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MODULAR REPRESENTATIONS OF FINITE GROUPS
WITH UNSATURATED SPLIT (B, N)-PAIRS

N. B. TINBERG

1. Introduction. Let p be a prime number. A finite group G =
(G, B, N, R, U) is called a split (B, N)-pair of characteristic p and rank n
if

(1) G has a (B, N)-pair (see [3, Definition 2.1, p. B-8]) where
H = BN N and the Weyl group W = N/H is generated by the set
R = {w, ..., w,} of “special generators.”

(i) H = Mpew n'Bn.

(iii) There exists a p-subgroup U of G such that B = UH is a semi-
direct product, U < B and H is abelian with order prime to .

A (B, N)-pair satisfying (ii) is called a saturated (B, N)-pair. We call
a finite group G which satisfies (i) and (iii) an unsaturated split (B, N)-
pair. (Unsaturated means ‘‘not necessarily saturated”.) If C =
Mnew #~1Un then G has a (saturated) split (B, N)-pair if and only if
C =1

We are interested in studying the irreducible modular representations
of unsaturated split (B, N)-pairs over an algebraically closed field % of
characteristic p. Curtis ([3]) and Richen ([7]) have dealt with the
saturated case. Unsaturated split (B, V)-pairs arise, for example, as the
(B, N)-pairs of parabolic subgroups of groups with split (B, N)-pairs. It
is true that any unsaturated split (B, N)-pair G can be replaced by a
saturated pair (B, N) where N = NH and A = CH (see [3, Proposition
2.6, p. B-10]) and the two pairs have isomorphic Weyl groups. However,
B = UH may no longer satisfy (iii) above and we cannot apply the
Curtis-Richen results on irreducible kG-modules directly.

However, if C 4 G then (G/C, B/C, N, R, U/C) is a saturated split
(B, N)-pair and since C is a p-group there exists a bijection between the
set of isomorphism classes of irreducible 2G-modules and the set of iso-
morphism classes of irreducible k(G/C)-modules. So in the case when
C < G we could apply the Curtis-Richen theory to the group G/C.

There are three major advantages in a theory where we only assume G
has an unsaturated split (B, N)-pair:

(1) Unsaturated groups appear even in the course of the Curtis-
Richen treatment of the saturated case (see [3, Corollary 5.1, p. B-24]
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and (7, Lemma 3.23, p. 453]) and so we get some simplification of proofs
by dealing with unsaturated groups from the start.

(2) The unsaturated theory applies at once to parabolic subgroups
G; (J C R) of G (see [9]).

(3) In case p = 2 there exist unsaturated G for which the group C is
not normal in G (see below). The irreducible 2G-modules for such a group
G cannot be reached by the ‘‘saturated’ theory.

Let G = (G, B, N, R, U) be an unsaturated split (B, N)-pair. All k-
spaces are assumed to be finite dimensional. We study the modular rep-
resentations of G over k in the following way: Let ¥ = Ind (k) and
E = End;e(Y) where ky is the trivial U-module k. Sawada ([8]) was the
first to examine Y and E for groups with split (B, N)-pairs and he
established a bijective correspondence between the set of isomorphism
classes of irreducible left #G-modules and the set of isomorphism classes
of irreducible right E-modules. In doing so, Sawada relied upon work done
by Curtis and Richen. We begin by discussing the right E-modules
directly, and we are able to recover most of the results of Curtis, Richen
and Sawada by using a recent theorem of Green ([5]). By this method we
are able to discard the saturation condition from the general theory.

The main results of this paper are the following theorems concerning
the algebra E:

a) E is Frobenius (3.7).

b) Every simple right E-module is one-dimensional and is thus given
by a multiplicative character ¢ :E — k (3.13).

c) Each such ¢ is determined by a vector (x, w1, . . ., #,) Where x is a
linear character of Band u; € k (1 =7 = n) (3.22).
These vectors (x, 1, . - . , 4a) correspond exactly to Curtis’ “‘weights”

(see [3, Definition 4.2, p. B-17, B-18]) and many, but not all, of the
arguments used in the proofs of b) and c) are based on Curtis’ work. The
application of our results concerning the irreducible representations of E,
to the irreducible representations of G, is given at the end of Section 3.

Using a result of Kantor and Seitz on 2-transitive permutation groups
we show that if p is odd the group Cis normal in G for all unsaturated split
(B, N)-pairs (4.5). Lastly we give an example of a rank one unsaturated
split (B, N)-pair when p = 2 but C is not normal in G.

Notations. Since H is abelian, B = UH and U is a p-group all modular
irreducible characters of B are linear. Let k* = k\{1} and B =
Hom(B, k¥*). If x,g € G then x’ = g-lxg. For any subset T of G,
[T] = D iert € kGand T? = g~'Tg. Let w € W and (w) € N be such
that (w)H = w. For X any subgroup of G containing H, we write Xw
for X (w) (similarly for wX, XwX). If 4 is any subgroup of G normalized
by H, then 4 = A*® for any h € H so we write A”. The Weyl group
W acts on the elements of H by h* = h* since H is abelian. If H is a
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subgroup of G and M is any kG-module, M|H denotes the restriction of M
to H and we sometimes write p|H if p is the character afforded by M.

The results of this paper formed part of the author’s doctoral thesis
submitted at the University of Warwick. The author is most grateful to
her thesis adviser, Professor J. A. Green, for suggesting the subject dealt
with in this work and for his help and encouragement during the research
and preparation of this paper.

2. Unsaturated split (B, N)-pairs. Let p be a prime number and
let G = (G, B, N, R, U) be an unsaturated split (B, N)-pair of charac-
teristic p and rank z. Therefore, we allow that M,y B* % H. We assume,
unless otherwise stated, that & is an algebraically closed field of character-
istic p. Let v:N — W be the natural epimorphism where W = N/H is
the Weyl group of the (B, N)-pair. The set R = {wy, ..., w,} generates
W and the length of w € W as a product of such generators is denoted
l(w). The unique element of maximal length in W will be denoted w,.

Let ¥V = Indy%(ky) and let v correspond to the element 1;4® ;v 1:.
If {g,| 7 € I} is aleft transversal for the cosetsof Uin G, then ¥ = kG - vy
has k-basis {gy| ¢ € I}. Let E = End;¢(Y).

We assume that {(w)| w € W} is a fixed, but arbitrary, set of coset
representatives of H in N.

In this preliminary section we state results which, though proved in
[3] and [7] under the assumption of saturation, do not actually depend on
that condition. For example, statements in [7, Chapter I1] which do not
involve H = B M\ N will be true in the unsaturated case. We also make
adjustments to other results when necessary to suit our unsaturated
hypothesis.

The reader will notice that the proofs of certain technical lemmas in
Sections 1 and 2 have been deferred to Section 5 where the specific rank 1
case is discussed.

Notation. Let w € W. Then ,Bt = BN\ BY; , Ut = UN U%; ,B~ =
B M B%"; and ,U~ = UM U Write Uy, Uy for ,~1U*, ,~1U~
respectively.

Remark 1. Notice that ,B* = ,U*H, ,B~ = ,U~H (see [7, proof of
Theorem 3.3(b), p. 444]) and that H normalizes ,U*, , U~ forany w € W.

2.1 LEMMA. The wntersection of the N-conjugates of B 1s B (M B¥o, Also
Nunew U = Npew U = UM U"o.

Proof. We need only show that B M B*e C ,B* for all w € W. A proof
of this fact can be found in [7, proof of Lemma 2.4, p. 441]. The second
statement follows from the remark above.

Remark 2. Let C = , Ut. Then C* = Cfor all w € W by 2.1.
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2.2 LEMMA. Let wv € W satisfy l(vw) = l(v) + [(w). Then
wlU™ = ,U-(U)? and ,U-MN (LU)* = C.
Proof. The first part follows by an easy induction on /(w) from [7, proof
of Theorem 3.3(a), p. 444]. By 2.1, C C ,U- N (,U™)* and
wU_ m (UU—)w Uﬂ Uwow m Uwovw N Uw
ygvor M\ U
(UroM U)»
= (C by remark 2.

2.3 COROLLARY. Letw € W. Then U = ,Ut, U~ and , U+ N ,U~ = C.
Hence |Ulc = |, Ut||,U~| where ¢ = 1C|.

N

Proof. Let v = wow™! and apply 2.2.

2.4 LEMMA. Let w € W. Let Q, be a left transversal (containing 1) of
Uy~ by C. Then Q, ts automatically a transversal of U by U,* by 2.3 and
|2, = |U,~|/C. Also BuB = UwB = Q,wB.

Notation. For w; € R, write @, for Q,,, B; for ,, 8~ and U, for ,, U~

The following short lemmas are consequences of results proven in the
rank one case (see 5.1-5.4) and the Bruhat Decomposition Theorem (see
(1, Theorem 1, p. 25]).

2.5 LemMmA. Let w € W. Then Q, M B = 1.
2.6 LEMMA. Let wy, we € W, w1, us € U, hy, he € H. Then
ulhl(wl)U = uth(wz)U & W1 = W, Mz—lul € U$1: h] = /’Lz.

The set T = {u,h(w)| b € H, u, € Qu, w € W} is a transversal for the left
cosets of U in G.

2.7 LEMMA. Every element of G can be uniquely expressed as g = u(w)hu’
where w € W, u € Qp, h € Hand uw’ € U.

The next lemma is a consequence of 2.6 and 2.7.

2.8 LEMMA. The elements of N form a transversal for the U-U double
cosets of G.

3. The endomorphism algebra E. In this section we characterize the
simple right E-modules.

By 2.8 E has k-basis {4,| n € N} where 4,(y) = p,y and p, is the sum
of those ¥ € T which lie in UnU (see, for example, [8, p. 32]). The
elements 4, (r € N) are clearly independent of the choice of transversal
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of the cosets of U in G. Therefore, using 2.6,

3.1 An(y) = [Qw]ny
P = [Qy]n where v(n) = w.

Clearly p, = hforall » € H. Multiplication in E is given by the formulae
32 Apd, = 2 cwnid, (m,n € N)
tEN

where Cun: = Zmnile and 2my; € Z is the number of pairs (y,£) € ' X T
such that y € UnU, ¢ € UmU and ¢ € tU since 4 ,(y) is the sum of all
the distinct U-translatesof ty and gy = g'y @ gU = g’Uforany g, ¢’ € G.
The following lemma is immediate.

3.3 LEMMA. If t,m,n € N are such that UtU & UnUmU, then the
coefficient of A, in And, is zero.

3.4 LEMMA. Let n,m € N with v(n) = v, v(m) = w be such that
lvw) = 1(v) + l(w). Then A4, = A
Proof. We know
AmAn(y) = [Qv]n[ﬂw]my
= [Q,)n[Qy]n " ‘nmy.

By 22 U, = U, -nUyntand |Uy~lc = |U;| - |Uy~|. We see that
And,(v) is the sum of [2,]|Q,| U-translates of nmy by our choice of trans-
versals (2.4). Therefore 4,4, = AA,, where \ is the integer |Q,||Qu|/|Qsw|.
By 2.4

_ ]U[“)UJI. c
¢’ [ U |

so that N = 1 as required.

A

3.5. COROLLARY. Let h € H, n € N. Then
AnAh = Ahn = An‘lhnAn-

3.6 CorOLLARY. The set {An, Awy| b € H, w; € R} k-algebra generates
E.

We can now state and prove one of the main results of this paper. The
proof is due to Green who proved it for the saturated case. Notice that
the proof relies only on 3.4 and is therefore true for any field.

3.7 PROPOSITION. Let G be a finite group with an wunsaturated split
(B, N)-pair of characteristic p and rank n. Let k be any field. Then E is a
Frobenius algebra.

Proof. Let ¢ € N satisfy v(¢) = w,, the unique element of maximal
length in W. Let f: E X E — k be given as follows: For a, 8 € E, f(«, 8)
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is to be the coefficient of 4, in the expression of o3 as a linear combination
of the basis elements {4,| n € N}. Certainly f is bilinear and associative
and we need only show that f is non-degenerate. Let {Z,] n € N} be the
basis of E given by Z, = 4,-1,. We require the following lemma:

3.8 LEMMA. Let n,n' € N, v(n) = w, v(n') = w'. Then f(Z,, Ay) is
zero if either (i) l(w) > L(w') or (i) l(w) = I(w') but w # w'. In the case
w=w,f(Z, Ay) = 6, (thatis, 1 for n = n’ and O otherwise).

Proof. By 3.3 the coefficient of 4, in Z,4, = A,-1,4, is 0 if UgU €
Un'Un~'qU. So f(Z,, A4,/) is certainly 0 if

Bw B & Bw BwlwB. *)
Since
Lw'wlwy) < (W) + H{wlwy) = I(w') 4+ l(wy) — l(w)
(*) holds in (i) or (ii) (see [1, Lemme 1, p. 23]). If w = @', we see that
A1y = Aynmrg
by 3.4 since
L(w'wlw,) = L(wo) = L(w') + I(w  w,).

Hence f(Z,, A,/) is 0 or 1 depending upon whether n # »’ or n = »’ and
3.8 is proved.

Now the elements of N can be totally ordered so that
Ivn)) <Ilw@')) =n < n.

So if for n, n’ € N we have n = »’ then we must have I(v(n)) = I(v(n)).
By 3.8 f(4,, A,') = 6, and we see that the matrix

(f(Zny An’))n,n’éN

is unitriangular and hence nonsingular. We have shown that f is non-
degenerate and the proof of Proposition 3.7 is completed.

Definition. Let w; € R. Define G: = (U, U*), H, = G; N H.

3.9 LEMMA. (see [3, Proposition 3.7, p. B-15]) Let w; € R. We can
arrange that (w;) € G, In this case G; = UH;\J Q;H ;(w;)U.

Proof. Consider P; = B\U Bw;B and any representative (w,)’ of w,.
Let 1 ## u € Q;. Then u®9’ ¢ P, and if u®®9’ € B then u = 1 by 2.5.
Therefore

u(wi)/ 6 BwiB = iniB.
Hence there exists a representative (w;) € G; because the subgroup

<U' Qi(wi)’>
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does not depend on (w;)" since
U@ = UM = Qd'Cwd = Q,(d'C and
(U, Q;4d") = (U, Q,@d'Cy = (U, U¥i).
The subgroup G, has the required form since G; C P..

We assume from now on that (w;) € Gy, for every w; € R.
For proofs of the following two lemmas see 5.6 and 5.10.

3.10 STRUCTURAL EQUATIONS IN G. Let w; € R, Q* = Q,\{1}. There
exist functionsf;: Q*—>Q* ¢,: Q* > U, by Q% — Hwheref is a bijection,
such that for every u € Q*

Since (w;) € Gy, hi(u) € H, for all u € Q;*.
3.11 LEMMA. Let w; € R. Then

b(1)
2 .
Awp’ = Awp 2y A, where (@) = |27
s=1 s
and uy, . . ., Uiy, are certain elements of Q.* (not necessarily distinct).

The following formulae were first determined by Sawada ([8, Proposi-
tion 2.6, p. 34]) for the saturated case.

3.12 FORMULAE. Let n € N, v(n) = w.
(1) Ifl(wlw) = l(w) + 17 then AnA (w;) = A(wi)n-

b(1)
(i) If lwaw) = l(w) — 1, then AyA, = Ay 2, An (13,).
1 =1 7

(ifi) If Lww,) = 1) + 1, then Apdn = Ao
b(1)

(IV) Ifl(w'w1) = l(w) - 1, then A(wi)An = Z A(wi)ﬂhi(ui )(wi)A"
s=1 s

Proof. Parts (i) and (iii) follow from 3.4. For (ii) let w = w; with
l(») = l(w) — 1. Then (w,)"'n = m € N, v(m) = v and
An = Awpm = And w)
by 3.4. Therefore
Al wy = Andwy’

b(h)
= Andw) > An,w; ) by 3.11
s=1 s

b(4)
= An Zl Ahi(uis) by 3.4.

Part (iv) is proved similarly using Lemma 3.5.
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Definition. Let x € B, w € W. Then “x € B where *x(hu) = x(h*u)
forh € Hyu € U.

The proof of the following lemma is based on [3, proof of Theorem 4.3a,
p.- B-20].

3.13 LEMMA. Every wrreducible right E-module X s one-dimensional and
iof X = kx there exists a character x € B uniquely defined by xA, = x(h)x
forall h € H.

Proof. Every one-dimensional right E-module will uniquely determine
a character of B since by 3.4

AndAw = Apn = Apdy (b, W € H).
Let

x € B, E, = 1] > x4,
Then

E A4, = x(h)E, for all h € H and
]-E' = 2 @ EX’
X€B
Since

X =) ®XE,

x€B

there exists x € B with XE, 5 0. Take any z € X for which zE, # 0
and let t = zE,. Then t4, = x(h)tforall h € H.

Choose w € W of maximal length so that x = tAq,) # 0. Then «x
affords the character “x: that is

xA, = x(h)x since x4, = tA A,
= tAw-1nwd w by 3.5
“x (h)tA w-
We now consider x4 (,,) for w; € R.
Case 1. l(ww) > l(w). Then
YA wy =tAwAw,)
= tAwpw by 3.12 (i)
tA o, wyn for some k € H since v((w;) (w)) = v((ww))
14,4 o, by 3.4
X (1)14 oy
0 by choice of w.

It

Il

It
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Case 2. l(waw) < I(w). Then

¥Aw, = tdwdw,)

b(9)
mmgmM)wmwm

b(1)

=X Z Anw,)
s=1 $

b(1)

Zl wX(hi(uis))x-

§=

Therefore x generates a one-dimensional right E-submodule of X by 3.6.
But X irreducible implies X = kx.

We are able to formulate more results based'on the rank one case, the
first being the following crucial lemma.

3.14 LemMa. Fix x € B, w; € R. Letd,; = gglx(hi(ui,)). If d;#0
then x|H; = 1. Henced; = —1.

Proof. By Theorem 5.12 there exists a one-dimensional P, =
B \JU Bw;B-module M such that if M affords ¢: P; — k* then ¢|H = x|H.
Now G, is generated by p-groups so that §|G; = 1 and £|H; = 1. There-
fore x|H; = 1 and since h;(u;) € H; (s = 1,...,b(:)) (by 3.10) and
b(i) = |Q; — 1, the result follows since 1 < |?,] is a power of p.

3.15 LEMMA. Let ¢ be any multiplicative character . E — k. Then there
exist x € B, p1, ..., p € k such that

(i) ¥(4s) = x(&) for all b € H} *)
(i) v(Awy) =w (1 =7=mn)

Moreover, p; = 0 or —1 and p; # 0 implies x|H; = 1.
Proof. Part (i) follows from 3.13 and (ii) follows from 3.11 and 3.14.

We might call the sequence (x, ui, ..., u,) the “weight of ¢’ to
correspond with Curtis’ terminology.

Definition. Let J € R. Then W, = (w;| w; € J).

3.16 LEMMA. Let x € B, J C R. Suppose x|H; = 1 for every w,; € J.
Then *x = x for allw € W ,.

Proof. 1t is sufficient to show “ix = x for all w; € J. Since x|H,; = 1,

b(4)

d; = Z X(h’l(u’ls)) #0

s=1

for every w; € J and the result follows by Lemma 5.11.
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The above lemma is also proved in [3, Lemma 5.4, p. B-26] and
[7, Corollary 3.22, p. 453] under the saturation condition.

We wish to prove the converse of 3.15; that is, given any sequence
(X i ..., ) where x € B, u; € B (1 £ 7 £ n) and where p; = 0 or
—1 with u; # 0 implying x|H; = 1, then there exists a multiplicative
character y: E — k with properties (*). In order to do this we place addi-
tional restrictions on the choice of coset representations { (w;)|w; € R}.

The following lemma is due to Tits. A proof can be found in [4, (1G),
p- 5].

3.17 LEMMA. Let w; € R. Then B;\J BwB;1s a subgroup of G.

Remark. Notice that the above lemma does not depend on a saturated
condition since B; = U;H, UM U”?is normalized by Hand U M U*° C
U; (w; € R).

3.18 LEMMA. Let w; € R. Then coset representative (w;) can be chosen in

(U, U,
Proof. Clearly
<U1', Ulw,> C BIU BiwiBi = UlHU U‘LleU
If U C U,;H then U;*i = U, so that
Bet = Ui(y, U9 H
Ui, UTH
= B’

Il

contrary to the (B, N)-pair axioms. Hence U.*: " U;Hw,;U; is non-
empty and there exists a coset representative #n; and uy, us, u3 € U; such
that

u% = u.muz. Hence

3.19. The coset representative (w;) can be chosen in U;U;*iU; and the
proof of 3.18 is completed.

Remark. Statement 3.19 is important since we are able to choose the
coset representatives {(w;)|w; € R} in the same way whether the
(B, N)-pair is saturated or not (see [2, Lemma 2.2, p. 351] or [3, Defini-
tion 3.9, p. B-16]).

We assume from now on that coset representatives { (w;)| w; € R} are
chosen according to 3.19.

The next lemma (see [7, Lemma 3.28, p. 456]) holds in the unsaturated
case:

3.20 LEMMA. Let J C R. Coset representatives { (w)lw € W,} can be
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chosen so that if w, w' € W, then
(w) (@) (ww' )™t € Hy = (Hlw € Wy, ws € J).
Definition. For any x € B, let e(x) = Dnew x (B~ 4.

Sawada proved the following theorem (see [8, Proposition 3.1, p. 36])
for the saturated case. The theorem remains true for the unsaturated case
using results above and we omit the proof.

3.21 THEOREM. Let J € R and let coset representatives { (w)| w € W
be chosen according to 3.20. Let x € B and suppose x|H; = 1 for allw, € J.
Let

Z(Jy X) = e(WDX) Z A(w)(wn)-
wew y
Then z = 2(J, x) generates a one-dimensional right E-module (right 1deal
of E) with the following properties:
(i) zdn=x()z (h € H)
f 0 we€ Jor x|H; # 1
1—2 w,; ¢ Jand x|H; = 1.

We can now prove the converse of 3.15, one of the main results of this
paper. We might call the sequence (x, p1, .- ., #,) an admaissible vector
if x € B,all u; € {0, —1} and p; # 0 implies x|H; = 1.

(i) 24w, =

3.22 THEOREM. Let G be a finite group with an unsaturated split (B, N)-
patr of characteristic p and rank n, and let k be an algebraically closed field
of the same characteristic. Gwen any sequence (X, p1, ..., ) Where
x: B — k* is a homomorphism, u; € B (1 <1 < n) such that u; = 0 or
—1, there exists a multiplicative character ¢ E — k given by ¢ (4,) = x(h).
(h € H) and (A w,) = p: (1 £1 = n) if and onlyif for any i € {1,...,n}
with u; % 0 we have x|H,; = 1.

Proof. (=) This follows by 3.15.
Let 2(J, x) be as in Theorem 3.21 and the result follows.

Remark. We have shown that (x, g1, ..., u,) is the weight of some
multiplicative character ¢ : E— k if and only if it is an admissible vector.

Definition. Let x € B, J € M(x) = {w; € R| x|H: = 1}. Then (J, x)
is called an admaissible pair.

By 3.21 each admissible pair (J, x) determines an admissible vector
(X, w1, -+ -, ) where p;, = 0 (for w; € Jor x|H; 1) or u; = —1 (for
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w,; ¢ Jand x|H; = 1). If for each admissible vector (x, u1, ..., u) We
let
J={w; € Rlu;=0and x|H, = 1}

we see by 3.22 that the correspondence

(JyX)H(Xr#l)-~'r“'n)

described above is a bijective one between the set of all admissible pairs
and the set of all admissible vectors. We now show how such weights and
vectors correspond to Curtis’ weights (see [3, Definition 4.2, p. B-17,
B-18]) and find a full set of irreducible left kG-modules in V.

Definition. Let M be any finite dimensional left 2G-module. Let
F(M) ={m € Mlum = m,allu € U}.

Green ([5, 1.3]) describes how F(M) may be regarded as a right
E-module. In fact, if m € F(M) and « € E,

ma = pam where a(v) = poy (pa € kG).
In particular (by 3.1)

3.23 mAw,) = [Q](w)m (w; € R)

for all m € F(M).

Green proves ([5, Theorem 2]) that the correspondence M — F(M)
induces a bijection between the set of isomorphism classes of irreducible
left kG-modules and the set of isomorphism classes of simple right
E-modules. Since we have shown that all simple right E-modules are
one-dimensional (3.13), F(M) is one dimensional if M is an irreducible
kG-module and F(M) is associated with an admissible vector
(x, 1y -+« , p) by 3.22. By 3.23 this vector coincides with the Curtis-
Richen weight of M and any non-zero m € F(M) is called a weight
element of weight (x, u1, ..., un). In other words F(M) is precisely the
set of all weight elements in M and if M is irreducible then M has a
unique U-stable (B-stable) line.

The following theorem was first proved by ([8]). His proof uses [3], (7]
and therefore applies only to saturated split (B, N)-pairs.

3.24 THEOREM. Let G be a finite group with an unsaturated split (B, N)-
pair of characteristic p and rank n. Let k be an algebraically closed field of
the same characteristic. There exist bijective correspondences between the
following:

(1) the set of admissible vectors,

(ii) the set of admissible pairs,
(ii1) the set of isomorphism classes of simple right E-modules, and
(iv) the set of isomorphism classes of irreducible left kG-modules.
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These correspondences are given by:

O By« v -y i) & (T, x) o k3(J, x) < kGz(J, x) (9).

Proof. We need only verify the correspondence between (iii) and (iv).
Green ([5, 1.3c]) proves that the map E — F(Y) given by 8 — B(y)
(8 € E) is aright E-isomorphism. Let (J, x) be an admissible pair. Since
z(J, x) generates a one-dimensional right ideal of E (3.21), kz(J, x) (v)
is a one-dimensional right E-submodule of F(Y). Therefore by [5, 2.6a],
kGz(J, x) (v) is an irreducible left #G-module and

F(kGz(J, x) (v)) = k3(/, x) ().

If M is any irreducible left 2G-module, there exists an admissible pair
(J, x) with

F(M) = ka(J, x) = kz(J,x)(¥)
as right E-modules. But M irreducible implies
M = kGz(J, x) ().

Therefore {kGz(J, x) (v)| (J, x) admissible} is a full set of irreducible left
kG-modules. (Curtis also determines such a set in [3, Corollary 6.12,
p. B-371.)

4. Normality of C: A counter-example. In this short section we
examine the subgroup C = UM U% = MNyen U We know that C = 1
if and only if G has a saturated split (B, N)-pair. In cases where C < G,
the Curtis-Richen theory can be applied to the saturated split (B, N)-
pair (G/C, B/C, N, R, U/C). Since C is normalized by H and N (see
Remark 2 of Section 2.1), C 4 G if and only if C < U. We show that if
Ci=UNU* < Ufor all w; € R then C < U, that is, C < G if this
condition is satisfied for all rank 1 parabolic subgroups of G (Lemma 4.4).
Using a theorem of Kantor and Seitz we show that C < G if p is odd
(Lemma 4.5) and we give an example of arank 1 (B, V)-pair whenp = 2
and C is not normal in G.

41 LEmMA. U = ((U)* M w € W,w; € R, l{ww,) = l(w) + 1).

Proof. Let w = w;, ... w;, be a reduced expression for w € W. It
follows from 2.2 that

2U™ = (Uft)(Uil_l)wig . (Uil)wfi“'wit

since [(w;, ... w,wq_ ) = l(w;, ... wy) + 1 for any 2 =<s =t — 1.
Since U = ,, U~ we have

UC ((U)* we W, l(ww,) = l(w) + 1).
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Also if I(ww,) = l(w) -+ 1 then (U;)*™" C U by [7, Lemma 2.8, p. 441]
which doesn’t depend on saturation.

Since C¥ = C for all w € W we have

4.2 LEmma. C < U if and only if C Q U, for all w; € R.

4.3 LEMMA. Let w; € R. Assume C; < U. Then C < U,.

Proof. We have

C=UN U yrmn
= UN (UN geiywin,

By assumption (U M Uri)»ivo q [J?i% g0 that
C = Cvovi J UN Uvovi = U,
The next lemma is immediate by 4.2 and 4.3.

4.4 LEMMA. Suppose say C; I P; = B\J Bw;B for all w; € R. Then
Cc 4G

The following discussion will prove one of the main results of this
paper:
4.5 THEOREM. If p is odd, C < G for all unsaturated split (B, N)-parrs.

In order to prove 4.5 we may restrict our attention to the rank 1
case by Lemma 4.4. Suppose then that G = B \U BwB where (G, B, N,
{w}, U) is an unsaturated split (B, N)-pair. Then

a) G acts 2-transitively on @ = G/B, the space of cosets gB (g € G)
and

b) G* = G/Z acts faithfully and 2-transitively on € where
Z = Moes Be.

Leta = B, = wB. Notice that |2| = 1 + p* where 2 £ |U/C| = p*
and that B/Z = (G*),, the stabilizer in G* of a. Since U is a normal p-
subgroup of B, the group B/Z contains a normal nilpotent subgroup
Q = UZ/Z. Since BwB = UwB, the group Q acts transitively on Q\{a}.
By [6, Theorem (', p. 131] of Kantor and Seitz we consider the following
two cases.

(1) Q is regular on Q\{a}. Therefore Qs = 1. But
Qs = {uZ|u € U, u(wB) = wB}

{uZ| u € U, u® € B}

= CZ/Z.

Hence CCZNUCB*NUCU*N\ U= C. Therefore C=UN2Z
and in this case C < G since Z < G.

(2) G* contains a regular normal subgroup of order ¢* where ¢ is a
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Mersenne prime. Let ¢ = 27 — 1 where 7 is prime. Therefore [Q| = ¢*is
an odd integer and p' is even. Hence p = 2.
Thus, we have proved Theorem 4.5.

The argument in [6, proof of Corollary 1, p. 139] leads to the following
example of a rank 1 unsaturated split (B, N)-pair where p = 2 and C is
not normal in G.

Leta = [(1) _(1)], b = [i ~i] Then a,b € GL(2,3) and U =

(a, b) has defining relations »® = a? = 1, a~'ba = b®. Moreover, U is a
Sylow 2-subgroup of GL(2, 3). Let M = V' (2, 3), the space of 2-dimen-
sional column vectors over GF(3). We have a map 7: U — Aut (M) given
by x — 7, where 7,(m) = xm (x € U, m € M). Let G be the semi-direct
product of M and U and let U; = {(0, x)|x € U},

o= (Lol 170 1)

and NV = {1, w}. It can be easily verified that G = (G, Uy, N, {w}, Ui} is
an unsaturated split (B, N)-pair. Furthermore, C = U; M U,” is not

normalized by ([8], b).

5. The rank one case. If G is a finite group with an unsaturated split
(B, N)-pair (G, B, N, R, U) then for each w; € R the parabolic subgroup

: = B\U B, B hasan unsaturated split (B, N)-pair (P;, B, Ny, {w;}, U)
of rank 1 where N, = H'\U w;H. Let (w;) € N satisfy (w,)H = w;. As
in the general case the set {4, A" w,| # € H} k-algebra generates

E; = Endyp, (V)
where
Y, = Indy”i(ky)
(see 5.7). There exists an injective k-linear algebra homomorphism
y:E,— E
given by
Ay — Ay (b € H)
Awp' = Awy

since the set {%, h(w;)| k € H} forms part of the transversal for the U-U
double cosets in G (see 3.2). Therefore, results proved for the rank one
case can be extended to G.

It becomes necessary (5.11, 5.12) to examined = 45— x (h(u,)) where
x € B is fixed and the h(u,) (s = 1,...,D) are certain elements of H
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determined by (w;) and Richen’s “structural equations.” Since these
equations exist for every w; € R, we refer in Section 3 to
b(4)
dy= Z X(h(uis))~

=1

Therefore we now assume G has an unsaturated split (B, N)-pair of
rank 1. Let W = {1, w} and let ¥, y, E and (w) be as in previous sections.
We must give some technical lemmas concerning the structure of
G = B\J BwB.

5.1 LEMMA. Let Q be any left transversal (containing 1) of U by ,U.
Then

QW M\ B = 1.
Proof. Since @ M\ B* C BN B*¥ = (UM U¥)H, the result follows.

Remark. Note that |Q| > 1, for otherwise U = ,U*, wBw = B, con-
trary to the (B, N)-pair axioms.

5.2 LEMMA. Cosets of the form gU (g € G) contained in BwB = BwU
are of the form uh(w) U for some w € U, h € H. Moreover, if u;, us € U
and hy, hy € H then

uth1 (W)U = ushe(w) U < us™uy € ,Ut and hy = ho.

Proof. Clearly uihi(w)U = uhi(w)U if uy = uou for some u € ,Ut
since H normalizes U and ,U™.
Say uihi(w) = ushe(w)u (u € U). Then

uuy = ho(w)u(w)1hy™!
= (w)he"u(hi=1)* (w)~!
so that

uy'uy € B* N B = ,UtH.

Therefore us~'u; € ,U* since it is an element whose order is a power of p.
Therefore

hoPu(hy~1)* € ,UT C U
so that
(heu(he™")*) (he* (hs=")*) € U.
Therefore Ay (hy™1)* € U and hy = hy.
The following facts are easily verified:

5.3. Let T = {h, u(w)h|lh € H,u € Q}. Then T is a set of representa-
tives of left cosets of U in G.

https://doi.org/10.4153/CJM-1980-056-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1980-056-x

730 N. B. TINBERG
5.4. Every element ¢ of G can be uniquely expressed as g = 1k or
g = u(w)hue with uy, 2 € U, u € Qand b € H.

5.5. The elements of N form a transversal for the U-U double cosets
in G.

Richen determines ‘‘structural equations’ in the saturated case and
these equations can be adapted to the unsaturated case, but we omit the
detailed proof (see [7, p. 445]).

5.6. Structural Equations in G. Let @* = Q\{1}. There exist functions
1> g > U, h:Q* > H
where f is a bijection and
(w)u(w) = flu)h(u)(w)g(n)
for any u € Q*.

We now examine the endomorphism algebra E.
As in Section 3 the set {4,’| n € N} is a k-basis for E where for h € H

5.7 Ay () = hy
Anwy (v) = [h(w)y.
It is easy to see that
58 A /Aw' = Awwyrand Awy'A,) = A for any b € H.
Therefore

5.9. The set {4}/, Aw)’| B € H} k-algebra generates E.

5.10 LEMMA. There exist elements u, . . ., uy (not necessarily distinct)
belonging to Q* such that

b
14(11/),2 = A(w), Z; A,,,(us)
where b = |Q] — 1.

Proof. We can write Aw'® = D newr Mds' + Donerr Mandnw where
My My € kforall B € H. Fix b € H. We show

(i) if Ay #£ 0 then & = (w)? and N2 = |Q| - 1
(i1) if My # O then h = h(u) for some u € Q*.

Proof of (i). By 3.2 there exist u, us € Q such that u;(w)uz(w) € AU.
We must have #, = 1 for otherwise

(w)~us(w) € (w)~hU C B
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contradicting 5.1. Now #;(w)? € kU if and only if (w)? = h. It follows
that

)\(w)z = [Q'.lk.
Proof of (ii). If Ny # O there exist #1, #2 € Q such that
ur(w)uz(w) € h(w)U.

Therefore by 5.6 Uh (1) (w) U = Uh(w) U so that b = h(us) by 5.3.

We know that A4 ,"2(y) is a sum of |Q|? G-translates of y; that is |Q|2
terms of the form gy = vy (y € T, g € vU). If the term vy appears,
(y ¢ H), so will each of its distinct G-translates of which there are |Q] in
number. If we call vy and its set of distinct U-translates an ‘‘orbit”’ then
by (i) and because |Q2 — |Q] = |@] (]| — 1), we see that there are
|| — 1 such orbits in X nex M dnay. By (ii) Ay’ has the required
form since 1 < |Q| is a power of p.

Definition. For x € B, let e(x) = Z,,EH x (h~1)A,’. Notice that
Ay'e(x) = e(x)Ay = x(h)e(x) for any h € H.
We now fix x € B and examine d = » °_; x(h(u;)). Remember that
vy € B where “x(hu) = x(h*u) forany h € H, u € U.
5.11 LEMMA. Assume d # 0. Then “x = x.

Proof. Let v = e(x)Aw’- By 5.9 v generates a one-dimensional right
E-module since
(i) vd," = e("x)Aw 44
e("x)Anw by 5.8
= e(wX)AZM)(w)‘lh(w)
= e("x)Aw-1nwAw’ by 5.8
= x(h)v for all h € H, and
(i) vdw = e(wX)A(w»'2

b

=e(®x) 4w’ ; Apwy by 5.10

I

SX; x(h(u;))v by part (i)
= dv.
Therefore there exists a multiplicative character ¢ : E — k such that
¢(Aw’') = dand ¢(4,') = x(h) for all & € H.
But

¢(Aw'4') = ¢(Adw-1rwdw') forany € H
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by 5.8 so that

¢(Aw o (Ar) = ¢(dw-1)¢(Aw') for any b € H
and so

dx(h) = “x(h)d forall h € H
and the result follows.

5.12 THEOREM. Assume d # 0. Then there exists a one-dimensional
kG-module M, affording the character £: G — k* with §|H = x|H.

Proof. By 5.11 A, commutes with e(x). Hence e(x) is in the centre
of E and

e(X)E = e(x)Ee(x) = ke(x) @ ke(x)4dw'’

is an algebra which has basis ¢ = e(x) and ¢ = e(x)4 w)’- Now e? = e,
et = te = t,1* = dt and e = e + e1 is a decomposition of e into primitive
idempotents in e(x)E where e, = (1/d)(de — t) and e; = (1/d)t. Let
VY, =e(x)Y. Then Y, is a kG-module of dimension |G: B| = |Q| + 1
since ¥, =2 Indp%(L,) where L, is a kB-module affording the character x.
Let mo = €o(Y) and M, = e1(Y). Then Y, = My ® M, where M, and
M, are indecomposable left kG-modules. We show that the dimension of
M, is one by showing the dimension of M is |2|. Let x1 = e:(y). Then x,
is U-invariant and

(@] (w)x: = [Q](w)e(y)

er([Q] (w)y)

= edw' ()

= (1/d)e(x)Aw"(y)

b
1/d)e(x)Aw’ Z; Ahwy(y) by 5.10

It

Il

b
= (1/d)e(x)Aw' 2 x(h(u,))y since e(x)and 4 'commute
s=1

= de.(y)
=dx; # 0asd # 0.

Therefore M; contains an element x = (w)x; such that [Q]x # 0 and x
is stabilized by ,U*. Let L = Ind;V (k;) where T = ,U*. Then there
exists a surjective kU-map 6:L — kUx given by 6(z) = x where
z =1@® 1. Hence

0(2 wz) = wx#0.

wER weR

The socle of L is its space of U-invariants [2]z. Therefore 8 is a bijection
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and the k-space kUx has dimension |Q|. But #Ux C M, and
dimension M; = dimension Y, — dimension M, < |Q|

so that the dimension of M is |Q|.
Assume M, affords the character £: G — k* and let v = ¢y(y). Then
M, = kvand if & € H it is easily verified that iv = x(h)v. Hence

(lH = x|H.
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