 
of the basis elements {An\ n £ N}. Certainly/ is bilinear and associative 
and we need only show t h a t / is non-degenerate. Let [Zn\ n £ N] be the 
basis of E given by Zn = An-iq. We require the following lemma: 

3.8 LEMMA. Let n, n' £ N, v(n) = w, v{ri) = w'. Then f(Zn, An>) is 
zero if either (i) l(w) > l(wf) or (ii) l(w) = l(w') but w 9e w'. In the case 
w = w',f(Zn,An>) = bn<n' (that is, 1 for n = n' and 0 otherwise). 

Proof. By 3.3 the coefficient of Aq in ZnAn> = An-\qAn> is 0 if UqU Çt 
Un'Un-lqU. So f(Zn, An.) is certainly 0 if 

BwoB g Bw'Bw~lw,B. (*) 

Since 

1(W'W~~1WQ) ^ l(w') + 1(W~1WQ) = l(w') + l(wo) — l(w) 

(*) holds in (i) or (ii) (see [1, Lemme 1, p. 23]). If w = w', we see that 

A y A , — A , -\ 

by 3.4 since 

l(wrw~~lWo) = l(wo) = l(wf) + l(urlWo). 

Hence f(Zn, An>) is 0 or 1 depending upon whether n ^ nf or n — n' and 
3.8 is proved. 

Now the elements of N can be totally ordered so that 

l(v(n)) < l{v{nf)) =*n <n'. 

So if for n, n' € N we have n ^ n' then we must have l(v(n)) ^ l(v(n')). 
By 3.8 f(Anj A^) = ôWf7î' and we see that the matrix 

\J\Zni Ant))ntn>çtf 

is unitriangular and hence nonsingular. We have shown that / is non-
degenerate and the proof of Proposition 3.7 is completed. 

Definition. Let wt € R. Define G, = (U, Ut
Wi), Ht = Gt H H. 

3.9 LEMMA, (see [3, Proposition 3.7, p. B-15]) Let wt £ R. We can 
arrange that (Wi) £ Gt. In this case Gt = UHi \J iliH^w^U. 

Proof. Consider Pt = B U £«;,£ and any representative (ze/*)' of w/<. 
Let 1 •£ u e Qi. Then tt<w»>' Ç P< and if u<w<)f G J8 then u = 1 by 2.5. 
Therefore 

w(»i)' ç £ ^ . £ = QiWiB. 

Hence there exists a representative (wt) G G* because the subgroup 

https://doi.org/10.4153/CJM-1980-056-x Published online by Cambridge University Press

file:///J/Zni
https://doi.org/10.4153/CJM-1980-056-x


720 N. B. TINBERG 

does not depend on («/*)' since 

UXWiy = jywi = ^xwi)fC(Wi)f = Q^ivc and 

(U,Qtw) = (U, Q^'C) = (U, Ut
Wi). 

The subgroup G{ has the required form since d C Pi-

We assume from now on that (wt) Ç G ,̂ for every ^?: G i£. 
For proofs of the following two lemmas see 5.6 and 5.10. 

3.10 STRUCTURAL EQUATIONS IN G. Let wt G R, Œ** = ^AUÎ- There 

exist functions ft: 12/*—»^*,g^: 12/" —» £/,/&*: Çl*—>Hwherefiisabijection, 
such that for every w £ 12/* 

(Wi)u(Wi) = fi(u)hi(u)(wi)gi(u). 

Since {wt) G Gf, fe*(w) 6 Hi for all u £ 12/*. 

3.11 LEMMA. Let wt G R. Then 

Hi) 

A{w.)2 = A{w) J2 Ah.{u ) wAere b(i) = |12/*| 

and uix, . . . , uib{i) are certain elements of 12/* (no£ necessarily distinct). 

The following formulae were first determined by Sawada ([8, Proposi­
tion 2.6, p. 34]) for the saturated case. 

3.12 FORMULAE. Let n £ N, v(n) = w. 

(i) Ifl(wtw) = l(w) + 1, then AnA{Wi) = A{Wi)n. 
Hi) 

(ii) IfliWiW) = l(w) - 1, then AnA(w.) = An ^ ^ />.0O-

(iii) If l(wwi) = l(w) + 1, *ftew A{w.}An = ^4n(«,.). 

( iv) IfliwWi) = l(w) - 1, / A e » 4 ( l l , . ) 4 n = X ^(«oO-^.Cti. )(t*.)^n 

Proof. Parts (i) and (iii) follow from 3.4. For (ii) let w = wtv with 
l(v) = l{w) — 1. Then (wi)~~ln = m £ N, v(m) = v and 

by 3.4. Therefore 

Hi) 

= AmAfr.) X) ^a.(t*. ) by 3.11 
* s=l l ls 

Hi) 

= AnJ2 Ah.iu ) by 3.4. 

Part (iv) is proved similarly using Lemma 3.5. 
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Definition. Let x £ Ê, w £ W. Then w% G Ê where wx(hu) = x{hwu) 
for A G iï , w G £/. 

The proof of the following lemma is based on [3, proof of Theorem 4.3a, 
p. B-20]. 

3.13 LEMMA. Every irreducible right E-module X is one-dimensional and 
if X = kx there exists a character % G Ê uniquely defined by xAh = x(h)x 
for all h G H. 

Proof. Every one-dimensional right £-module will uniquely determine 
a character of B since by 3.4 

AnAh. = Ah,n = Ah,An (h, h! G H). 

Let 

X G J5, Ex = j~rZ xih~l)Ah. 

Then 

ExAh = x(h)Ex for all A G i? and 

Since 

there exists x € ^ with XEX -^ 0. Take any z G X for which zEx ^ 0 
and let t = s£x . Then M* = xW* for all K £ 

Choose w (z W oî maximal length so that x — tA(W) ^ 0. Then x 
affords the character wx'- that is 

xAh = wx(h)x since xAh = tA(w)Ah 

= tA(w)-ih(W)A(w) by 3.5 

= »x(h)tA(u). 

We now consider xA(Wi) for wt G i£. 

Case 1. l(wiW) > l(w). Then 

%A(Wi) =tA(w)A(Wi) 

= tA(ViHw) by 3.12 (i) 

= tA(WiU>)h for some A G i l since u((w<)(«>)) = v((wtw)) 

= tAkAtoiw) by 3.4 

= x(h)tA(w.w) 

= 0 by choice of w. 
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Case 2. l(wiw) < l(w). Then 

xA(W.) = tA(W)A(W.) 

Hi) 

= tAiw) J2 An\u. ) by 3.12 (ii) 

Hi) 
= x S Ah.(U . ) 

Therefore x generates a one-dimensional right P-submodule of X by 3.6. 
But X irreducible implies X = kx. 

We are able to formulate more results based'on the rank one case, the 
first being the following crucial lemma. 

3.14 LEMMA. Fix x G Ê, wt G R. Let dt = X ' = i x(ht(uia)). If dt^0 
then x\Hi = 1- Hence dt = — 1. 

Proof. By Theorem 5.12 there exists a one-dimensional Pt = 
B U P^P-module M such that if ilf affords £ : P , -> k* then £ |# = x | i P 
Now d is generated by ^-groups so that £|G* = 1 and £|if* = 1. There­
fore x\Hi = 1 and since hi(uift) £ i?z- (5 = 1, . . . , 6(i)) (by 3.10) and 
6(i) = |Qi| — 1, the result follows since 1 < |Qj| is a power of p. 

3.15 LEMMA. Let xp be any multiplicative character \p: E —» k. Then there 
exist x G B, /xi, . . . , fjin Ç k such that 

(i)HAn) = xW for all he H \ „ . 
(ii) 4,(AiWi)) = m(l£i£n)fK } 

Moreover, ixt = 0 or — 1 and \xi 3̂  0 implies x\H% = 1-

Proof. Part (i) follows from 3.13 and (ii) follows from 3.11 and 3.14. 

We might call the sequence (x, /**, . . . , nn) the "weight of ^" to 
correspond with Curtis' terminology. 

Definition. Let J Q R. Then TV^ = (w*| wx 6 / ) . 

3.16 LEMMA. Pe£ x £ B, J C P . Suppose x\Hi = 1 / ^ ^ery w* Ç P 
P&ew wx = x / ^ &// w £ Wj. 

Proof. It is sufficient to show w*x = X for all Wj 6 J. Since x |#* = 1» 

Hi) 

di = Z x(ht(uu)) 9* 0 

for every Wi £ J and the result follows by Lemma 5.11. 
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The above lemma is also proved in [3, Lemma 5.4, p. B-26] and 
[7, Corollary 3.22, p. 453] under the saturation condition. 

We wish to prove the converse of 3.15; that is, given any sequence 
(x, ut, ... , /in) where x G B, Mi G k (1 ^ i S n) and where nt = 0 or 
— 1 with Mz ̂  0 implying xl^z = 1» then there exists a multiplicative 
character \p: E —» & with properties (*). In order to do this we place addi­
tional restrictions on the choice of coset representations {{wt)\Wi £ R). 

The following lemma is due to Tits. A proof can be found in [4, (1G), 
p. 5]. 

3.17 LEMMA. Let wt Ç R. Then Bt \J BiWfBi is a subgroup of G. 

Remark. Notice that the above lemma does not depend on a saturated 
condition since Bt = UtH, U C\ Uw° is normalized by H and U C\ Uw° C 
Ut (wt € R). 

3.18 LEMMA. Let Wi £ R. Then coset representative (wt) can be chosen in 
(Uit Ut»*). 

Proof. Clearly 

(Ui9 Ui^CBiUBiWtPt = UiHU UtHwiU. 

If Ut
Wi C UJI then U^ = Ut so that 

BWi = ui
w*(WiU+)wiH 

= UiWiU+H 

= B, 

contrary to the (B, iV)-pair axioms. Hence UiWi O UtHiViUi is non­
empty and there exists a coset representative nt and uly u2} u3 G Uf such 
that 

UiWi — u2niUs. Hence 

3.19. The coset representative {wt) can be chosen in UiUiWiUi and the 
proof of 3.18 is completed. 

Remark. Statement 3.19 is important since we are able to choose the 
coset representatives {{wi)\wt £ R) in the same way whether the 
(B, 7V)-pair is saturated or not (see [2, Lemma 2.2, p. 351] or [3, Defini­
tion 3.9, p. B-16]). 

We assume from now on that coset representatives {(w*)l wt £ R\ are 
chosen according to 3.19. 

The next lemma (see [7, Lemma 3.28, p. 456]) holds in the unsaturated 
case: 

3.20 LEMMA. Let J C R. Coset representatives {(w)\w £ W j) can be 
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chosen so that if w} w' £ Wj then 

(w)(wf)(wwf)'1 Ç Hj = (Hiw\w e Wj,w{ £ J). 

Definition. For any x G B, let e(x) = 5^6* x(^_1M/z-

Sawada proved the following theorem (see [8, Proposition 3.1, p. 36]) 
for the saturated case. The theorem remains true for the unsaturated case 
using results above and we omit the proof. 

3.21 THEOREM. Let J C R and let coset representatives {(w)\ w G Wj\ 
be chosen according to 3.20. Let % 6 B and suppose x\Ht — lfor a^ wi G J-
Let 

z(J, x) = eC°x) ]C A(w)(Wr))-wewj 

Then z — z(J, x) generates a one-dimensional right E-module (right ideal 
of E) with the following properties: 

(i) zAh = x(h)z (h e H) 

( 0 w<e J or x\Ht ?* 1 
(ii) zA («>«) \—z Wf d J and x\Ht = 1-

We can now prove the converse of 3.15, one of the main results of this 
paper. We might call the sequence (x> Mi» • • • » Mn) a n admissible vector 
if x G B, all ut G {0, —1} and yt T^ 0 implies x |#* = 1. 

3.22 THEOREM. Let G be a finite group with an unsaturated split (5 , N)-
pair of characteristic p and rank n, and let k be an algebraically closed field 
of the same characteristic. Given any sequence (x> Mi» • • • > Mn) where 
X'- B —* k* is a homomorphism, yn £ k (1 ^ i S n) such that \x{ = 0 or 
— 1, there exists a multiplicative character xp: E —> k given by \p(Ah) = x(h) 
(h £ H) and \p(A{Wi)) = /^ (1 ^ i ^ n) if and only if for any i Ç { 1 , . . . , n\ 
with ut 9^ 0 we have x\Hi = 1-

Proof. HO This follows by 3.15. 

(«=) Let J = {w, G î l/xz = 0 and X | #* = 1}. 

Let z(J, x) be as in Theorem 3.21 and the result follows. 

Remark. We have shown that (x, MI» • • • » Mn) is the weight of some 
multiplicative character \p : £ —> k if and only if it is an admissible vector. 

Definition. Let x G £ , J Q M(x) = \™i G R\ x\Hi = 1}. Then (/, x ) 
is called an admissible pair. 

By 3.21 each admissible pair (/, x) determines an admissible vector 
(x, Mit • • • , Un) where /x< = 0 (for wt (E / or x l ^ i ^ 1) or Mz = —1 (for 
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Wi £ J and x\Ht = 1). If for each admissible vector (x, JUI, . . . , nn) we 
let 

J = {wt e R\m = Oandx l^z = 1} 

we see by 3.22 that the correspondence 

(J, x ) <-* (x , Mli • • • , Mn) 

described above is a bijective one between the set of all admissible pairs 
and the set of all admissible vectors. We now show how such weights and 
vectors correspond to Curtis' weights (see [3, Definition 4.2, p. B-17, 
B-18]) and find a full set of irreducible left &G-modules in Y. 

Definition. Let M be any finite dimensional left &G-module. Let 

F(M) = \m G M\um = m, all u £ U). 

Green ([5, 1.3]) describes how F(M) may be regarded as a right 
E-module. In fact, if m G F(M) and a Ç E, 

ma = pam where a(y) = pay (pa G kG). 

In particular (by 3.1) 

3.23 mA(Wi) = [Qt](wt)m (wt € R) 
mAh = hm (h G H) 

for all m Ç F (M). 
Green proves ([5, Theorem 2]) that the correspondence M —» F (M) 

induces a bijection between the set of isomorphism classes of irreducible 
left ^G-modules and the set of isomorphism classes of simple right 
E-modules. Since we have shown that all simple right ^-modules are 
one-dimensional (3.13), F(M) is one dimensional if M is an irreducible 
&G-module and F(M) is associated with an admissible vector 
(x, JUI, . . . , JUW) by 3.22. By 3.23 this vector coincides with the Curtis-
Richen weight of M and any non-zero m Ç F (M) is called a weight 
element of weight (x, Mi, . . • , M«)- I n other words F(M) is precisely the 
set of all weight elements in M and if M is irreducible then M has a 
unique ^/-stable (i?-stable) line. 

The following theorem was first proved by ([8]). His proof uses [3], [7] 
and therefore applies only to saturated split (B, iV)-pairs. 

3.24 THEOREM. Let G be a finite group with an unsaturated split (B, N)-
pair of characteristic p and rank n. Let k be an algebraically closed field of 
the same characteristic. There exist bijective correspondences between the 
following: 

(i) the set of admissible vectors, 
(ii) the set of admissible pairs, 

(iii) the set of isomorphism classes of simple right E-modules, and 
(iv) the set of isomorphism classes of irreducible left kG-modules. 
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These correspondences are given by: 

(x, MI, . . . , M») <-> (/, x) <-> kz(J, x) <-> £ & ( / , x)(y)-

Proof. We need only verify the correspondence between (iii) and (iv). 
Green ([5, 1.3c]) proves that the map E-*F(Y) given by 13 —> 0(y) 
(f3 G E) is a right E-isomorphism. Let (/, x) be an admissible pair. Since 
Z(J, x) generates a one-dimensional right ideal of E (3.21), kz(J, x)(y) 
is a one-dimensional right jE-submodule of F(Y). Therefore by [5, 2.6a], 
kGz(J, x)(y) is a n irreducible left feG-module and 

F(kGz(J,x)(y)) = kz(J,x)(y). 

If M is any irreducible left &G-module, there exists an admissible pair 
(7, x) with 

F(M) ^kz(J,x) ^kz(JjX)(y) 

as right E-modules. But M irreducible implies 

M^kGz(JlX)(y)< 

Therefore {kGz(J, %) (y)\ (J, x) admissible} is a full set of irreducible left 
&G-modules. (Curtis also determines such a set in [3, Corollary 6.12, 
p. B-37].) 

4. Normality of C: A counter-example. In this short section we 
examine the subgroup C — U P\ Uw° = HU^N Un. We know that C = 1 
if and only if G has a saturated split (B, iV)-pair. In cases where C < G, 
the Curtis-Richen theory can be applied to the saturated split (B, N)-
pair (G/C, B/C, N, R, U/C). Since C is normalized by H and N (see 
Remark 2 of Section 2.1), C < G if and only if C < U. We show that if 
C, = UC\ UWi < U for all wt £ R then C < U; that is, C < G if this 
condition is satisfied for all rank 1 parabolic subgroups of G (Lemma 4.4). 
Using a theorem of Kantor and Seitz we show that C < G if p is odd 
(Lemma 4.5) and we give an example of a rank 1 (B, Ar)-pair when p = 2 
and C is not normal in G. 

4.1 LEMMA. U = ((Ui)w~l\ we W,Wi€ R, l(wwt) = l(w) + 1). 

Proof. Let w = wil . . . wit be a reduced expression for w £ W. It 
follows from 2.2 that 

„u-= (uu)(ut,^r'>... (uhr^-Wi' 
since l(wit . . . w^w^^) = / ( ^ ^ . . . wis) + 1 for any 2 ^ 5 S t — 1. 
Since £/ = ^ £/~ we have 

UQ {{Ut)
w-l\w G WW(ww,) = Z(w) + 1). 
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Also if l(wwi) = l(w) + 1 then (Ui)w~l C U by [7, Lemma 2.8, p. 441] 
which doesn't depend on saturation. 

Since Cw = C for all w € W we have 

4.2 LEMMA. C < U if and only if C < Utfor all wt £ R. 

4.3 LEMMA. Let wt £ R. Assume Ci < U. Then C < Ui. 

Proof. We have 

c = ur\uw«r\ uwiw° 
= un {ur\ uwi)wiWQ. 

By assumption (C/H UWi)WiW» < UWiW» so that 

c = c"°w»" < c / n i7w,ow» = [/,. 

The next lemma is immediate by 4.2 and 4.3. 

4.4 LEMMA. Suppose say Ci < Pi = B U BwiB for all wt £ R. Then 
C <G. 

The following discussion will prove one of the main results of this 
paper: 

4.5 THEOREM. If p is odd, C <j G for all unsaturated split (B, N)-pairs. 

In order to prove 4.5 we may restrict our attention to the rank 1 
case by Lemma 4.4. Suppose then that G = B U BwB where (G, B, N, 
[w], U) is an unsaturated split (B, 7V)-pair. Then 

a) G acts 2-transitively on 12 = G/B, the space of cosets gB (g Ç G) 
and 

b) G* = G/Z acts faithfully and 2-transitively on 12 where 
Z = noeoB°. 

Let a = B,(3 = wB. Notice that |12| = 1 + pl where 2 g \U/C\ = £< 
and that 5 / Z = (G*)a, the stabilizer in G* of a. Since U is a normal p-
subgroup of By the group B/Z contains a normal nilpotent subgroup 
Q — UZ/Z. Since BwB = t/ie/i?, the group Q acts transitively on 0\{a:}. 
By [6, Theorem C, p. 131] of Kantor and Seitz we consider the following 
two cases. 

(1) Q is regular on £2\{a}. Therefore Q$ = 1. But 

Qfi = {uZ\ u e U, u(wB) = wB\ 

= {uZ\ u £ U,uw £ B) 

= cz/z. 
Hence CQZr\UQBwfMJQUwfMJ=C. Therefore C = U C\ Z 
and in this case C < G since Z <3 G. 

(2) G* contains a regular normal subgroup of order q2 where q is a 
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Mersenne prime. Let q = 2r — 1 where r is prime. Therefore 
an odd integer and pl is even. Hence p = 2. 

Thus, we have proved Theorem 4.5. 

ql is 

The argument in [6, proof of Corollary 1, p. 139] leads to the following 
example of a rank 1 unsaturated split (B, TV)-pair where p = 2 and C is 
not normal in G. 

Let a = 
1 0 
0 - 1 

b = Then a , K GL(2, 3) and U = 

(a, b) has defining relations bs = a2 = 1, û r ^ a = 63. Moreover, U is a 
Sylow 2-subgroup of GL(2, 3). Let M = 7(2, 3), the space of 2-dimen-
sional column vectors over GF(3). We have a map r\U —> Aut (ikf) given 
by x —» TX where rx(m) = xw (x G U, m ^ M). Let G be the semi-direct 
product of M and J7 and let Ux = {(0, x)|% £ £/}, 

7£J = 
-1 
0 ) • 

and N = {1, w). It can be easily verified that G = (G, C/i, iV, {w) 
an unsaturated split (B, iV)-pair. Furthermore, C = U\ C\ U\u 

U,} is 
is not 

normalized by 

m 5. The rank one case. If G is a finite group with an unsaturated split 
(B, TV)-pair (G, B, N, R, U) then for each wt G R the parabolic subgroup 
Pt = B\J BW.B has an unsaturated split (B, iV)-pair (Pu B} Nit {iVi}, U) 
of rank 1 where Nt = HU WiH. Let (wt) G N satisfy (wt)H = w{. As 
in the general case the set {Ah

f, A\Wi)\ h 6 H} ^-algebra generates 

Et = Endfcp. (F<) 

where 

F, ^ I n d ^ ( M 

(see 5.7). There exists an infective ^-linear algebra homomorphism 

y:Ei-*E 

given by 

•Ah(he m An'-

A(Wi)
f 

Hwi) 

since the set {h, h(wi)\ h £ H} forms part of the transversal for the U-U 
double cosets in G (see 3.2). Therefore, results proved for the rank one 
case can be extended to G. 

It becomes necessary (5.11, 5.12) to examined = ^2b
s=ix(h(us)) where 

X G B is fixed and the h(us) (s = 1, . . . , b) are certain elements of H 
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determined by (wt) and Richen's ''structural equations." Since these 
equations exist for every Wi G R, we refer in Section 3 to 

b(i) 

dt = Z) x(h(ui)). 
s=l 

Therefore we now assume G has an unsaturated split (B, iV)-pair of 
rank 1. Let W = {1, w} and let Y, y, E and (w) be as in previous sections. 
We must give some technical lemmas concerning the structure of 
G = B\J BwB. 

5.1 LEMMA. Let 12 be any left transversal {containing 1) of U by WU+. 
Then 

Î2<») r\ B = 1. 

P /w/ . Since tir\Bw CB r\Bw = (UH £/»)#, the result follows. 

Remark. Note that |fi| > 1, for otherwise [/ = WU+, wBw = B, con­
trary to the (B, iV)-pair axioms. 

5.2 LEMMA. Cosets of the form gU (g G G) contained in BwB = BwU 
are of the form uh(w)U for some u G U, h £ H. Moreover, if u1} u2 G ĉ  
and Z&i, &2 G # then 

uihi(w) U = u2h2(w) U t=* u2~
1Ui (z WU+ and hi = h2. 

Proof. Clearly Uihi(w)U = u2hi(w)U if u\ = ^2^ for some u ^ WU+ 

since i ï normalizes Z7 and w U+. 
Say Uihi(w) = u2h2(w)u (u G £/)• Then 

M2~
1UI — h2(w)u(w)~1hi~1 

= (w)h2
wu(hr1)w(w)~1 

so that 

Therefore u2~
lU\ £ WU+ since it is an element whose order is a power of £. 

Therefore 

h2
wu{hrl)w t wu+ cu 

so that 

{h2
wu{h2~

l)w){h2
w(hrl)w) G C/. 

Therefore h2
w(hrl)w G L7 and A2 = Ai. 

The following facts are easily verified: 

5.3. Let r = {h, u{w)h\h G H, u G Œ}. Then T is a set of representa­
tives of left cosets of U in G. 
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5.4. Every element g of G can be uniquely expressed as g = u\h or 
g = u(w)JtU2 with Wi, ^2 G £/, w Ç 0 and h £ H. 

5.5. The elements of iV form a transversal for the U-U double cosets 
in G. 

Richen determines "structural equations" in the saturated case and 
these equations can be adapted to the unsaturated case, but we omit the 
detailed proof (see [7, p. 445]). 

5.6. Structural Equations in G. Let 12* = 12\{1|. There exist functions 

/ : 12* -> 12*, g : 12* -> U, h : 12* -> H 

where/ is a bijection and 

(w)u(w) = f(u)h(u)(w)g(u) 

for any w G 12*. 

We now examine the endomorphism algebra E. 
As in Section 3 the set {An'\ n 6 N) is a &-basis for £ where iov h £ H 

5.7 4 , ' (y) = Ay 

4i(«o(y) = [Q]h(w)y. 

It is easy to see that 

5.8 Ah'A(W) = i4(W)fc and A{w)'Ah
f = ^4i(w) for any h £ H. 

Therefore 

5.9. The set {^4/, ^4(^/1 h ^ H) ^-algebra generates £ . 

5.10 LEMMA. rftere exist elements ui, . . . , ub (not necessarily distinct) 
belonging to 12* such that 

b 

A(W)' = A(W)r 2^ A'xu ) 
s = l s 

where b = |12| — 1. 

Proof. We can write ^ ( w )
/ 2 = ^nen ^hAn' + J2h£H K(w)A'Hw) where 

A», Xft(W) € k for all h £ H. Fix h £ H. We show 

(i) if Xft ^ 0 then A = O ) 2 and X(w?)
2 = |12| • lk 

(ii) if Xft(W) ^ 0 then A = &(w) for some u 6 12*. 

Proof of (i). By 3.2 there exist uu u2 £ 12 such that u1(w)u2(w) £ hU. 
We must have w2 = 1 for otherwise 

O ) - 1 ^ * » e (w)-2hUCB 
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contradicting 5.1. Now Ui(w)2 6 hU if and only if (w)2 = h. It follows 
that 

A(„)2 = |Q|.l*. 

Proof of (ii). If Xh(W) 9e 0 there exist uu w2 G ^ such that 

Ui(w)u2(w) Ç h(w)U. 

Therefore by 5.6 Uh(u2) (w) U = Uh(w) U so that h = h(u2) by 5.3. 
We know that A{w)'

2(y) is a sum of |12|2 G-translates of y\ that is |12|2 

terms of the form gy = yy (y £ T, g £ yll). If the term yy appears, 
(7 # H), so will each of its distinct G-translates of which there are |Q| in 
number. If we call yy and its set of distinct [/-translates an "orbit" then 
by (i) and because |0|2 — |fi| = \Q\ (|12| — 1), we see that there are 
|0| — 1 such orbits in 2^€# ^h(w)A'h(W). By (ii) A(W)'2 has the required 
form since 1 < \Q\ is a power of p. 

Definition. For x £ B> let e(x) = ]C/>e# X^" 1 ) -^- / / - Notice that 

Ah'e{x) = e(xM// = x(h)e(x) for any i G ff. 

We now fix x € ^ and examine d = 2 ^ = i x(h(us))- Remember that 
W X G J § where w x O 0 = x(hwu) for any A G # , w G tf. 

5.11 LEMMA. Assume d 9^ 0. rAew wx = X-

Proof. Let z; = e f ^ x M ^ ' . By 5.9 z> generates a one-dimensional right 
£-module since 

(i)vAh' = K " x M ( ^ > / 

= c(«x)^i(») by 5.8 
= e(wx)A(w)(W)~ih(w) 

= e(^xMa*)-U(tt>)^W by 5.8 
= x(h)v for all h £ H, and 

(ii) ^ t o ) ' = eCx)AM'2 

= eCx)AM' £ ^ ( a s ) by 5.10 
5 = 1 

& 
= 23 x(Hu8))v by part (i) 

= tfo. 

Therefore there exists a multiplicative character 0 : £ —> £ such that 

0 G W ) = J and 0(4, / ) = x(h) for all A G H. 

But 

0(i4(W)
/i4ft

/) = 0(i4(«,)-i*(«,)i4(w)
/) for any h £ H 
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by 5.8 so that 

)0G4(W/) for any h G H 

and so 

dx(h) = wx(h)d for all h G H 

and the result follows. 

5.12 THEOREM. Assume d 9e 0. Then there exists a one-dimensional 
&G-module M0 affording the character £: G —» k* with %\H = x\H. 

Proof. By 5.11 A(W) commutes with e(\)- Hence e(x) is in the centre 
of E and 

e(x)E = e(x)Ee(x) = ke(x) ® ke(x)Aiw)' 

is an algebra which has basis e = e(x) and / = e(x)A(W)'. Now e2 = e, 
et == te = /, t2 = dt and e = e0 + e\ is a decomposition of e into primitive 
idempotents in e{x)E where e0 = (l/d)(de — t) and ei = (l/d)t. Let 
Fx = e(x)T. Then Yx is a &G-module of dimension \G: B\ = |Q| + 1 
since Fx == IndB

G(Lx) where Lx is a ^ -modu le affording the character x-
Let Wo = e0(7) and Mi = ^i(F). Then Yx = M"0 © Mi where Mo and 
If i are indecomposable left &G-modules. We show that the dimension of 
Mo is one by showing the dimension of Mi is |fi|. Let X\ = e\(y). Then Xi 
is ^/-invariant and 

[Q](w)*i = [Q](w)ci(y) 

= *i(R2](w):y) 
= M(„,/(:y) 

= (l/d)«(xM(.) / 2(y) 

= ( 1 / d M x M c / È i4i(„)(y) by 5.10 
s = l s 

& 
= (l/d)e(x)A(w)'J2 x(h(us))y since e(x) and4(^/commute 

5 = 1 

= dxi ^ 0 as d 9e 0. 

Therefore Afi contains an element x = (Î^)XI such that [to]x 9^ 0 and x 
is stabilized by WU+. Let L = I n d ^ (fer) where T = ^C/+. Then there 
exists a surjective &[/-map 6: L —* kUx given by 0(z) = # where 
2 = 1 ® 1 . Hence 

\coCQ / û)Çfi 

The socle of L is its space of 17-invariants [Ù]z. Therefore 0 is a bisection 
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and the fe-space kUx has dimension |12|. But kUx C Mi and 

dimension Mi = dimension Yx — dimension M0 ^ |fi| 

so that the dimension of Mi is |fi|. 
Assume Mo affords the character £: G —» fe* and let y = eo(3>). Then 

Mo = fez; and if A G H it is easily verified that hv = x(h)v. Hence 
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