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Abstract Moduli spaces of bounded local G-shtukas are a group-theoretic generalisation of the function
field analogue of Rapoport and Zink’s moduli spaces of p-divisible groups. In this article we generalise
some very prominent concepts in the theory of Rapoport-Zink spaces to our setting. More precisely, we
define period spaces, as well as the period map from a moduli space of bounded local G-shtukas to the
corresponding period space, and we determine the image of the period map. Furthermore, we define a
tower of coverings of the generic fibre of the moduli space, which is equipped with a Hecke action and an
action of a suitable automorphism group. Finally, we consider the ¢-adic cohomology of these towers.
Les espaces de modules de G-chtoucas locaux bornés sont une généralisation des espaces de modules
de groupes p-divisibles de Rapoport-Zink, au cas d’un corps de fonctions local, pour des groupes plus
généraux et des copoids pas nécessairement minuscules. Dans cet article nous définissons les espaces de
périodes et I'application de périodes associés & un tel espace, et nous calculons son image. Nous étudions
la tour au-dessus de la fibre générique de ’espace de modules, équipée d’une action de Hecke ainsi que
d’une action d’un groupe d’automorphismes. Enfin, nous définissons la cohomologie ¢-adique de ces tours.
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1. Introduction

Towers of moduli spaces of p-divisible groups with additional structure as defined by
Drinfeld [35] and Rapoport and Zink [80] have become a central topic in the study
of the geometric realisation of local Langlands correspondences. These towers consist of
covering spaces of the generic fibre of moduli spaces of p-divisible groups with EL or PEL
structure. They carry a Hecke action and an action of an associated automorphism group
of the defining p-divisible group with extra structure and possess a period morphism
to a p-adic period space. Recently, generalisations of these moduli spaces to groups of
unramified Hodge type (instead of PEL type) have been defined by Kim [69] and Howard
and Pappas [62]. Conjecturally, in all of these cases, the cohomology of the tower realises
local Langlands correspondences. Several cases of these conjectures have been shown so
far; compare, for example, [36], [27]. However, in general, still very little is known.

In the present article we define the analogous towers, cohomology groups and period
spaces in the function field case and study their basic properties. This generalises
Drinfeld’s work [35]. We thus provide the foundations for a theory similar to the one
initiated by Drinfeld, Rapoport and Zink. It is conceivable that the cohomology of our
towers likewise realises local Langlands correspondences. For Drinfeld’s towers [35] this
was conjectured by Carayol [26] and proved by Boyer [23] and Hausberger [59], building
on work of Laumon, Rapoport and Stuhler [73]. One major difference in our context is
that instead of being restricted to groups of PEL or Hodge type, there is a natural and
group-theoretic way to define moduli spaces of local G-shtukas for any reductive group G.
Furthermore, one can define more general boundedness conditions than minuscule bounds
which would be the direct analogue of the number field situation.

To give an overview of their definition, let F, be a finite field with ¢ elements, let F
be a fixed algebraic closure of F, and let F,[z] and F,[¢] be the power series rings over
F, in the (independent) variables z, respectively (. As base schemes we will consider the
category N ilqu [¢] consisting of schemes over SpecF, [¢] on which ¢ is locally nilpotent.
Let G be a parahoric group scheme over SpecF,[z] in the sense of [25, Définition 5.2.6]
and [48] with connected reductive generic fibre. (One may ask whether the assumptions
on G can be relaxed, but we crucially use the ind-projectivity of F¢g in the central
Propositions 2.6 and 7.8; see the beginning of Section 2 for more explanations.)

Let S € N ilp,[¢) and let H be a sheaf of groups on § for the fpgc topology. By a
(right) H-torsor on S we mean a sheaf H for the fpgc topology on S together with a
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(right) action of the sheaf H such that # is isomorphic to H on an fpgc covering of S.
Here H is viewed as an H-torsor by right multiplication. Let LG and LG be the loop
group and the group of positive loops associated with G; compare Section 2. Let G be an
L*G-torsor on S. Via the inclusion of sheaves L*G C LG we can associate an LG-torsor
LG with G. Also, for an LG-torsor G on S we denote by ¢*G the pullback of G under the
g-Frobenius morphism o := Frob,: S — S.

Definition 1.1. A local G-shtuka over some S € Nilpy ¢} is a pair G = (G,7g) consisting

of an L*G-torsor G on S and an isomorphism of the associated LG-torsors 7g: o* LG =~
LG.

A quasi-isogeny g: (G',7g/) = (G,7¢g) between local G-shtukas over S is an isomorphism
g: LG = LG of the associated LG-torsors with gorg: = 7goc*g.

Local G-shtukas were introduced and studied in [56], [57] in the case where G is a
constant split reductive group over F, and in [41], [50] for G = GL,. The general case was
considered in [4]. For a local G-shtuka G over S there exists an étale covering S’ — S and
a trivialisation G x s 8" 2 ((LTG)s/,bo*) with b€ LG(S"); see [56, Proposition 2.2(c)] and
[4, Proposition 2.4].

Note that we may view SpfF,[¢] as an ind-scheme. By Flz we denote the affine
flag variety of G over Fy; compare Section 2. We may form the fibre product j—'\fg =
Fle qu SpfF,[¢] in the category of ind-schemes. By [4, Theorem 4.4] it represents the
functor on Nilpg, 1) with

]/-"\Eg(S) = {Isomorphism classes of pairs (G,0) where G is an L™ G-torsor on S and

0: LG == LGy is an isomorphism of the associated LG-torsors } (1.1)

We consider local G-shtukas that satisfy an additional boundedness condition. Similar
to [4, §4.2], we introduce the notion of a bound Z and its reflex ring R;, which is a
finite extension of F,[¢]. Our bounds are defined as closed ind-subschemes Z C j—"\éa R=
]-"EC,&]FQ Spf R satisfying certain additional properties. Here R is a finite extension of
F,[¢]. In particular, we allow more general bounds than usual, in the sense that they do
not have to correspond directly to some coweight p (which in the classical context even
had to be minuscule). We consider local G-shtukas G = (G,7g) over schemes in Nilp R,
such that the singularities of the morphism 75 ! are bounded by Z; compare Definition 2.2.
In this case we say that G is bounded by Z~1; see Remark 2.3(a) for a comment on this
terminology. These bounded local G-shtukas can be seen as the function field analogues
of p-divisible groups with extra structure. We write R, = s[£], let E:= E, := r((£)) be its
fraction field and let R 5 =F[¢] and E:=F 5 :=TF((£)) be the completions of the maximal
unramified extensions.

One can then consider the usual Rapoport-Zink type moduli space representing
the following functor: Let G, be a local G-shtuka over F and consider the functor
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o po1 i .
Még t (Nilpy_)° — Sets,
Sr— {Isomorphism classes of (G,0): where G is a local G-shtuka overS

bounded by Z~! and 4: G5 — Gy g is a quasi-isogeny over 5‘}.

Here S := V() is the zero locus of ¢ in S. The functor ./\;lé: is ind-representable by
a formal scheme over Spf RZ that is locally formally of finite type and separated; see [4,
Theorem 4.18]. The group J = QIsogy(G,) of self-quasi-isogenies of G, acts on Mg: via
g: (G,6) > (G,god) for g € Qlsogg(Gy)-

We consider the generic fibre (Mé_l)a“ of this moduli space as a strictly E‘—analytic
space in the sense of Berkovich [7], [gT Using the fully faithful functors [8, §1.6] and [63,
(1.1.11)] from strictly E—analytic spaces to rigid analytic spaces over E , respectively from
rigid analytic spaces to Huber’s analytic adic spaces, many of the results below can be
formulated likewise in terms of rigid analytic, respectively analytic adic spaces. However,
because we want to use étale fundamental groups and local systems on these spaces, we
prefer in this work the Berkovich point of view for which such a theory exists in the
literature.

As in [4, Definition 3.5], we consider the rational (dual) Tate module of the universal
local G-shtuka over each connected component Y of (Méo_l)an; see Section 7. It is a
tensor functor

Vg, : Repy, (o) G = Repi () (71" (Y5)).

Here Repy, () G denotes the Tannakian category of Fy((2))-rational representations of G,
and Repﬁfq”(l(tz)) (7$*(Y,5)) denotes the category of finite-dimensional Fq((z)))—vector spaces
with a continuous action of de Jong’s [31, §2] étale fundamental group 7$*(Y,5), where §
is a fixed base point in the given component.

Trivialising the rational Tate module up to the action of K for each compact open
subgroup K C G(F,((2))), we obtain a tower (MX) g of analytic spaces. Each of the spaces
is equipped with an action of the group J = QIsogy(G,) that is induced by the action on
the moduli space ./\;lg: itself. Furthermore, the group G(F,((2))) acts vertically on the
tower via Hecke operators; that is, for g € G(F,((z))) we have compatible isomorphisms
g: MK~ Mo Ky,

In the last section we consider the f-adic cohomology with compact support of the
spaces MY and their limit over K together with induced actions of J, of G (Fq((2))
and of the Weil group Wg. We provide basic finiteness properties of these cohomology
groups and representations. Note that Tate modules, towers of moduli spaces of local
G-shtukas and their cohomology are also considered in a similar but slightly different
context by Neupert in [76]. There, the relation to moduli spaces of global G-shtukas and
their cohomology is studied.

Besides this construction of the tower of moduli spaces, our second main topic is the
definition of the associated period space and the properties of the period morphism. Period
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spaces are strictly F,((¢))-analytic spaces in the sense of Berkovich [7], [8]. Because we
allow more general bounds than those associated with minuscule coweights, these period
spaces have to be defined as subspaces of an affine Grassmannian instead of a (classical)
flag variety. To define them, we consider the group scheme G xp, .} SpecF,((¢))[z — (]
under the homomorphism F,[z] — F,({))[z — (], 2+ 2z =+ (2 — ). Note that because
this induces an inclusion F,((2)) = F,((¢))[z — (], this group is reductive. The associated
affine Grassmannian Grg®® is the sheaf of sets for the fpgc topology on SpecF,((¢))
associated with the presheaf

X — G(Ox (2 =) /G(Ox[z~C]). (12)

Grg®® is an ind-scheme over SpecF,((¢)) which is ind-projective by [77, Theorem 1.4] and

[84, Theorem A]. Here, the notation Byg refers to the fact that if C' is the completion of

an algebraic closure of F,((¢)), then C((z —()) is the function field analogue of Fontaine’s
p-adic period field Bgr; compare [49, §2.9].

For our fixed bound Z we call the associated E-analytic space ’H"é“ 5= 70 the space

of Hodge-Pink G-structures bounded by Z. It is the E-analytic space associated with a
projective variety H, , over E = E, by Proposition 2.6(d) and is a closed subscheme of

Grp® ®r,(¢)E- Let Gy be the local G-shtuka over F from above and fix a trivialisation
Gy = (L*Gy,bo*), where b € LG(F) represents the Frobenius morphism. The period space
ﬁ‘é?zb is then defined as the set of all v € ’H‘m = ’Ha" ®EE such that (b,7) is weakly
admissible. For the usual condition of weak admlssﬂalhty (checked on all representations
of G) we refer to Definition 4.3. Likewise, one defines the admissible locus ’Hg 2 in 7-22;‘ P
as the subset over which the universal o-bundle has slope zero. In Theorem 4.20 we show
that Hwa and ’H , are open paracompact strictly E- analytic subspaces of Han

We prove that there is an étale period morphism

Fr(ME) — HE

Very roughly, it 15 defined as follows: Consider the filtration on the universal local G-
shtuka on (MZ )22 induced by the image of the inverse of the universal Frobenius
morphism 7guniv. This filtration is the function field analogue of the Hodge filtration on

the de Rham cohomology and is bounded by Z. Using the universal quasi-isogeny, one
can associate with it a natural filtration on the base change of G, which is bounded by Z.
Strictly speaking, we carry out this construction with the Hodge-Pink G-structure instead
of the filtration; see Definition 4.1 and Remark 4.4(a). The reason for this is again that as
we allow nonminuscule bounds, the Hodge-Pink G-structure contains more information

than just the Hodge filtration. The former yields a point of Ho G2 This period morphism

also induces compatible period morphisms for all elements MX of the tower of coverings.
In Theorem 8.1(a) we show that the image of the period morphism is equal to a suitable
union of connected components of ?:LGG 5

There is an analogy between the theé)rj;f of local G-shtukas and the theory of p-divisible
groups [49, §3.9]. In this sense, our results have natural counterparts in the theory of
p-divisible groups, for particular cases by [51] and in general by Scholze and Weinstein
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[89, [90] using the Fargues-Fontaine curve [37]. One main difference is that in the function
field case, the flag variety F /s is an honest ind-scheme. In addition, the Fargues-Fontaine
curve is replaced by its role model, the Hartl-Pink curve [55]. This allows us to consider
nonminuscule Hodge-Pink structures and to work without Scholze’s theory of diamonds.
One feature of our theory is the group-theoretic approach, which makes the results
automatically functorial in the group G; see Remarks 3.7, 4.21 and 7.19. Interestingly,
the proofs for local G-shtukas in this work had to be largely different from the techniques
used for p-divisible groups and are technically quite involved.

2. Bounded local G-shtukas

Recall that we fixed a parahoric group scheme G over SpecF,[z].

For an Fg-scheme S we let Og[z] be the sheaf of Og-algebras on S for the fpgc
topology whose ring of sections on an S-scheme Y is the ring of power series Og[z](Y) :=
I'(Y,Oy)[z]. This is indeed a sheaf being the countable direct product of Og. A sheaf
M of Og[z]-modules on S that is finite free fpgc-locally on S is already finite free
Zariski-locally on S by [56, Proposition 2.3]. We call those modules locally free sheaves
of Oglz]-modules. Let Os((2)) be the fpgc sheaf of Og-algebras on S associated with the
presheaf Y — I'(Y,0y)[2][1]. If Y is quasi-compact, then Og((2))(Y) =T (Y,0y)[][1]
by [32, Tag 009F]. The group of positive loops associated with G is the infinite-dimensional
affine group scheme LG over F, whose S-valued points are L*G(S) := G(Os[z](S)) =
G(F(S, Os)[z])- The group of loops associated with G is the ind-group-scheme LG over F,,
that represents the fpge sheaf of groups S — LG(S) := G(Os((2))(S)). A good reference
for the theory of ind-schemes is [6, §7.11]. The affine flag variety Flg associated with G
is the fpqc sheaf associated with the presheaf

S — LG(S)/LTG(S) = G(0s((2))(9)) /G (Os[1(9))

on the category of Fy-schemes. Pappas and Rapoport [77, Theorem 1.4] and Richarz
[84, Theorem A] showed that F¢q is represented by an ind-scheme that is ind-projective
over [, and that the natural morphism LG — Flg admits sections locally for the étale
topology. We crucially use the ind-projectivity of F¢¢ in Propositions 2.6 and 7.8. By [77,
Theorem 0.1], after base change to F the connected components of LG@F{ZF and F €G®Fqlﬁ'
are in canonical bijection to the coinvariants 7 (G). Here 71 (G) is Borovoi’s fundamental
group [16, Chapter 1], defined as 71 (G) := X,.(T')/(coroot lattice) for a maximal torus T of
GF, (=) - Moreover, m; (G)1 denotes the group of coinvariants under the inertia subgroup
I of T'= Gal (Fy((2))**P/F4((2))). The bijection mo(Fle®r,F) = mo(LG®r,F) 2 71 (G); is
induced by the Kottwitz homomorphism kg: LG(F) = G(F((2))) = 71 (G)r (introduced
by Kottwitz in [71]; for the reformulation used here, compare [77, 2.a.2]). It induces a
bijection between the set mo(LG) = mo(FLg) and the set of (o)-orbits in 71 (G); by [76,
Lemma 2.2.6], a set that is in general no longer a group.

Remark 2.1. We will define bounds on local G-shtukas as (equivalence classes of) certain
ind-subschemes of Flg g := Flg Q]Fq Spf R where R is a finite extension of Fy[(]. In order
to define and consider also the generic fibre of the associated moduli spaces, one needs
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to bound the singularities with respect to z — ¢ of the local G-shtukas. In particular, our
definition is more restrictive than the one in [4, Definitions 4.5 and 4.8]. To encode this
condition in our notion of bounds, we have to compare j-"\EG, r to the following closed
ind-subschemes associated with a representation of G.

If A=F,Jz2] or A=TF,(2)), we let RepyG denote the category of (algebraic)
representations of G on finite free A-modules. Here, we consider representations p: G —
SL, over F [[zﬂ and the induced functor G — p*g from LtG-torsors to Lt SL,-torsors,
which in turn yields a morphism p, : }"EG — ]—"ESL Here, }"é(; = Flgr,[c]- The category
of LT SL,-torsors on S is equivalent to the category of pairs (M,«), Where M is a finite
locally free Og[z[-module of rank 7 on § and a: NG, ;g M= 0Os [#] is an isomorphism
of Og[z]-modules, with isomorphisms as morphlsms We denote the Og[z]-module
associated with an L* SL,-torsor S by M(S). For example, M ((L*SL,)s) = Os[2]*".

For a positive integer n we consider the closed ind-subscheme of ﬁSLT given by
Flgy (S) = { (S,6: LS = (LSL,)s) € Flsy,.(S): forall j=1,...,r we have

baa MO)(M(S)) € (z=Q"@ = AL M((LFSL)s) b (2)

It is a ¢-adic formal scheme over SpfF,[(] by [56, Proposition 5.5]; see Example 2.8 for
more explanations. Note that the compatibility with the isomorphism a: A"™ M(S) =
Os[7] is equivalent to the assertion that the inclusion of the exterior powers in (2.1) is

an equality for j =r, because (S, §) € ﬁSL,. (S) implies A" M (§) = a. We then require the

bounds to factor through some ]/'—\Eé?l; cf. Condition (b)(iv).
A different way to formulate such a condition would be to use the isomorphism

tim Fl x5 Flg) = Gr(Gx.X) xx SpecR (2.2)

Flsy

where the right-hand side is the BD-Grassmannian associated with G of [84, Defini-
tion 3.3]. Here we use that G extends by [84, Lemma 3.1] to a smooth affine group
scheme Gx on a smooth connected curve X over F, on which Fy[z] is identified with
the completion of the local ring at a point x € X. The map Spec R — X comes from the
inclusion F,[z] < R,z — (. The isomorphism (2.2) also induces a comparison between
specific bounds with global Schubert varieties of [84]; compare Example 2.7.

We now define bounds by requiring minimal conditions needed to obtain the results
of this article. In Remark 2.11 we will discuss further conditions that seem reasonable
to impose but that we do not need to assume in this article. We will then also describe
more explicitly which bounds can arise, and in Examples 2.7 and 2.8 we will give a more
specific class of bounds that depend on cocharacters of the generic fibre of G.

Definition 2.2.  (a) We fix an algebraic closure F,((¢ )& of F,((¢)) and consider pairs
(R,ZR), where R/F,[(] is a finite extension of discrete valuation rings such that
R CF,((¢)™¢ and where Zp C ]/-'\EG g = Flcxr,Spf R is a closed ind-subscheme.
Two such pairs (R,Zg) and (R,Z ) are equivalent if for some finite extension
of discrete valuation rings R/IE‘ [¢] with R,R' C R the two closed ind-subschemes
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ZRQSpr Spfﬁ and ZA;%/;ESpfFRi/ Spfﬁ of ./F\écﬁ are equal. By [4, Remark 4.6], this

then holds for all such rings R.

(b) A bound is an equivalence class Z := [(R,Zg)] of pairs (R,Zg) as above satisfying
the followmg properties:

(i) All Zr C ]-'KG r are stable under the left LT G-action.

(ii) The special fibre Zg := ZRxspr Speckpr is a quasi-compact subscheme of
Flg />2]Fq kg where kg is the residue field of R. (By [4, Remark 4.10] this implies
that the Zp are formal schemes in the sense of [44, Thew, §10].)

(iii) Zg is a C-adic formal scheme over Spf R.

(iv) There is a faithful representation p: G < SL,. over F [[z]] and a positive integer
n such that all of the induced morphisms p, : Zr — ]-'ESL _r factor through

(v) Let Z%“ be the strictly R[ |-analytic space associated with Zr. By Propo-
sition 2.6(d) there is a closed subscheme 7z £ of the affine Grassmannian
GrG X, (¢) Spec £, from (1.2) such that Zj“{’ arises by base change to R[ ]
from the strictly E-analytic space (Z )" associated with Zg. Then we require
that Zg, and hence also all of the Z %" are invariant under the left multiplication
of G(+[2—¢]) on Grng.

(c) The reflex ring R, of a bound Z = [(R,Zg)] is the intersection of the fixed field of
{~ € Autp, ¢ (F4((€)*8) : ¥( Z)=Z} inF,((¢))™ with all of the finite extensions R C
F, (€)™ of F,[¢] over which a representative Zg of Z exists. We write R, = k[€]
and call its fraction field F := F, = k((€)) the reflex field of Z. We let RZ =TF[¢]
and E := EZ :=TF((€)) be the completions of their maximal unramified extensions,
where F is an algebraic closure of the finite field .

(d) Let Z = [(R,Zg)] be a bound with reflex ring R . Let G and ¢’ be L*G-torsors over
a scheme S € Nilp R, and let §: LG =+ LG’ be an isomorphism of the associated
LG-torsors. We consider an étale covering S’ — S over which trivialisations o: G~
(LTG)g and o: G’ = (LT G)g exist. Then the automorphism o' o§oa™! of
(LG)S/ corresponds to a morphism S’ — LG;ZF Spf R;. We say that § is bounded

by Z if for every such trivialisation and for every finite extension R of F 4[¢] over
which a representative Zp of Z exists the induced morphism

S'%r, Spf R — LG5, Spf R — Flg g

factors through Zg. Furthermore, we say that a local G-shtuka G = (G,7g) is bounded
by Z if TG is bounded by Z and, even more 1mportant that G is bounded by Z7if
the inverse 75 ! of its Frobenius is bounded by Z compare the remark below.

Let us explain the conditions of this definition in more detail.
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Remark 2.3. (a) The definition of a bound in Definition 2.2(b) is more restrictive than
the one in [4, Definition 4.8] where only conditions (b)(i) and (b)(ii) were required. The
reason is that in [4] the content of Proposition 2.6 was not needed and the R[%]—analytic

spaces (Zg)™ were not considered.

In this article we will mainly consider local G-shtukas that are bounded by Z~'. This
definition coincides with the notion of boundedness from [4, Definition 4.8(b)] in the
following way. If Z is a bound in the sense of [4, Definition 4.8], like, for example, our
bound Z, then by Lemma 2.12 there is a bound Z~! in the sense of [4, Definition 4.8]
and 75 !is bounded by Z if and only if 7g is bounded by Z L.

(b) The reflex ring in Definition 2.2(c) is always the ring of integers of a finite extension
of Fy((€)). For a detailed explanation of the definition of the reflex ring and a comparison
with the number field case, see [4, Remark 4.7]. We do not know whether in general
Z has a representative over the reflex ring. In contrast, the equivalence class of the
IR = ZRQSpr Speckp always has a representative Z C Flg QFQ Speck over the residue
field x of the reflex ring R, because the Galois descent for closed ind-subschemes of
Flg is effective. We call Z the special fibre of Z. It is a projective scheme over x by [56,
Lemma 5.4] because F{q is ind-projective.

(¢) The condition of Definition 2.2(d) is satisfied for all trivialisations « and o’ and
for all such finite extensions R of F,[¢] if and only if it is satisfied for one trivialisation
and for one such finite extension. Indeed, by the LT G-invariance of Z, the definition
is independent of the trivialisations. That one finite extension suffices follows from [4,
Remark 4.6].

(d) At first glance one might think that conditions (b)(i) and (b)(v) of Definition 2.2
are related. However, in Example 2.9 we show that we really need to impose both of
them.

Before we discuss properties of bounds, we recall the following well-known lemma.

Lemma 2.4. Let f: X — Y be a morphism of locally Noetherian adic formal schemes.
Then fis a closed immersion in the sense of [44, Inew, Definition 10.14.2] if and only if
f is adic and an ind-closed immersion of ind-schemes.

Proof. By definition f is a closed immersion if and only if there is a covering of Y by
open affine formal subschemes Spf B such that X xy Spf B 2 Spf B/a for an ideal a C B.
In particular, if I C B is a finitely generated ideal of definition of Spf B, then I-B/a is
an ideal of definition of Spf B/a and so f is adic. Moreover, Spf B = {iLnSpecB/I” and
SptB/a= liLnSpec B/(a+1™) and so f is an ind-closed immersion of ind-schemes.

To prove the converse, let Z C Oy be an ideal sheaf of definition. Because f is
adic, Z-Ox is an ideal sheaf of definition of X. That f is an ind-closed immersion
means that X, := (X,0x/I") = Y, := (Y,0Oy/ZI") is a closed immersion of schemes.
So there is a sheaf of ideals a, C Oy /Z"™ defining X,,. Moreover, a, = a,4+1- Oy /",
because X, = Xp41 Xv,,, Yn. Let a:= l(iLnan - {iLnOy/I” = Oy. Because Y is locally
Noetherian, a is a coherent sheaf of Oy-modules by [44, I;e, Theorem 10.10.2]. Then
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X, = (X,(0y/(a+7I")|x) and X = (X,(Oy/a)|x). This proves that f is a closed
immersion in the sense of [44, I;ew, Definition 10.14.2]. O

Remark 2.5. Without the assumption that f is adic, the conclusion of the lemma is
false, as the following example shows. Let Y = hmY with Y, = SpecF[¢][x]/({"™) and

X:h_n,an with X,, = SpecF,[¢][z]/(¢,z)™. Then X = SpfF,[¢,z] — Y = SpfF,[(](z),

with the notation of (6.3), is an ind-closed immersion of ind-schemes but not a closed
immersion of formal schemes.

In the next proposition we associate with a bound Z a strictly F,((¢))-analytic space in
the sense of Berkovich [7], [8]. On the category of F,((¢))-analytic spaces we consider the
étale topology; see [8, §4.1].

Proposition 2.6. Let Z = [(R,ZR)] be a bound with reflex ring R, and let E:= E, =
RZ[%] be its field of fractions. We only assume that Z satisfies conditions (b)(i)—(b)(iv)
from Definition 2.2 but not condition (b)(v), whose formulation uses the results of the
present proposition.

(a) Then for every representation p: G — SL,. over F [[z]] there is a positive integer n
such that all of the induced morphisms py: ZR — .FEG R— ]-"KSL .r factor through

18 a ¢-adic formal scheme over Sp . It 1s the (-adic completion of a

b]—'fSLT‘ C-adic f l sch SpfF4[¢]. It is the C-adi leti f
projective scheme over SpecFy[(] that we also denote by ]/-'\ééﬁ, The corresponding
strictly Fo((¢))-analytic space (ﬁ(sz)r)an is the analytification of the projective

scheme ﬁgﬁ xr,[¢] SpecFy () over SpecFy((C)) that represents the sheaf of sets
for the étale topology associated with the presheaf

XH{g mod SL, (Ox[z—(]) € SL, (Ox((z—¢)))/SL, (Ox[z—¢]): (2.3)

all j X j-minors of g lie in (z—C)"(j2_j7')(9X[[z—§]] for allj}.

The scheme ﬁ(sz) xr,[c] SpecFy((C)) is a closed subscheme of the affine Grassman-
nian G‘rrS from (1.2).
(¢) If n and p are as in (a) such that p is faithful with quasi-affine quotient SL, /G,

then all p,: Zr <> fzé?R are closed immersions of formal schemes over Spf R in
the sense of [14, Inew, Definition 10.14.2].

(d) All Zr are C-adic formal schemes, projective over Spf R. All of their associated

R[%]—analytic spaces (Zg)™ arise by base change to R[%] from one strictly E,-

analytic space Zom.— (ZE)“" associated with a projective scheme Zg over SpecE .
The latter is a closed subscheme of the affine Grassmannian Grg‘m X, (¢)Spec By
from (1.2).
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Remark. The proof of statements (c) and (d) uses the ind-projectivity of the affine flag

. . L ; —(n)
variety Flq. If G is not parahoric, it is not clear to us whether p,: Zg — ]-"ESTLT, risa
locally closed immersion of (-adic formal schemes.

Proof of Proposition 2.6. (a) Let p': G — SL,» and n’ be the representation and the
integer from Definition 2.2(b) for which all pl, : ZR — j—'\ESL ,.r factor through ﬁé’ii R

Let LSL, p := LSL, g, Spt R and define LSLy,  := LSL vn% g, L FUG g Then

LSLU(s) =

{ge IJ/S\L,.@R(S): all j x j-minors of g lie in (z—()”,(f*jrl)OS(S)[[z]] Vi=1,...r"}.

This implies that LSL R is an infinite-dimensional affine formal scheme over Spf R.

Thus, its closed subscheme LGR ", := (LGXp, Spf R)x IS, LSLM}; is also affine. By [4,

Remark 4.10], the ind-schemes Zg are in fact formal schemes over Spf R in the sense of
[44, T,0w]. Because the morphism LG — F{¢ has sections étale locally, there is an étale
covering of formal schemes Z R Z g such that the morphism Z » = Flg, r factors through

fég ). Let SpfA C ZA%{ be an affine open formal subscheme with Spf A = limSpec 4;
—

for some A;. The induced compatible collection of morphisms SpecA; — EE;” —

L/S\LSL ; corresponds to a compatible collection of ring homomorphisms O(L/S\LE:L };) —»

(9(5555 )) — A, and thus to a homomorphism O(L/S\le};) — O(f@g )) — A. We view
the latter as an element b € SL, (A[2][-2¢]) N ((= — ¢~ =D AL])" ' n actually
lies in G(A[[z]][i]), because the closed ind-subscheme LG < LSL,. is defined by the
equations that, applied to the entries of a matrix in SL,., cut out the closed subgroup
p: G SL,.

If now p: G — SL, is any representation over F,[z], then we claim that there is a
positive integer n that only depends on p and n’ such that p(b) € SL., (A[[z}][z—ic]) and all

j§ x j minors of p(b) lie in (z —¢)"U* =" A[z] for all j. Indeed, equality for j =r always
holds because the image of p is in SL,. For the other j we realise p as a subquotient of
@;0 (p)® @ (p')®™i for suitable ig, I; and m;. Then it is enough to show the claim
for this direct sum. Here we can bound all minors by bounds only depending on n’, ig

and the [; and m;. The claim follows. Thus, p: ZR — .ﬁSLT’R factors through feéﬁiﬂ
because the equations defining the closed ind-subscheme ﬁéz)r r C ﬁSLr, r vanish on
the étale covering Z}% — Zn.

(b) To show that ]/-'\Kg;)r (S) is projective over SpfF,[(], we use the equivalence between
L+ SL,-torsors over S and pairs (M,«) where M is a locally free Og[z]-module on S
and a: A" M =5 Og#] is an isomorphism of Og[z]-modules. Under this equivalence and
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using that Os[2] = Os[z —(] for all S € Nilpg, [¢}, we may identify ﬁé?r(S) with the
set

{ locally free Ogz — ¢]-submodules M C (z—¢) """ "D Og[z —¢]"such that for all
. . . j n(i%—ir i r
j=1,...,r we have the inclusion A\, qM C (2—C) (= =ir) Nosp—q Oslz - ]®

with equality for j = r}. (2.4)

Note that the quotient (z —¢)~"(""DOg[z — ¢]¥" /M is finite locally free as Og-module
by [56, Lemma 4.3]. From Cramer’s rule (e.g., [22, II1.8.6, Formulas (21) and (22)]), one
sees that the above condition for j = —1 implies that M > (z — )"~ DOg[z - ¢]".
By considering the image M of (z—¢)"""V M in (Og[z—(]/(z— C)Q"(T_l))ear and using
arguments similar to [52, Lemma 2.7] (see also [87, Proposition 2.4.6]), we obtain a closed

embedding of j—"\ﬂ(s? into the formal {-adic completion

(Quotor | speck, [¢](2]/(:—¢)2n (=1 | SpecF, [¢]) X Speck,[¢] SPIFq[(]

of Grothendieck’s Quot-scheme whose points over a SpecF,[(]-scheme S are

(Quotor | speck, [¢](z]/(z—¢)2ntr=1 | Speck, [¢c]) () =
{ﬁnitely presented Og[z]/(z — ¢)*"("~D-submodules M C (Osl2]/(z - ¢)2nir=h) or

whose quotient is finite locally free over (95} ;

see [43, n°221, Theorem 3.1] or [2, Theorem 2.6]. By the projectivity of the Quot-scheme,
]/-'\6(53 is projective over SpfF,[(]. From (2.4) also the description of the sheaf represented

by (FZ5 )™ follows.

(¢) If p: G — SL, is a faithful representation with quasi-affine quotient SL, /p(G), then
Pappas and Rapoport [77, Theorem 1.4] showed that the induced morphism p,: Flg <
Flgy,, is alocally ind-closed immersion of ind-schemes. Because F{ is ind-proper by [84,
Theorem A], this is even an ind-closed immersion. Because Zg is a C-adic formal scheme

by Definition 2.2(b)(iii), all p.: Zr < .ﬁé?m r are adic ind-closed immersions of formal
schemes over Spf R and hence closed immersions by Lemma 2.4.

(d) By [77, Proposition 1.3] there is a faithful representation p: G < SL, as in (a)
with quasi-affine quotient SL, /p(G). Therefore, all Zg are projective over Spf R by (b)
and (c), and the associated strictly R[%]—analytic space (Zp)™ is Zariski-closed in the

projective R[%]—analytic space (]/-'\Eéz)mR)an. By analytic GAGA [75, Theorem 2.8], (Zz)*"

is the analytification of a closed subscheme Z R[] of the projective scheme j—'\ﬁgi)r X, [¢]
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SpecR[%}. By [4, Remark 4.7(f)] there is an R over which a representative Zg exists,
such that R[%] is Galois over E, and Zg is invariant under Gal(R[%]/EZ). Because the
Galois descent for projective E,-schemes is effective by [45, Chapitre VIII, Corollaire 7.7],
the scheme Z R[] and its analytification (Zg)*" descend to a projective scheme Zp over

Spec E, and its associated strictly E-analytic space Z E)

By our proof of (a), there is an étale coverlng of Zg formed by formal schemes
Spf A on which a lift of the inclusion Zg < ]-'EG r to a point in G(A[z][: C]) exists,
which is unique up to multiplication by G(A[z])) on the right. Under the map A[z] —
A[%][[z—(]}, 2+ 2 =(+ (2 —(), this point gives rise to a point in G(A[¢](z —())-
The latter induces a morphism SpecA[C] — GrG XF,(¢) SpecR[C] and we consider
its analytification (SpfA)*" — (Grg‘“‘ XF,(¢) SpecR[%Dan, which now descends to a
morphism (Zz)* — (Grng XF,(¢) SpecR[%])an. By Galois descent it descends further

to (Zg)*™ and provides the closed immersion into Grng XF, () Spec ;. O

Example 2.7. We describe bounds that arise from a conjugacy class of coweights. Let
Ey be a finite field extension of F,((¢)) and let yu: Gy g, = GE, := G XF,[2],2»¢ Eo be
a coweight over Ej of the generic fibre of G. Because the following construction only
depends on the conjugacy class of i, we may assume that Eo is separable over F,((¢)) by
(14, §8.11, Corollary 1]. Recall the affine Grassmannian Ger“ from (1.2). We first define
Z<u B, as the scheme-theoretic closure in GrBdR = GerR XF, () Spec Eg of

G(Eolz—]) - (2 =) G(Eolz—C]) / G(Eo[z—¢]) C Grges, .

That is, Z<# B, is the (reduced) closed Schubert variety associated with p. Choose a
faithful representation p: G < SL, over F,[z]. Then there is a positive integer n such

that the induced morphisms p, : Zj 1, By = Grgd};‘ — GrSL i, factors through the closed

subscheme ]/-"\E(Si)“ By = ]/-"\E(Sz)r XF, [¢] Spec By C GrSLm g, from (2.3), which is projective
over SpecEy. We let R be the integral closure of F,[(] in Ey and we let Zr be a closed
subscheme of the projective R-scheme

ey —(n)
Fla,r _ % (Flsy, xr,[c] SpecR) (2.5)
FLsL,. R

with Z r XRrSpecEy = Zj u, Eo- For example, one could take Z r as the reduced closure of
Z <y, o, which is flat over F,[¢] and which we call Z<,, g. In this case, it coincides with
the global Schubert variety of [84, Definition 3.5]; compare Remark 2.1. However, this is
not the only possible choice for Zg. .

By our assumption that G is parahoric, F¥g, g is ind-projective by [84, Theorem A] and
the schemes (2.5) and Z g are indeed projective over Spec R. Therefore, the formal (-adic
completion of Zr defines a bound Z whose associated strictly Ep-analytic space (Z Rr)™
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arises as the analytification of Z - 1f A R= Zj 1R, We denote the associated bound by
e A

Claim. The reflex field Ezﬁ“ of Z<, is equal to the reflex field E, of the conjugacy
class of p and is, in particular, separable over F,((¢)).

Indeed, the field E,, is defined as the fixed field in a separable closure Ey*? of the group

{~ € Gal (Eg*P/F4((€): 39 € G(E*P) with " =1Intgou }. (2.6)

The field E, is contained in Ey and, more generally, in every field over which a
representative of the conjugacy class of p exists, but these inclusions may be strict.
To show that EZW C E,,, we note that EZ<H C Ey C E¢*P and that every element of

the group (2.6) satisfies y(Z<,,) = Z<,, because Z<,, is defined as the closure of Z<,, g,
and Yu(z—¢) =g-u(z—¢)-g~! implies W(ZAjH,EO) = ZAju’EO. For the opposite inclusion
E,CE,_ note that every v € Gal (Eo*P/F,((¢))) with 7<Zju) = ZAjH satisfies Ziw,Eo =
Y(Z<p.50) = Z<p. 5, Because the Schubert varieties in GrngROsep are in bijection with the
G(Ey*P)-conjugacy classes of cocharacters G, gysee — Gp,ocr, we conclude that "u is
conjugate to p and ~ lies in the group (2.6). Therefore, E, C EZ<H> and our claim is
proved. B

We describe the generic fibre of Z. Let L be the completion of an algebraic closure
of Fy. Choose a maximal torus T of G through which p factors, a Borel subgroup
B D T with respect to which p is dominant, and consider all dominant ' € X.(T)dom
with ¢/ < p in the Bruhat order. Then the L-valued points of Z2 lie in the union of the
G(L[z —(])-cosets

U GLE=~CD) ' (z=¢) - G(LI= = C]) / G(LI= D).

w3

Compare also Remark 2.11(b).

The special fibre of Zﬁu is discussed in [84, p. 3739 fI.] as a certain union of Schubert
varieties.

Finally, because Zju is defined as the closure of ZAjM, E,, the bound (ZAjN)_1 from
Lemma 2.12 equals Zﬁ(fu) where the cocharacter —p: G, g, = G, is obtained from p
by precomposing with the inversion on G, g, .

Example 2.8. We explain the relation of boundedness in Definition 2.2 to the definition
from [56]. Consider a split reductive group Gg over F,, and set G := G xr, SpecF,[z].
Let T'C Gy be a maximal split torus over Fy. Let B be a Borel subgroup containing
T and B its opposite Borel. Let u € X.(T)gom be a coweight that is dominant with
respect to B. In [56, Definition 3.5], we define ‘boundedness by (u,z — ()’ as follows. We
consider a finite generating system A of the monoid of dominant weights X*(T")qom, and
for all A € A the Weyl module V) := (Ind%“(—)\)dom)v. Here (—\)gom is the dominant
representative in the Weyl group orbit of —\. Let G and G’ be L+ G-torsors over a scheme
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SenN ilqu[[C]l and let §: LG =~ LG’ be an isomorphism of the associated LG-torsors.
For the representation px: G — GL(V)) in Repy, . G, we consider the sheaves of Og[z]-
modules px.G and px.G’ associated with the LTG-torsors G and G’ over S. The iso-
morphism ¢ induces an isomorphism px.d: paxG @041z Os((2)) == paxG’ @011 Os(2))-
After choosing trivialisations of G and G’ over an étale covering S’ — S, the isomorphism
0 is given by multiplication with an element g € LG(S’). The latter corresponds to
a morphism S’ — LG. Let LG+ C LG and F,» C ]/-"\EG be the connected components
corresponding to the image u# € m (G)r = 71 (G) = 11(Go) = Wo(j:\fg) = mo(LG) of p.
According to [56, Definition 3.5], ‘0 is bounded by (u,z — ()’ if

e the morphism S’ — LG factors through LG ,,# and
o a0 (paeG) C (2—¢) ~(Naomrt) .y G for all A € A.

In terms of Definition 2.2, this can be described as follows. Consider the ind-scheme

Yy i= LGL(Va)Xr, SPEF,[C] = lmYyp, for Yim = LGL(VA) xr, SpecFy[¢]/(¢™)

and let My € LGL(V,)(Y)) be the universal element over Y. Because Oy, | [2][z7!] =
Oy, . [ —C]][Zflc}, we can write My = (M )m with

My € LGL(VA)(Yam) = GL(VA)(Oy, . [21[z71]) = GL(VA)(Oy,.,,. [ —Cl[z%¢]) -
Let Y, C Yy be the closed ind-subscheme where the matrix (z — ¢){(=Naom:®) My has
entries in Oy, [z — (] = Oy, ,, [#] for all m, and let 7/,\ C Y, be the closed ind-subscheme
where the matrix (z — () (=aem: ) A1 has entries in Oy, [z — (] = Oy, . [¢] for all m.
Set

252 =Y /(LY GL(Va) Xg, SpEF,[C]) € Flaw,) and

Z¥e Tt = Yy /(L* GL(VA)Xg, SPEF,[C]) € Flanws)-

Write A = {\1,...,\n} and for each )\; consider the morphism py,.: j—'\EG — J/-'\ZGL(VM)
induced from py,. Let ZAggylj . C Fu# be the base change of the closed ind-subscheme

FWeyl o ZWeyl
23\ X SpEF[C] - - XSptFLICTZ 2 A

under the morphism [, px,«: F,

o
ZAg;Vlj: C F_,# be the base change of the closed ind-subscheme

# — I'.EGL(VM);]FQ <] ;Fq [CﬂféGL(VAm)' Likewise, let

-1

2y XSpER [T+ XSt [T Z % A
under the morphism [[, px,«: F_,# — -ﬁGL(VM);FqI[c]]~-~QJFQIIC]]-%\KGL(VM% The ind-

~ —~= s
subscheme Z5*. ' C F_,+ was denoted Grf(# 9 in [56, Definition 5.5]. We will

show that both Zgzylj# and Zg;@;l define bounds in the sense of Definition 2.2(b)
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with reflex ring F,[¢] and are representatives defined over the reflex ring. In terms of

Lemma 2.12, they satisfy ZAggyL; = (ZAggy;u)fl and ZAggyLu = (Zggﬂ;l)fl. Conditions

(b)(i), respectively (b)(v), are satisfied because all of the ZA;VZY;\ and ZA;V;y;\’l are invariant
by multiplication on the left with LTG, respectively with G(«[z —(]). Conditions
(b)(ii) and (b)(iii) for ZAggylj: follow from [56, Proposition 5.5] and for ZAggyle from
Lemma 2.12. This proposition also says that the underlying reduced subscheme of ZAgsy;;
is the closed Schubert variety associated with (—p)dom in Flg and the underlying
reduced subscheme of Zg:ﬂu is the closed Schubert variety associated with p. If

V:=@yca Va and p is the representation of Go on V & (det V)" which is faithful by [56,

Proposition 3.14] and factors through SLi{dim v, then Zggylj u is contained in fééﬁl -
for n = max {{(—\)aom, 1) : A € A}; that is, Condition (b)(iv) holds for ZAggylj# Then it
also holds for Zg;ylj; by Lemma 2.12.

Now ¢ ‘is bounded by (u,z — ()’ in the sense of [56, Definition 3.5] if and only if the
morphism S’ — LG X, SpfFy[¢] — Flg given by dg/ € LG(S") factors through ZAgsy;H,
that is, if and only if J is bounded by Zgzy‘j ., in the sense of Definition 2.2(d). This is the
case if and only if the morphism S’ — LGQF(I SptF,[¢] — Flg given by dg' € LG(S')
factors through ZAggylj;, that is, if and only if ! is bounded by ZAZ}’;y;;I In particular,
a local G-shtuka is bounded by ZAg;yle in the sense of Definition 2.2(d) if and only if it
is ‘bounded by (u,z—¢)’.

For the constant split group G = G xr, SpecF,[z], the double cosets occurring in the
description of the sets of closed points of the generic and of the special fibre of bounds
are both parametrised by the set X, (T)qom, and for our bound Zg:ylj ,.» both the generic
fibre and the special fibre correspond to the union of all double cosets for ' < p. That

is, the reduced generic, respectively the reduced special fibre of Zggylj i equals the closed

Schubert variety associated with p in GrgdR

, respectively in F{g. So the underlying
reduced structure of Zg;ylj ,, coincides with the bound Zj « defined in Example 2.7, and
in terms of Remark 2.11 condition (a) and Ng = Ny, from (b) are satisfied. The nilpotent
structure as discussed in Remark 2.11(c) is in general not so clear in this case. For example,
if Go = GL, and p = 2np" where 2p¥ = (r—1,...,1—7r) is the sum of the positive coroots

of Gy, then ((:u)dom = and all bounds Zgif,ju’zgi?lgl’Z(\;Vi};l,j(fﬂ)dom C Flgy, are
equal to }“észr C Flgy, C Flgr, by [56, Lemma 4.3]. Note, however, that in general
(ZAg;ylju)_l = Zg;ylj; cqincides with ZAggf;(_M)dom only on the underlying reduced
structure but not in the nilpotent structure; see Example 2.13.

Example 2.9. We give an example of an ind-scheme Z satisfying all properties of a
bound in Definition 2.2 except for (b)(v) to show that this condition is not implied by

L =~ Nl
(b)(i). Let Z C fﬂ(SL)2 be the ind-closure of Y C }_E(SIL given by

Y(B):=L"SLy(B)-{ (2}4) € LSLy(B): a,bd € Blz],c € ;B[] }
Lt SLy(B) /Lt SLy(B)

https://doi.org/10.1017/51474748021000293 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000293

The generic fibre of moduli spaces of bounded local G-shtukas 815

for any F,[(]-algebra B. This satisfies all conditions in the definition of bounds except
for possibly (b)(v). Notice further that the special fibre of Z consists just of the one point
L*SLy /L SLs.
1 0 z—C O
We have that = (C 1) and y = ( 0 1) are elements of LSLo(B) for all B such

—_ Z_C
that ¢ is nilpotent in B. Therefore, z € Z (SpfF,[¢]) as one can see by reducing modulo
(¢ for all i. However, already considering the reduction modulo ¢ shows that y is not

an element of Z(IF,[¢]). On the other hand,
— —1
y= () F9) e (64" € SLaE ()= —CD) - SLa(F, ()= — CD)-
This shows that Z*" is not invariant under multiplication with SLa(«[z—¢]) on the left.

We need condition (b)(v) of Definition 2.2 mainly in form of the following lemma.

Lemma 2.10. Let Z be a bound. Then Z" RF, Ez is tnvariant under left and right
multiplication with LG (F).

Here, as always, we use the morphism F((2)) = Ox[z—(],z— 2=(+ (2 —) for an

E,-scheme X and the induced homomorphism LG(F) = G(F((2))) = G(Ox[z—(]) to
define the actions.

Proof. This follows directly from the right invariance of Z" as a subscheme of the affine
Grassmannian and the left invariance imposed in condition (b)(v) of Definition 2.2. O

Remark 2.11. We discuss some possible additional assumptions on bounds.

(a) The set mg (ﬁg}R) coincides with the set of I'-orbits in 71 (G) by [76, Lemma 2.2.6].
Every bound is a disjoint union of its intersections with the various connected
components of Flg r, and thus we also obtain similar decompositions of base
schemes for bounded local G-shtukas and later of the corresponding moduli spaces.
If one wants to consider only one of these disjoint parts at a time, one has to assume
that there is a I'-orbit of elements & € w1 (G); such that the Zp are contained in the
corresponding connected component of .7:\6@7 R-

Also compare the nonemptiness condition of Theorem 4.20, which is in terms
of 71 (G)r instead of m1(G)r/T. The natural projection map 71(G);/T — 71 (G)r
is surjective but in general not injective. Thus, there may be several connected
components of a given bound that lead to nonempty parts of the period domain.

(b) If one wants to compare properties of the generic and the special fibre of a moduli
space of local G-shtukas bounded by Z~! (as defined in Section 3), it might be
useful to consider bounds Z satisfying certain flatness or extension properties.

Assumptions (b)(i) and (b)(v) of Definition 2.2 imply that the closed points of the
special fibre Z from Remark 2.3(b), respectively of the analytic space Za0 of 7 from
Proposition 2.6(d), consist of the points of a finite set Ny of L™ G-cosets, respectively
a finite set N,, of G(. [z — Q]])-cosets. The former cosets are parametrised by

some quotient W of the extended affine Weyl group W of G with respect to a
chosen maximal torus T of G (.). Let Lo D Fy((¢)) be a finite separable field
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extension over which Ty, := T Xp,(z),2¢ SpecLo (and therefore also G, ) splits.
Because G(Lo[z—(]) € G(Lo((z—())) is a hyperspecial maximal bounded open sub-
group, every G(Lg[z—(])-coset is of the form G(Lo[z—(])u(z—¢)G(Lo[z—¢])/
G(Lo[z —(¢]) for a uniquely determined determined p € X.(T7,)dom = X«(T)dom
where dominance is with respect to some chosen Borel subgroup. It would thus be
interesting to see whether such flatness conditions can be formulated in terms of
the associated sets Ng C W and Nap C X.(T)dom- However, for the present article
we do not need any such condition.

(c) Given the discussion above, one might ask whether bounds should just be defined
by the corresponding sets of double cosets of their geometric points. Even under
assumptions as discussed above, our definition gives some more freedom in the sense
that the nilpotent structure of the bound may still vary.

For the sake of completeness, we want to add the following lemma that was used in
Remark 2.3(a).

Lemma 2.12. Let Z = [(R,Zg)] be a bound in the sense of [{, Definition 4.8]; that
is, satisfying conditions (b)(i) and (b)(ii) from Definition 2.2. Consider the subsheaves
ZAgl C Flg, g defined on schemes S in Nilpp as the subset 21;1(5) of Flg r(S) given by

{ x € .ﬁGﬂ(S): there is an étale covering f: S’ — S and an element g € LG(S")

such that f*z = g-L*G(S') in Flg r(S') and g~ - L*G(S') € Zr(S') }

Then Z~' = [(R,Zg")] is a bound in the sense of [/, Definition 4.8] with the same reflex
ring R, as Z.1If, in addition, Z satisfies condition (b)(iii) and (b)(iv) from Definition 2.2,
then the same is true for Z L. Moreover, for two L*G-torsors G and G' over a scheme
Se NilpRZ, an isomorphism §: LG "~ LG’ between the associated LG-torsors is bounded

by Z if and only if 6= is bounded by Z~*.

We do not know whether the same is true for condition (b)(v) from Definition 2.2 in
general. It is true, however, for the bounds in Example 2.7.

Proof of Lemma 2.12. The subset is well defined, because Zp is by Definition 2.2(b)(i)
invariant under multiplication with LTG on the left. We fix a faithful representation
p: G — SL, and consider the induced morphism p,: Flg — Flgr,,.. The ind-scheme
structure on Flg, g is given as the inductive limit of the schemes

Xn = Xn,n with Xn,m = j‘;\éG ;EﬁSLT ﬁ(sz)r ;<\]17q|[<]] SpecR/(Cm),

where ]/-'\Ké?r was defined in (2.1). We must show that ZAgl X Fion X, is representable

by a closed subscheme of X,. Let Y, := XHQJ;\EGR(LGQ]FQ SpecR/((”)). Because
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X, XH ZR C X, is a closed subscheme, the base change 7, := YRQXnXHQﬂGRZAR
is a closed subscheme of Y, on which L*Gpgcny = L*GXp, SpecR/(¢") acts by
multiplication on the left. By Cramer’s rule (e.g., [22, II1.8.6, Formulas (21) and (22)]),
the inversion g ++ ¢g~! on LG induces isomorphisms of X, with the quotient sheaf
L*GRy(cny\Yn and of Z5' X o n X, with LTGrjcn)\Zn. Therefore, it suffices to show
that the morphism LYGg/n)\Zn = LTGRycn)\Yn of sheaves is representable by a
closed immersion. The latter follows by fpgc descent [20, §6.1, Theorem 6] and [44, TV,
Proposition 2.7.1] from the fact that the diagram

ZnC Yo,
SV

is Cartesian and the right vertical arrow is an affine faithfully flat morphism of schemes.
This proves that Z e F EG R is representable by a closed ind-subscheme. By construction
it satisfies the invariance under left multiplication by L*G from Definition 2.2(b)(i).

To show that Z_l satisfies Definition 2.2(b)(ii), let S’ be an étale covering of the
special fibre Zg of ZR, such that the closed immersion Zg — .7-'€G rX R Speckp lifts to a
morphism S’ — LGXFQ Speck g, which we view as an element g~ € LG(S’). Because Zr
is quasi-compact, we may choose S’ to be quasi-compact. Then the element g- LTG(S")
in ]/-'\KG’R(S’) corresponds to a morphism S’ — ﬁG,RQR Speckp that factors through
Zz'. The morphism L+G/>2]Fq5' — Zz', (h,g) = hg-LTG is a surjective morphism of
ind-schemes. Therefore, Z 1is a quasi-compact scheme.

If Z satisfies condltlons (b)(iii) and (b)(iv) from Definition 2.2 for some p: G — SL,
and some 7, then Z~! also satisfies (b)(iv) for the same p and n by Cramer’s rule (e.g.,
[22, TI1.8.6, Formulas (21) and (22)]). Then ZR = hm ZR X Fp p Xnim for constant n
and variable m. In particular, Zﬁl = Lm}n ZR XRSpecR/(C"‘) is (-adic; that is, satisfies
condition (b)(iii)

The equality of reflex rings follows from the fact that v(Z) = Z if and only if y(Z~1) =
Z 1 for ye Autp, [¢](F4((¢))*'®). Finally, the statement about the boundedness of § and

61 is clear from the definition of the ZAIEI. O

Example 2.13. We revert to Example 2.8. If Gy = GL, or Gy = SL,, then

ZWeyl Weyl, —1\—1 ' AWeyl, —1
ZGoajll - (ZG0a<M) - ZGoyj(*H)dom

by Cramer’s rule (e.g., [22, II1.8.6, Formulas (21) and (22)]). However, this is not true
for general Gy. For example, let Gy = PGL9 and char(F,) = 2. We choose A to consist of
the only positive root a. The corresponding Weyl module V, is the dual of the adjoint
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representation. With respect to the decomposition V,, = (LieT @ LieU, ® LieU_,)" it is

given by

1 ac bd
b detg detg

a 2 2
pa: PGLy = GL(V,), g= =1 0 & aay

c d 2 42

C

detg detg

We let p1 € X, (T)dom be the dominant coweight with p(a) = (g ¢). Then (—p)dom = p and
(p,a) = 1. Over the F,[¢]/(¢)-algebra B =F,[e]/(¢?) the element g = ((1) 2) € LG(B) =

PGL; (B((2))) lies in ZAE,Véyﬂ';ju, but g=! = (Z ~7 )does not belong to ZAg’,Vayﬂ’;ju because

01
10 = 10 -5
palg)=| 0 £ 0 and  pa(g"H)=] 0 z 0
00 =z 00 1
So Z;Véyﬂz <7 Z;Véyﬁ’;:(,“)d in this case. Note that, nevertheless, the underlying

topological spaces of these two bounds coincide by Remark 2.11(b). So the difference
lies in the nilpotent structure.

3. Rapoport-Zink spaces for bounded local G-shtukas

To recall the definition of Rapoport-Zink spaces for local G-shtukas, let G, be a local
G-shtuka over F. Because F has no nontrivial étale coverings, we may fix a trivialisation
Gy = ((L*G)p,bo*) where b € LG(F) represents the Frobenius morphism. In all that
follows we may replace G, by a quasi-isogenous local G-shtuka G{ = ((LTG)p,b'c*). In
terms of the trivialisations, this means that there is an h € LG(F) with b’ = h='bo*(h).
In this case we say that b and b’ are o-conjugate under LG(F) or LG(F)-o-conjugate. We
write [b] for the LG(F)-o-conjugacy class of b.

Definition 3.1. Let Z = [(R,Zg)] be a bound with reflex ring R = x[£], set RZ =F[¢]
and consider the functor Mé;l : (/\filpéz)o — Sets

S— {Isomorphism classes of (G,0): where G is a local G-shtuka over S
bounded by Z " and §: G5 — Gy 5 is a quasi-isogeny over 5'}.
Here S :=Vg(() is the zero locus of ¢ in S.

The group QIsogr(G,) of quasi-isogenies of G, acts on the functor Mgo_l via j: (G,0) —
(G.j0) for j € Qlsogy(Gy).

Remark 3.2. Because G, = ((LTG)r,bo*), we can identify Qlsoge(Gy) = J,(Fq((2))
where J, is the connected algebraic group over Fy((z)) that is defined by its functor of
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points that assigns to an F,((z))-algebra A the group
To(A) = Ji7 (A) = {g € G(ABr, (=) F(2): 97" bo™(9) =b}; (3.1)
see [4, Remark 4.16].

Remark 3.3. As in the arithmetic case (compare [80, 3.48]), we have a Weil descent
datum o on the functor Mé;. To define it, let S € Nz'lpéz and let f: S — Spféz and

f: S — Spec RZ/(O be the structure morphisms. Let ¢ be the Frobenius of ]:ZZ =TF[¢] over
R, = k[€] and let S, be the scheme S together with the structure morphism o f: S —
Spf]v%z. If #x = ¢°, the inclusion F — RZ is equivariant for the action of ¢ on RZ and
the action of ¢ on F. To define a: ./\;lé;l(S) = (@*Mégl)(S) = ./\;lé:(Sgo), let (G,6)
be a point in the first set. To make the definition more clear, we write G, g = f*(G,).
Then we set a(G,0) = (G, f*(r5,) " 06); that is, we replace the quasi—isogény § by the
composite G5 — [*(Gy) = f*0"(Gy) = (¢f)*(Gy). Although this Weil descent datum is
in general not effective, Mégl always descends to a finite unramified extension of RZ;
see Remark 3.6(b).

Remark 3.4. By its definition, ./\;lgo_l only depends on the triple (G, [b],Z), where
(0] is the LG(F)-o-conjugacy class of b corresponding to the isogeny class of G, &
((L"’G)F,bo*). In the arithmetic analogue, the corresponding independence of the
Rapoport-Zink spaces on additional choices made in their definition is far from obvious.
It was conjectured in [79, Conjecture 4.16] and proved in [90, Corollary 23.4.3 and
thereafter].

As in Remark 2.3(a) and (b), we let Z~! be the bound from Lemma 2.12, and we let
Z~! be the special fibre of Z~! over k. We define the associated affine Deligne-Lusztig
variety as the reduced closed ind-subscheme X z-1(b) C Flg whose K-valued points (for
any field extension K of ) are given by

Xz-1(b)(K):={g€ Flg(K): g 'bo*(9) € Z7(K)}. (3.2)
In [4, Theorem 4.18 and Corollary 4.26], the following theorem was proved.

Theorem 3.5. The functor Mé:: (Nilpéz)o — Sets from Definition 3.1 is ind-

representable by a formal scheme over Spf Rz which is locally formally of finite type and
separated. It is an ind-closed ind-subscheme of ]-'ZG;]FQ SprZ' Its underlying reduced
subscheme equals X 7-1(b), which is a scheme locally of finite type and separated over F,
all of whose irreducible components are projective.

The formal scheme representing Mg: is called a Rapoport-Zink space for bounded local

G-shtukas. Recall that a formal scheme over RZ in the sense of [44, I,ew, 10] is called
locally formally of finite type if it is locally Noetherian and adic and its reduced subscheme
is locally of finite type over F.

Remark 3.6. (a) LG(IF)-o-conjugacy classes in LG(F) are in bijection to isogeny classes
of local G-shtukas over F. To classify them, Kottwitz associated with every element
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b€ LG(F) a slope homomorphism vy : Dp(.) — Gr(.), called Newton point (or Newton
polygon) of b; see [70, 4.2]. Here D is the diagonalisable pro-algebraic group over F((z))
with character group Q. The slope homomorphism is characterised by assigning the slope
filtration of

(V @r, () F(2)), p(b)o™)

to any (V,p) in Repg, () G; see [70, Section 4]. Furthermore, he showed that o-conjugating
b amounts to conjugating v, by the corresponding element. One can thus associate
with the LG(F)-o-conjugacy class [b] a well-defined G(F((2)))-conjugacy class {1} in
Hom(Dg(.y,Gr(z)), which moreover is invariant under o by [70, 4.4].

The second important invariant of [b] is defined as follows. Consider again the Kottwitz
homomorphism kg: LG(F) — 71(G); as explained in [77, 2.a.2]. We compose kg with
the projection to 71 (G)r. This then yields a well-defined map (again denoted k¢g)
from the set of o-conjugacy classes B(G) to m1(G)r (see [71]). Together, {1} and
kg ([b]) determine [b] uniquely. We denote by [b]# the images of kg (b) in 7 (G)r and
in m (G)r,g := m1(G)r ®z Q. The latter equals the image of the conjugacy class {v;} in
m1(G)r,g; see [78, Theorem 1.15(iii)].

(b) Because F is algebraically closed and the generic fibre of G is connected reductive,
we may replace b by h=tbo*(h) and assume that b € LG(F) satisfies a decency equation
for a positive integer s; that is, sv : Dp(.) — Gr(.) factors through G,,, and

(bo)® = svp(2)o® in LG(F) % {0); (3.3)

see [70, Section 4]. Let F,« C F be the finite field extension of F, of degree s. Then
b€ LG(Fy:), vy is defined over Fy:((2)) ([80, Corollary 1.9]) and J, X, (2) Fq:(2)) is an
inner form of the centraliser of the l-parameter subgroup sy, of G, a Levi subgroup
of Gr,.(); see [80, Corollary 1.14]. In particular, J,(F,((2))) C G(Fq:((2)) = LG (Fyg).
Moreover, in this case Mégl descends by [4, Theorem 4.18] to a formal scheme locally
formally of finite type over (Fy - k)[€] where Fys - & is the compositum inside F.

(¢) If more generally we start with a local G-shtuka G, over any field & in NVilp R, W

can define the Rapoport-Zink functor Mé: as in Definition 3.1 on the category Nilp kle]-

Then G, ®j k8 is trivial and decent and hence /\/lé;1 ®p k™8 is ind-representable by a
formal scheme locally formally of finite type over £22[¢]. By an unpublished result of Eike
Lau on Galois descent of formal schemes locally formally of finite type, already MZ " s

ind-representable by a formal scheme locally formally of finite type over k[¢]. Hovvever
we will not use this in the rest of this work.

Remark 3.7. The constructions described above are functorial with respect to the group
scheme G. To explain this, let e: G — G’ be a morphism of parahoric group schemes over
F,[z]. Important examples are closed immersions, epimorphisms or the change of the
parahoric model, that is, morphisms that are generically isomorphisms. Then ¢ induces
a functor

a
e«: {local G-shtukas} — {local G’-shtukas}, G — &,G = GxG’
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The morphism e also induces morphisms e: LT™G — LG’ and e: LG — LG’ and
e: Flg — Flg. We say that e is compatible with two given bounds Z = [(R,Zz)] and
Z' = (R, Z%)] with Zr C .ﬁg}R and Z}, C ﬁG/,R if e(Zg) C Z}, for all suitable R. If ¢ is
compatible with Z and Z’ and G is bounded by Z~!, then &,G is bounded by (Z/)~!.

Let G, = ((L+G)F,ba*) be a local G-shtuka over F with b € LG(F). Then Gy := .G, =
((LTG")r,b'c*) with b’ = e(b). Kottwitz’s classification of isogeny classes is functorial in
the sense that vy =coy, and eo kg = kg o e for the induced I'-equivariant morphism
e: m(G) — w1 (G"). We also obtain a morphism of Rapoport-Zink spaces

e ME — MET. (G.0) — (c.G.e.0), (3.4)

which is equivariant for the group J< that acts on the target via the morphism of algebraic
groups over F,((z)),

JbG — ch,;/, g — e(g). (3.5)

4. Period spaces for bounded local G-shtukas

In this section we construct period spaces. These will be strictly F,((¢))-analytic spaces in
the sense of Berkovich [7], [8]. We equip the category of F,(({))-schemes and the category
of Fy((¢))-analytic spaces with the étale topology; see [8, §4.1]. Recall the group scheme
G xp,[2] SpecFy(()[z — ¢], which is reductive because Fy[z] — Fo(()[z — (], 2+ 2 =
¢+ (2 —¢) factors through Fy((2)), and recall its affine Grassmannian Grg®™ from (1.2).
For G = GL,, Hilbert 90 for loop groups [56, Proposition 2.3] shows that

Grgif (L) = GLy (L((z— () / GLr (L[=—=(])
for any field extension L/F,((¢)).
Again, for all G as above, the morphism of sheaves of sets on SpecF,(({)),
G(Ox (2~ ) — GrBon(X),

admits local sections for the étale topology. By [93, Proposition 13.1.1] there is a finite
separable field extension Lo D F¢((¢)) such that G, := G ®p, [.], z¢ Lo splits. Therefore,
the group G ®p, 1.1 F4((C)(z —¢)) over Fy((¢)(z —¢)) is unramified. Thus, the inertia
group of Gal (Fq(O)(z = ¢))**P/Fq()(z —¢))) acts trivially on 71 (G) and the connected
components of Gro® ®r, (c)Fq((¢)™® are in canonical bijection with m1(G) by [77,
Theorem 5.1]. For every field extension L C F,((¢))*® of F,((¢)) we then obtain from
[76, Lemma 2.2.6] that

7o (Gre™ 8r, (o) L) = m(G)/ Gal(L*?/L), (4.1)

where the quotient is the set of Gal(L®°P/L)-orbits. It has a natural projection to the
group of coinvariants 71 (G)r, . In particular, TI'Q(GI'ng ®]Fq((z))L0) =m1(Q).

Definition 4.1. Let X be an F,((¢))-scheme or a strictly F,((¢))-analytic space. A Hodge-
Pink G-structure over X is an element « in Grng(X ). For a Hodge-Pink G-structure
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v E Grg‘“‘ (L) with values in a field L, we let v# € 7 (G)r be its image under the projection
mo(CGrg®®) — 1 (G)r induced by (4.1).

A Hodge-Pink structure of rank r over X is a sheaf ¢ on X of Ox[z — (]J-submodules
of Ox((z—¢))" that is finitely generated as Ox[z — (J-module, is a direct summand as
Ox-module and satisfies Ox (2 —())-q=0x({(z—¢))".

Remark 4.2. By [87, Proposition 2.2.5], a Hodge-Pink structure g of rank r over X is
Zariski-locally on X free of rank r as Ox[z — (]-module. In particular, it is of the form
g=7-Ox[z—(]" € Ox((z—¢))" for a uniquely determined Hodge-Pink GL,-structure
v e Grgi‘:(X ) over X. This yields an equivalence between Hodge-Pink GL,-structures
and Hodge-Pink structures of rank r over X.

To define the notion of weak admissibility, recall from [54, Definitions 3.5.1 and 3.5.2]
that a z-isocrystal over F is a pair (D,7p) consisting of a finite-dimensional F((z))-vector
space D and an F((z))-isomorphism 7p: 0*D =~ D. A Hodge-Pink structure on (D,7p)
over a field extension L of F((¢)) is a free L[z — (]-submodule qp C D ®p(.) L((z — ) of full
rank. Here, as always, we use the homomorphism F((2)) = F(()[z —(], 2~ 2=+ (2—().

Definition 4.3. Assume that F((¢)) C L and let b € LG(F) and v € Gro™ (L).

(a) Let p: G, (z) — GLyr, (=) be in Repg ()G and set V =TF,((2)®", the represen-
tation space. We consider the elements p(b) € GL,(F((2))) and p(v) € Grgﬂ’j(L) =
GL, (L((z—¢)))/GL; (L[z —¢]). Then we define the z -isocrystal

D, (V,p) == (D,p) = (V ®F, (=) F((Z)),p(a*b)o*)
over F and the Hodge-Pink structure

ap(V) == p(7)-V @r,(2) LIz —C] C V&, () L(2—()) = D®p(z) L(z—C)

on it over L. We set Dy, . (V) := (V ®r, () F(2)), p(a*b)*,ap(V)).

(b) Let D = (D,7p,qp) be a z-isocrystal over F with Hodge-Pink structure over L
and let det7p be the determinant of the matrix representing 7p with respect to
an F((z))-basis of D. The z-adic valuation tx (D) := ord,(det7p) is independent of
this basis and is called the Newton degree of D. The integer ty (D) with A"qp =
(z— )"t ) AT pp is called the Hodge degree of D, where pp := D ®p(.y L[z —(].

In particular, we have ty(D, . (V)) = ord.(detp(c*b)) = ord.(detp(b)) and
tn(Dy,,(V)) = —ord._¢(det p(7)).

(c) We say that D is weakly admissible if ti (D) =tn(D) and the following equivalent
conditions are satisfied (compare [50, Definition 2.2.4]):

o ty(D') <tn(D') for every strict subobject

o0, Ap N D' g2y L(2 =) (4.2)

of D, where D’ C D is a Tp-stable F((z))-subspace,
o ty(D") >tn(D") for every strict quotient object D" = (D", 7pn,qpr) of D,
where f: D — D" is a Tp-stable F((z))-quotient space and qp» = (f® id)(qp).

D' = (D,mp
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Remark 4.4. (a) The Hodge-Pink structure qp on (D,7p) induces a decreasing Hodge-
Pink filtration on Dy, := D ®p(.),.>¢c L =pp /(2 —)pp given by

FiliDL = ((z—C)iqDﬂpD)/((z—()iqDﬁ(z—()pD) = im((Z—C)iqDﬂpD—)DL).

If (D,mp, Fil®* Dy) is weakly admissible in the sense of Fontaine (see [38, Définition 4.1.4]),
then (D,7p,qp) is weakly admissible, but the converse is false in general. An example
is D=TF(z)% p=2"% qp = (*79)L[z — (] + (2 — {)*p and D’ = ())F((z)). This
is due to the fact that our Hodge slope ty(D,7p,qp) equals Fontaine’s Hodge slope
tH(D,TD,Fil'DL) = Zieli . dimLFiliDL/Fili+1DL, see [50, P. 1290 before Defini-
tion 2.2.4] and that the subspace Fil'D} of D induced by D’ from (4.2) is (in general
strictly) contained in D} N Fil*Dy,.

(b) We obtain an F,((z))-linear tensor functor D, : V +— D, (V). Namely, if
fo (Vip) = (V'p') is a morphism in Repg ()G and (D,7p,qp) = D, (V) and
(D'stprapr) = Dy, (V'), then 0¥ f = f and so forp = (fop(c*b))o* = (p'(07b)o f)o* =
(p'(c*b)oo* f)o* =7proo*f and f(qp) C qp-. Furthermore, the compatibility with tensor
products

(D,7p,qp) @ (D';7p1,qp7) = (D ®p(2) D', 7D @ Tpr, 40 @ L[] 9D7)

is clear.

If Lis a finite field extension of F((¢)), then ‘weakly admissible implies admissible’ by the
analogue [50, Theorem 2.5.3] of the theorem of Colmez and Fontaine [28, Théoreme A].
More precisely, when Qb,ﬂ{(V) is weakly admissible, it is even admissible; that is, it arises
from a local shtuka over Of, via the analogue H of Fontaine’s mysterious functor; see [50,
§2.3] or Theorem 8.1. In contrast, if L is algebraically closed, weakly admissible does not
imply admissible. In general, there is a criterion for admissibility in terms of o-bundles
over the analogue of the Robba ring as follows.

We consider field extensions L of Fy((¢)) equipped with an absolute value |.|: L — Rx>g
extending the (-adic absolute value on F,((¢)) such that L is complete with respect to |.|.

We call such an L a complete valued field extension of F,((¢)), and we let L := L2 be the
completion of an algebraic closure of L. For a rational number s > 0, we define the ring

o0 . .
L(C%,z’l} = { ST obiz" b € Ly b [P — 0 (i — £o0) for all 8" > s }
1=—00

It equals the ring of rigid analytic functions on the punctured disc {0 < |z| < |¢|*} over
L of radius |¢|°. The ring L(Z—S,z’l} is the function field analogue of the Robba ring; see
[49, §2.8]. It contains the element

t_ = ] (1—%), which satisfies ¢_ = (1—%)47*(75,). (4.3)
1€Ng
Definition 4.5. Let s € Q satisfy 1 > s > %. A o -bundle (on {0 < |z| < |C|*}) over
L is a pair F = (F,7F) consisting of a locally free L(C%,z_l}—module F of finite
z

rank together with an isomorphism 7x: o*F == (*F of L<@7z’1}—modules, where
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o' Fi=F®, < 2o <Cqé,7 Wand * F = F® <C“Z_1}7LL< z_ 271} for the natural

C?a
&2 271 L{& 2 271}, 30, bzt = > bzt The abelian group Hom,, (F,.F")
of morphisms between two o-bundles F = (F,7x) and F = (F,77/) consists of all

L(%,zfl}—homomorphisms fi+ F— F' that satisfy 7z oo™ f = 1*for1r.

The category of o-bundles over L is an Fy((z))-linear rigid additive tensor category with
unit object O(0) := (L(C—ﬁ,z_l},T@(O) = id).
Example 4.6. For d € Z we define the o-bundle O(d) over L as the pair
(L(C%,z_l}ﬂ'o(d) =2~%. id). For more examples, let d and n be relatively prime integers
with n > 0. Consider the matrix

inclusion ¢: L(

Qe 0 274
1 0

Ad,n = 0 " S GLn (L<<’%7271})
001 0

Let Fy, = (L(C%,z_l}nﬁfdm = Agn). It is a o-bundle of rank n over L. As a special

case if n =1, we obtain £, ; = O(d).

Proposition 4.7 ([55, Theorem 11.1 and Corollary 11.8].). If L is algebraically closed
(and complete), every o-bundle F is isomorphic to a direct sum @ifdi,ni for uniquely
determined pairs (d;,n;) up to permutation with ged(d;,n;) = 1. One has N"E = F;, =
O(d) where n =1k F =>",n; and d=)_,d;. One calls d the degree of F.

Proposition 4.8 ([55, Proposition 8.5].). If L is algebraically closed (and complete), then
Homg (F 4,15 Far ) 7 (0) if and only if d/n < d'/n’.

Let D= (D,7p,qp) be a z-isocrystal over F with a Hodge-Pink structure over a complete
valued field extension L of F((¢)). To define the o-bundles associated with D, we first define
the o-bundle

€ :=E(D) == D@pzy) (&2}, 7 =@ id, E(D) = (&7¢)

over L. Then £(D)® L[z —(] = pp := D ®p(.) L[z — (] and the Hodge-Pink structure
qp CEQR L[z — C]][zfg] defines a o-bundle f(i) over L that is a modification of £(D) at

z=(? for i € Ny as follows. Consider the isomorphism 7; := (tgo...o(c" )re)® id

m () (ol =) = ((09)°8) @ LIz~ ¢V ][,

We define F = F(D) as the L(C—i,z_l}—submodule of £[7-] that coincides with £ outside
2=(7 fori €Ny and at z = (¢ satisfies f@L[[Z—quﬂ = n;i(c™qp); that is,

= {me&[A]: n;'(m)eo™qp fori e Np}. (4.4)

SR R [

This can equivalently be viewed as the global sections over {0 < |z| <|(|*} of the sheaf .7?
obtained as the modification of the sheaf associated with &£ at the discrete set {z = (7 :
i € No} according to the rule given in (4.4).
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By construction, 7¢ induces on F the structure of a o-bundle F(D) = (F,7r) over L,
and F(D) is the unique o-subbundle of £[;-] that coincides with £ outside z = ¢e for
i € Np and satisfies F @ L[z — (] = qp. This characterisation implies that the assignment
D+ (E(D), E(D)) is an Fy((2))-linear tensor functor.

Definition 4.9. The pair of o-bundles associated with D is the pair (é‘(Q),f(Q))
constructed above.

The z-isocrystal with Hodge-Pink structure D 1is said to be admissible if
Z(Q)@ <i _1}Z<é,271}g(£7 )EBdimD@ < —1} <Cs,271}.

2
In the notatlon of Definition 4.3, let D Db V) for a representatlon p: G— GL(V)
in Repg, (.) G and write (&b (V). Fy o ( ZE (D), EF(D

As a motivation for this definition, note that D is admissible if and only if it arises from
a local GL,-shtuka over Of, by [50, Theorem 2.4.7 and Definition 2.3.3].

Proposition 4.10 ([50, Lemma 2.4.5].). For every z-isocrystal with Hodge-Pink structure
D over L, the degree (defined in Proposition J.7) satisfies deg F(D) = ty(D)—tn(D)
and deg€(D) = —tn(D).

Corollary 4.11. If Dy, . (V) is admissible, then D,, (V') is weakly admissible.

Proof. If D := D, (V) is admissible, then F(D) ®L(i Z_l}f<<%,z*1} & (Fy,)@dmV
CS,
and therefore ty (D) —tn(D) = deg(F(D)) =0. If D' C D is a strict subobject, then

F(D") c E(D) is a o-subbundle. It satisfies F(D") ®L<<%,271} <CZ” =@, Faon,

some d;,n; by Proposition 4.7. By Proposition 4.8, all d; <0 and hence tg (D) —tn(D’) =
deg F(D') = >°,d; <0. O

Lemma 4.12. Let vp: Dp(.) — Gp(.) be the Newton point associated with b; see
Remark 3.6(a). Let p: G — GL(V) be a representation in Repg, (.)G. Then under the
canonical identifications Wl(GL(V))F =m (GL(V)) = Z and Hom(Dg(.),Gn) = Q, we
have

pe(7#) = tu (D, (V)  and  detyopow, = tn(D, (V).

In particular, the images [b]* and ¥% of vy and v in 71 (G)r.q := m(G)r @z Q coincide
if and only if tn (D, ,(V)) =t (D, (V) for all V € Repy, (2) G-

Proof. Because o*b = b(c*b)o*b~! — that is, o*b and b are o-conjugate via b —
their Newton points v,+, and v, are conjugate via b. So it suffices to show that
dety opovgs«p =ty (Qbﬁ(V)). The latter follows from the construction of v+, in [70, §4.2].
The statement about ¢ follows from the fact that p.(v#) = p(7)# = —ord._¢ (det p(v))
under the identification Wo(GrGL(V)) =11 (GL(V))r &2 Z. If [b]# =~+# holds in m1(G)r,q,
then p.([b]#) = p«(v#) in 7 (GL(V))r.o = Q. Under the last isomorphism we have
P« ([D]#) = (powy) ™ = dety opory. This proves one direction of the last assertion. For the
other direction we use the isomorphism m (G)r,@ = 71 (Gab)r,0 = X« (Gab)r,0, Where Gay,
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denotes the maximal abelian quotient of G (compare [78, Theorem 1.15(ii)]). Now assume
that [b]# # ~v#. Then there is a homomorphism ¢: 71(G)r,g — Q of Q-vector spaces
such that ¢([b]#) # p(y#). We have Hom(7(G)r o,Q) = X*(Gab)a; thus, a nonzero
integral multiple of ¢ induces a morphism p: G — Gap, = Gy, over Fg((2))°P that is
I-invariant and therefore defined over IF,((2)). For this representation p, we then have

tN(Dy (V) #tu (Dy (V). O

Definition 4.13. We say that the pair (b,) € LG(F) x Grp® (L) is (weakly) admissible
if [b]# =~# in 71(G)r,g and one of the following equivalent conditions holds:

(a) Dy, (V) is (weakly) admissible for every representation V' in Repg, (-) G-
(b) Qbﬁ(V) is (weakly) admissible for some faithful representation V in Requ((z)) G.

In addition, (b,y) is neutral if [b]# =~# in 7 (G)r already without tensoring with Q.

Remark 4.14. If D, (V) is (weakly) admissible for every representation V in
Repg, () G, then [b]# =~# automatically holds in 71 (G)r g by Lemma 4.12.

In the analogous situation in mixed characteristic, the condition [b]# = ~# also follows
from (b), due to the fact that in that case every W as in the beginning of the following
proof is even a direct summand of U.

Proof of the equivalence in Definition 4.13. Clearly, (a) implies (b). For the converse,
fix a faithful representation V. Then every F,((2))-rational representation W of G, ()
is a subquotient of U := @;_, VE" @ (V¥)®™ for suitable r, I; and m;. If D, (V) is
weakly admissible, then this also holds for D, . (U) by [50, Theorem 2.2.5]. Likewise, if
D, (V) is admissible, we use the compatibility of the functor V'~ F, (V) with direct
sums, tensor products and duals to compute

fb,"y(U) ®L<é72_1}z<é’271}

=D F, (V) @ (F, (V))™ ®L<<%,Z*1}Z<§az_1}
i=1

o~ @(fOJGBdimV)@li ® ((£071€BdimV)v)®mi ®L<C—i’z_1}z<évzil}
=1
%E(),l@dimU ®L<%’2_1}Z<é7271}.

So if D, (V) is admissible, D, (U) also is. Therefore, it suffices to show that
(weak) admissibility is preserved under passage to subrepresentations and quotient
representations.

By Lemma 4.12, the condition [b]# = ~# in m(G)r,q implies ¢y (D, . (W)) =
tr (D, (W)) for all representations W. Now let U be a representation such that D, (U)
is weakly admissible. Then the equivalent conditions from Definition 4.3(c) show that for
every subrepresentation or quotient representation W of U the z-isocrystal with Hodge-
Pink structure D,, . (W) is also weakly admissible.
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If D, (U) is actually admissible, then F, (U) ®L<i z’l}z<é’z_1} > o, OdmU,
CS?

If W CU is a subrepresentation, then the o-subbundle F, (W) C F,  (U) satisfies
Fy,, (W) Oz 271}f<c—i,z_l} =@, F,,,, for some djn; by Proposition 4.7. By

ER}

Proposition 4.8, all d; < 0. Because

D di=deg Zy (W) =tu (D (W) =tn (D, (W)) =0

by Proposition 4.10, all d; must be zero and J, (W) is admissible. Dually, if W
is a quotient representation of U, the o-quotient-bundle F, (W) of F, . (U) satisfies
Fp (W) ®L<i Z_1}Z<C%,z’1} =@, L, n, for some d;,n; with d; >0 by Proposition 4.8.

CS )
Again, deg F,, (W) = 0 implies d; =0 and F, (W) is admissible. O

Remark 4.15. Let b € LG(F). Let Ly be a finite field extension of Fy((¢)) for which
G, = G XF,[2],2»¢ Lo is split. Let T be a maximal split torus of Gp, that contains
the image of the Newton point v: Dp(.) — Gr(-); see Remark 3.6(a). We may view v
as an element of X, (T)g := X.(T)®z Q. Let L be a complete valued field extension of
the completion of the maximal unramified extension Lo of Lo and let v e Grng(L). By
the Cartan decomposition there is a unique dominant cocharacter p., € X, (T) called the
Hodge point of ~ such that

v € G(LLz—C]) 1y (2= Q) - G(L[z— (D) /G(L[z—(]) € Grg™(L).

If (b,v) is weakly admissible, then v, < p, (see [30, Theorem 9.5.10], which is for the
arithmetic context but gives a proof that can directly be translated to our situation); in
other words, ([b],{1~}) is acceptable in the sense of [79, Definition 2.5]. The converse of this
is not true. However, if u € X, (T) is dominant with v}, < p, then one can show that there
exists a cocharacter Intgop: G,y 1, — G with g € G(L) for a finite extension L D Eo, which
induces a weakly admissible Hodge-Pink filtration on D, (V') for all V. Indeed, this can be
shown in the same way as the arithmetic counterpart; compare [30, Theorem 9.5.10]. Then

by Remark 4.4(a), D), (V) is weakly admissible (and even admissible) for every Hodge-

Pink G-structure v € Grng(L) that induces Intgopu, like, for example, v = g- u(z — ).

For more details and references in the arithmetic context, compare also the discussion in
[79, Section 2.2 and Proposition 3.1].

We next want to define period spaces in the bounded situation. Let Z = [(R,Zg)] be a
bound as in Definition 2.2 with reflex ring R, = «[¢] and set E:= E, = s(({)) and E :=
F((¢)). By Proposition 2.6(d), the associated strictly R[%]—analytic spaces Z3" arise by base

change to R[%] from a strictly E,-analytic space 72" associated with a projective scheme
Zp over SpecE, which is a closed subscheme of the affine Grassmannian Grgfg =

Grg™ X, (¢) Spec Bz

Definition 4.16. We call He z= Zp the space of Hodge-Pink G-structures bounded by
7 and set 7:[G’2 = HG,Z XE, SpecE. Let G, = ((L*G)]p,ba*) be a local G-shtuka over
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F. We define the period spaces of (weakly) admissible Hodge-Pink G-structures on G
bounded by Z as

HZ“Z b ={v¢e H 5+ the pair (by) is weakly admissible },

Hé AN {’Y € /HZ'I?Z‘: the pair (b,y) is admissible}
HZ“Z b= {’Y € H ¢ the pair (b,y) is admissible and neutral} .

7:[?;“ equals the intersection of H“G 5 with the union of those connected components

s &y

of HG,Z that map to [b]# € m(G)r under the map WQ(HG ) — mo(Grg®™) — 1 (G)r

induced by (4.1). In particular, H™@_ is a union of connected components of Ho

G,Z,b G.Z,b’
The period spaces only depend on b and on the generic fibres G, () and Zg of Gand Z.

Remark 4.17. If E C L, then the homomorphism F((2)) = L[z — (], z— z =+ (2 — ()
induces a homomorphism LG(F) = G(F((z))) — G(L[[z —(]). Thus, if b = gbo*(g™") for
some g € LG(F), one can check that v+ o*(g) -y =:7' maps Hw“ , isomorphically onto

’Hgaz , (and likewise for ’HG 2 and Hgaz y)» because 0% (g) maps ’HZ{‘Z to itself by

Lemma 2.10 and induces isomorphisms Dy (V)= D, (V) and Fy (V)= FE, (V).
In particular, ’HG 5 b ’H‘&Zb and ’H ‘1 7. AT€ invariant under the group J,(Fq((2)) =

Qlsogp ((L+G)F,ba ) from (3.1).

Proposition 4.18. The space 7:[“G7Z’b is contained in 7:[76‘;“ with ’H“G 2 (L) = ’H'C‘;“Z »(L)
for all complete valued field extensions L/E satisfying the following condition: Let L be
the completion of an algebraic closure of L, let £ C L be a subfield isomorphic to the
residue field of L under the residue map Of — Of/mg and let L be the closure of the
compositum (L inside L. (In particular, if the residue field of L is perfect, then L is the
completion of the mazimal unramified extension of L.) The condition is that L does not
contain an element a with 0 < |a| <1 such that all of the g-power roots of a also lie in L.

Proof. The inclusion ’H“G Zb 7:12“2 b follows from Corollary 4.11. The equality
’H‘(‘; 2 (L) = HgaZ ,(L) for the mentioned fields was proved in [50, Theorem 2.5.3]. [

Remark 4.19. (a) The condition of the proposition, and hence H“GZb(L) =

HgaZ b( ), holds if the value group of L does not contain a nonzero element
that is arbitrarily often divisible by ¢. This is due to the fact that the value groups
of L and L coincide. In particular, this is the case if L is a finite field extension
of E or, more generally, if L is discretely valued or even if the value group of L is
finitely generated. See [50, Condition (2.3) on page 1294] for further discussion of

this condition.

(b) If L violates the condition — for example if L is algebraically closed and complete —

it can happen that 7—[“ ,(L) Hg“Z ,(L). Examples in the case G = GL, were

given in [50, Example 3 3 2]
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Theorem 4.20. The period space ’H“C“;“Zb and the admissible locus ’H“G 2, @€ open

paracompact strictly E-analytzc subspaces of Hg”z. The intersections of any connected

component of 7—22," with Hg“Z b and 7—?“ are arcwise connected. In the terminology of

Remarks 2.11(b) and /.15, the spaces Hgaz b and HG Zb intersect after base change to

Bar
G, Lo
(using (4.1)) is of the form u* € 71 (G) for a p € Nayn with vy, < p.

Buar )

Lo precisely those connected components of Gr whose image in w1 (G) = 7T0(G1"

Proof. Choose a faithful representation p: G — GL, in Repr, () G that factors through
SL,, and let n be an integer as in Proposition 2.6(a) for which p.: Z — Flsy,
factors through ﬁ(sz) = ZGL,r,2an§ see Examples 2.8 and 2.13. By Proposition 2.6,
the E-analytic space "HZ,“Z is a subspace of Hey, op,,vQF, ()L, where HEp 5, v
(ZaL, anpv)™. On the connected components of 7:%“2 where [b]# =% in 71(G)r,q, we
have by Definition 4.13

Hety =M, NHED snpv oy @r()E and

G,Z,b
Hé,Z,b = H&GITZ N Hg}Lr,anv,p(b)@)F((C))E'
The intersections of the other components with ﬁg“Z b and 'Hé 2 AT€ empty. Because

every open subspace of the compact E’—analytic space Hg‘ 5 is paracompact by [50,
Lemma A.2.6], it suffices to show that #gir,anv,p(b) and #QGLT,anV,p(b) are open in

ﬁ%anznpv @F«O)EV. An analogous statement was proved in [50, Theorems 3.2.2 and 3.2.4]
for the quasi-projective Schubert cell

C = GL, («[2—C]) - (2np")(2 =€) -GL, (+[2— ¢]) / GL, (+ [ —¢])

from [50, Definition 3.1.6], which is open and dense in the Schubert variety ﬁGL,r,’gnpv.
Let us explain how to modify that proof to obtain a proof of the assertion above. The
Schubert cell is a homogeneous space C = G/S; see [50, p. 1318]. The properties that
were needed in the proofs of [50, Theorems 3.2.2 and 3.2.4] were the following two. The
morphism Gan - Can s smooth, and therefore Can carries the quotient topology under
the morphism Gen — Can, Secondly, the universal Hodge-Pink structure on Cis given on
G by a universal matrix g in GL, (0g[z— ¢/ (z—¢)*r=D),

For our purpose here we modify thls as follows. Because LG — F{g has local sections
for the étale topology, there is an étale covering X of f{%“Lan ,v on which the universal
Hodge-Pink G-structure is given by a universal element A in G(Ox ((z—())) that satisfies
p(h) € M, (=) "=V Ox [z ]). We replace g by (z— )"V p(h) mod (z—¢)2n—D
and use that ﬁ%nLT .2npv carries the quotient topology under the morphism X — ’I—?%“LT 2npY
by [8, Corollary 3.7.4]. With these modifications the proofs of [50, Theorems 3.2.2 and
3.2.4] carry over to our situation.

The connectedness of 7—[“’“ and 7—2‘& 2. CAN be proved by the same arguments as in

G,2,b
[50, Theorem 3.2.5].
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BdR a wa
P meetHGZb and'HGZb

®Ei0 the Hodge point py € X, (T') lies in Ny,

It remains to compute which connected components of Gr

By Remark 4.15, for every point v € HG 2b

and vy < . In particular, 7 lies in the component with image u# € m1(G). Conversely,
let p € Ny, with vy < . Then Remark 4.15 implies that there is a point v € GrBdl" with

Hodge point p such that (b,) is weakly admissible. By Remark 2.11(b), the pomt ~ lies

in H° and ’H“’“ and, moreover, it lies in the connected component of Gr2e® with
G, Z,b ,Z,b G, Lo
image u# in 7T0(GI‘G ) =m(G). O
s 40

Remark 4.21. We keep the notation of Remark 3.7. The morphism ¢: G — G’ of
parahoric group schemes over F,[z] induces a morphism ¢: Grng — Grgﬁm of the
affine Grassmannians from (1.2). It maps Hodge-Pink G-structures v € Grg‘iR to Hodge-
Pink G'-structures 7' := ¢(y) € Gregs™ and the corresponding element v# € 71 (G)r to
(V)# =e(r*) € 1 (G)r.

The morphism ¢ also induces a tensor functor £*: Repr, (2) G — Repr, (2 G, given
by (V',p") = e*(V',p') i= (V' p' 0€). Tt satisfies Dy, . (e*(V',p')) = Dy, ., (V',p") for b" = (D).
Therefore, &, ., (e*(V',p")) =&y, (V',p") and Ey, . (e*(V',p")) = . (V' p'). Tt follows that
(b,7) is (weakly) admissible for G if and only if (¢',7') is for G’. Moreover, if (b,) is neutral,
then (V,7) is also neutral. In other words, if £(Z) C Z’, then ¢ induces morphisms

e: ﬁG,Z — ﬁG',Z' and e: H. — HZ;/ Z/ b Y E(r}/) (45>

G,Z,b

for e € {wa,a,na}.

5. Local systems of F,((z))-vector spaces

Definition 5.1. For a ring A we let FMod4 denote the category of finite locally free
A-modules. If the ring A is either F,[z] or F,((2)) and II is a topological group, we denote
by Rep™ (IT) the category of continuous representations in finite free A-modules and by

forget: Rep™ ( ‘(X,z)) — FModa (5.1)
the forgetful fibre functor. Moreover, we let
w3 Repy G — FMody (5.2)

be the forgetful fibre functor. We also write w® := Wﬁq((z))- Then Aut®(w®) = GF, (=) by
[33, Theorem 2.11] and Aut®(wf§q M) = G by [96, Corollary 5.20].

Let X be a strictly L-analytic space, where L is a field extensions of F,((¢)) that is
complete with respect to an absolute value |.|: L — R>( extending the (-adic absolute
value on F,((¢)). For any group or ring A we denote by A the locally constant sheaf on
the étale site Xg; of X.

We recall de Jong’s [31, §2] definition of the étale fundamental group of X. De Jong
calls a morphism f: Y — X of L-analytic spaces an étale covering space of X if for every
analytic point z of X there exists an open neighbourhood U C X such that Y xx U is a
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disjoint union of L-analytic spaces V; each mapping finite étale to U. The étale covering
spaces of X form a category Cov%. It contains the full subcategory Cov™® Cov'® of finite étale
covering spaces.

A geometric base point Z of X is a morphism Z: BSpec(L) — X where we denote by
BSpec(L) the Berkovich spectrum of an algebraically closed complete extension L of L.
For a geometric base point T of X, define the fibre functors at =

F& .= F§}7j: Covy — Sets, th(f Y = X) := {y: BSpec(L) — Y with foy =2z}
F'® = FY%: Covy® —» Sets, F7® = F{'| s - (5.3)

The étale fundamental group w¢*(X,z) and the algebraic fundamental group =%(X, )
of X are the automorphism groups

(X,Z) = Aut(FS)  and  78(X,z) := Aut(F2®).

These fundamental groups classify (finite) étale covering spaces in the sense that FE*
induces an equivalence

F& . {disjoint unions of objects of Cov§t} — 7%t (X,z)-Sets. (5.4)

Connected coverings correspond to 7¢t(X,z)-orbits and similarly for F2%; see [31,
Theorem 2.10]. Here 7$(X,#)-Sets (respectively wflg(X,af)—m is the category of discrete
(respectively finite) sets endowed with a continuous left action of 7$*(X,Z) (respectively

728X, 7).

The natural continuous group homomorphism 7 (X,Z) — 72'8(X,Z) has dense image.
The étale fundamental group =$*(X,Z) is Hausdorff and pro-discrete, 18(X,7) is
pro-finite and every continuous homomorphism from 7$*(X,z) to a pro-finite group
factors through WTlg(X,SC), see [31, Lemma 2.7 and Theorem 2.10]. In particular,
Repﬁ-ﬁz] (r'(X,z)) = Repﬁ-‘:rﬁﬂ (W?lg(X,i')), but this is not true for representations on
F,((2))-vector spaces.

For the following overview we follow [50, Definition A4.4].

Definition 5.2. A local system of F,[z] -lattices on X is a projective system F = (F,,,ir,)
of sheaves F,, of Fy[z]/(2")-modules on X, such that

(a) F, is étale locally a constant free Fy[z]/(2™)-module of finite rank,

(b) in ® id: Fp, @, [/ (zn) Felz]/(z"7') == Fn_1 is an isomorphism of sheaves of
F,[z]/(z"~1)-modules.

The category F,[z]-Locy of local systems of F,[z]-lattices with the obvious morphisms
is an additive F,[z]-linear rigid tensor category. If Z is a geometric point of X,

]:53 = hm(]'—n,j,Zn)
—

is the stalk Fz of F at Z. It is a finite free Fy[z]-module. Starting from F,[z]-lattices
one defines local systems of F,((2))-vector spaces and their stalks as in [31, §4] or [50,
Definition A4.4].
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Local systems of Fy((z))-vector spaces form a category F,((z))-Locy. It is an abelian
F,((#2))-linear rigid tensor category. The theory of these local systems parallels the theory
of local systems of Qg-vector spaces developed in [31]. In particular, there is the following
description.

Proposition 5.3 (Compare [31, Corollary 4.2].). For any geometric point T of X there
is a natural Fy[z]-linear tensor functor

wa: Fy[z]-Locy — Repfly (718(X,z)) = Repify (nf"(X,2))
and a natural Fy((2))-linear tensor functor
wz: Fy((2)-Locy — Repi(,) (71'(X,2))

that assigns to a local system F € Fyz]-Locy, respectively V € Fy((2))-Locy, the
representation of ﬂ?lg(X,a’c) on Fz, respectively of m$(X,z) on Vz. These tensor functors
are equivalences if X is connected.

Proof. De Jong [31, Corollary 4.2] proved this for Q, and the statement for F,((2))
is proved verbatim. We indicate the (easier) argument for F,[z]. Let F = (Fy,in) €
F,[#]-Locy. Then the F, are represented by finite étale covering spaces Y,, of X. This
yields an action of 78(X,z) on F28(Y,) = Fo,z and on Fy := l(iil(}-n@, in)- O

Let A=TF,[z] or A=F,((2)) and recall the forgetful fibre functor w9 : Rep 4 G — FMod 4
from Definition 5.1. If A =Fy((2)), we let in addition w: Repg, (.) G — FModg,(.) be

another fibre functor, and we let G := Aut® (&) be the group scheme over F,((2)) of tensor
automorphisms of @; see [33, Theorem 2.11]. Then Isom®(w°,&) is a left G-torsor and a
right G-torsor over F,((2)) and corresponds to a cohomology class cl(w®,&) € H (F,((2)),G)
by [33, Theorem 3.2]. The group G is isomorphic to the inner form of G defined by the
image of cl(w°,@) in H'(F,((2)),G*!), where G — G*? is the adjoint quotient. If A =
Fqlz], we set @ := w];q[[z]] and G := G. This is no restriction because Lang’s theorem
[72, Theorem 2], stating H'(F,[2],G) = H*(F,,G) = (1), implies that all fibre functors
Requ 121 G — FModp, [.] are isomorphic to w]‘F’q (2]

Let X be connected, let  be a geometric base point of X and recall the forgetful fibre
functor forget: Rep%™ (m$*(X,z)) — FMod from (5.1).

Corollary 5.4. In the situation above, consider the set Ty of isomorphism classes of pairs
(V,8) whereV: Rep 4 G — A-Locy is a tensor functor and 3 € Isom® (@, forgetowz oV)(A)
18 an isomorphism of tensor functors. There is a canonical bijection between T4 and the
set of continuous group homomorphisms

(X, 7) — G(A).

Proof. Let (V,3) € Ta. By Proposition 5.3, any element of 7$*(X,Z) yields a tensor
automorphism of the fibre functor forgetowz o). By [ it is transported to a tensor
automorphism of w; that is, an element of C?'(A) This defines a group homomorphism
= fowp: m(X,T) = G(A). Because for all V € Rep 4 G the induced homomorphism

7 (X,z) = G(A) — GL (@(V))(A) is continuous, f is also continuous.
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Conversely, let f: m¢%(X,z) — G(A) be a continuous group homomorphism. Then we
cont

define a tensor functor Rep 4 G — Rep} (Wft (X ,56)) by sending a representation V in
Rep 4 G to the representation (w(V),pf,) given by

Py m(X,7) — GL(@(V))(4), g = &(V)(f(9).

Here w(V))(f(g)) is the automorphism by which f(g) € G(A) = Aut®(@)(A) acts on the
A-module &(V). Note that pf, is continuous because G(A) — GL (@(V))(A) is continuous.
Let V;(V) € A-Locy be the local system on X induced from pj, via Proposition 5.3. This
defines a tensor functor V I Rep4 G — A-Locy for which forgetowsz oV is identified with
©. We let By € Isom® (@, forget owz 0 V)(A) be this identification.

Clearly, the assignments (V,8) = fr,5) and f > (V;,Bf) satisfy f = f(yf,Bf)- Con-
versely, if (V,3) € Ta and f = f(y, g, then 3 provides an isomorphism (V,8¢) == (V,5),
and so (V,) and (V,By) coincide in Ta. O

Remark 5.5. (a) In the situation of Corollary 5.4, any tensor functor V: Repg .y G —
F,((2))-Locy induces a tower of étale covering spaces of X with Hecke action, as described
in [51, Remark 2.7(a)]. To recall the construction, assume that Isom®(@,forget o wz o
V)(F4((2))) is nonempty. The whole construction does not depend on the choice of the
base point Z by [31, Theorem 2.9] and hence also applies if X is not connected. Let
KcG (Fq((z))) be a compact open subgroup. For a strictly L-analytic space S over X
and a lift of T to a geometric base point § of S, a rational K -level structure on V over S
is a residue class modulo K of F,((z))-rational tensor isomorphisms

(B: &= forgetowzoV) mod K € Isom® (&, forget owy o)) (Fq((2) /K

such that the class Bf( is invariant under the étale fundamental group mét (S,5). Here
Isom® (@, forget owz 0 V) (Fy((2))) carries an action of K through the action of G on & and
an action of 7$*(S,5) through its action on wz o) via the map 7$*(9,5) — 7¢*(X,z) and
Proposition 5.3.

Let SVR be the étale covering space of X corresponding to the discrete m¢'(X,z)-set

Isom® (@, forget owz o V) (Fo((2)))/ K. Then & 7 represents the rational K-level structures
on V. Any choice of a fixed tensor isomorphism By € Isom® (@, forget o wz o V) (Fy((2)))

associates with V a representation 7¢*(X,z) — é(Fq ((z))) as in Corollary 5.4 and
induces an identification of the 7¢*(X,Z)-sets Isom® (@, forget owz o)) (Fq((z)))/f( and
é(Fq ((z)))/f? Moreover, if K/ C K C é(Fq((z))) are compact open subgroups, there is
a natural projection morphism 75 7, : c‘:'f(/ — év'f(, ﬂf(’ — ﬁf(.

On the tower (gul?)l?cé(Fq (=) the group é(IFq ((z))) acts via Hecke correspondences: Let

g€ G(Fy((2)) and let K C G(F,((2))) be a compact open subgroup. Then g induces an
isomorphism

Ug: €g = &g, BK +— BKg=pBg(g 'Kg). (5.5)

(b) Assume, moreover, that a group J acts on X and let V: Repy_(.) G — F¢((2))-Locx
be a tensor functor that carries a J -linearisation; that is, for every j € J an isomorphism
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@ j*Y =V of tensor functors (where j*V is the pullback of ¥V under the morphism
J: X = X), satisfying a cocycle condition. Then the tower of étale covering spaces £
inherits an action of J over X as in [51, Remark 2.7(b)].

We now apply these considerations to the period spaces of Hodge-Pink G-structures.

Remark 5.6. The construction of the o-bundle £, (V') from Definition 4.9 works not

only over a field extension L of E but more generally over the entire E’—analytic space
Han from Definition 4.16. There it produces a o-bundle F, (V') over H2}'  whose fibre

at each point v is F, . (V); see [50, §2.4].

The restriction of F, (V) to H‘é 2 induces by Theorem [50, Theorem 3.4.1] a canonical

local system V, (V) of F,((z))-vector spaces on H”G 2 It can be described as follows. On

a we choose a geometric base point 4 : BSpec(L) —

G,Z,b
Y. We consider the pullback 5*F, (V) and its 7-invariants

TEWV) = A{f eV EWV): FTr)c" f)=1}.

Because 7*F, (V) = Io,l@dlmv, the T-invariants *F, (V)" form an F,((z))-vector space
of dimension equal to dimV, which is equipped with a continuous action of the étale
fundamental group 7¢*(Y,%). This defines the local system V, (V) of F,((2))-vector spaces
on Y under the correspondence of Proposition 5.3. It satisfies V, (V)5 = 7*F, (V)" and
VY (V)5 ®F,(2) L<éa271} =7 Fp (V)" ®F,(2) L<<%»Zfl} =7 FE,(V)=F,5(V).

If v e H® G2
then the fibre V,(V), of V,(V) at 7 is a continuous representation of Gal(L**P/L) on
the finite-dimensional F, ((z))-vector space ¥*F, (V). By [54, Remark 3.6.17] and with the
notation from (6.1), this Galois-representation can be described as

Vi(V)y = (D®r(z) Olzz "Mt ')" Nap @rpa—¢p LIz — (]

for D, (V) =D = (D,7p,qp). Here we use the notation from (6.1) and in addition we
let t; € Op, (¢)=» be solutions of the equations tg_l = —(C and t] +(t; = t;—1 and set
ty =Yg tiz" € O, (¢)=er[2] and t:=t,t_ € Ofz,27'}, where t_ was defined in (4.3).
In particular, if L is discretely valued, then V, (V') is the (equal characteristic) crystalline
Galois representation associated with the (weakly) admissible z-isocrystal with Hodge-
Pink structure D,, . (V') in the sense of [54, Definition 3.4.21 and Remark 3.6.17].

every connected component Y of H

is the image of the geometric point 4 and L is the residue field of -,

Theorem 5.7. Let be LG(F) and let Z =[(R,Zg)] be a bound as in Definition 2.2 with

reflex ring Ry, = k[€]. Then the assignments V — F, (V)= 5*F, (V)7 =V, (V) define an

Fy((2))-linear tensor functor ¥V, from Repg,_(.) G to the category Fy((2))-Locy.  of local
G,Z,b

systems of F,((2))-vector spaces on H® There is a canonical Jy(Fy((2)))-linearisation

G,2,b
on V.

Proof. First of all, the functors V +— D;, (V) from Remark 4.4 and D — (£(D), F(D))
from Definition 4.9 are Fy((2))-linear tensor functors, and this works equally for the entire
families over H¢, . . In particular, V' — F, (V) is a tensor functor from Repg, () G to the

https://doi.org/10.1017/51474748021000293 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000293

The generic fibre of moduli spaces of bounded local G-shtukas 835

a
G,Z,b
morphisms. It is in general not compatible with tensor products, but because ¥*F, (V') &

Fo MY, we have 7 F, (V) = (7 F,(V)7) @k, (=) L(Z,27 "} Therefore,

VE(VRV) =y E,(V) ®Z<C%’Z*1} T E (V')

category of o-bundles over H Next, taking 7-invariants is obviously compatible with

R

(V" Ep (V) @r,(2) V" Ep(V)T) @k, () L{Z 21,

and hence ¥* F (Vo V)" 2 5* F (V)T @, ()7 Ey(V)". We now use Proposition 5.3 to
conclude that V), is an F((2))-linear tensor functor.
If j € J,(Fy((2))) the isomorphism

EW), = (B() 0y = Eiin (V) = Eos (V) = (F,(V)),

from Remark 4.17 yields J,(F4((2)))-linearisations ¢;: j*F,(V) == F,(V) and
@i J V==V O

Let us end this section by stating the significance of Theorem 5.7 in terms of the étale
fundamental group and in terms of étale covering spaces. Let 7 be a geometric base point
of ’Hg 2
Remark 5.8. Let w® and wy, 5 := forget owy 0V, be the fibre functors from Repg, () G to
FModg, () with w®(V):=V and wp 5(V) := VY, (V)5 =5*FE,(V)7. By [31, Theorem 2.9],
the fibre functors wy~ and ws 5 are isomorphic for any two geometric base points ¥

and 4’ that lie in the same connected component of 7:[?; P Let G := Aut®(wb’ﬁ—,). Then
Isom® (w®,wp 5) is a left G-torsor and a right G-torsor over F,((#)) and corresponds to a

cohomology class cl(b,7) € H(Fy((2)),G) by [33, Theorem 3.2]. G is the inner form of G
defined by the image cl(b,7) € H'(F,((2)),G*?).

In the analogous situation over Q,, the torsor between the crystalline and the étale
fibre functor is given by the cohomology class

cd(by) = [p* —5% € H(Q,,G).

This was proved by Rapoport and Zink [80, 1.20] if Gger is simply connected and in
general by Wintenberger [97, Corollary to Proposition 4.5.3]; see also [28, Proposition on
page 4].

The analogue of Wintenberger’s theorem in our situation (which has not been proved
yet) is the statement that the torsor Isom® (w®,wy,5) is given by the cohomology class

c(by) = bF —73% € H'(F((2),G). (5.6)

Note that also in the function field case considered here, the weak admissibility of the
pair (b,7) implies that the difference [b]# —5# lies in (71 (G)r)tors, which is identified with
H'(F,((2)),G); see [78, Theorem 1.15] (and use [15, 8.6] instead of Steinberg’s theorem). In

particular, if 5 € yna_and the analogue (5.6) of Wintenberger’s theorem is established,

G,Z,b
then there is an F,((z))-rational tensor isomorphism £: w® =~ wy, 5 and G = Aut®

(wp,5) =G.
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Remark 5.9. By Corollary 5.4, the restriction of the tensor functor ¥, from Theorem 5.7
to the connected component Y of Ho

C.2b containing the geometric base point ¥

corresponds to a continuous group hOmOIIlOI‘phlSI’Il

m'(Y.5) — G(Fy((2)) (5.7)

(under the choice of 8 := idg for & :=wp, 5).
By Remark 5.5, the tensor functor V, defines a tower (51?)f<cé(ﬂ<‘q((z))) of étale covering

spaces of 7—?“0 20 However, the group G might vary on the different connected components

of 7—2“ G2 It is therefore more useful to fix a base point 4 and to define 7-722 , 35 the
union of those connected components consisting of elements 7' w1th W, 51 = Wy, 5. Then

we obtain a tower (Eu K) RCBEF, () of étale covering spaces of H" G, Z b with commuting

actions of G (F4((2))) by Hecke correspondences and of the quasi-isogeny group J, (Fq((2)))
of Gy = ((LTG)g,bo*) from (3.1).

Note that for A =TF,((2)) it can happen that w 2 w°® but G =~ @, namely, if cl(w°,@) €
H'(F,((2)),G) is nontrivial and lies in the image of H'(F,((2)),Z), where Z C GF, (=)
is the center. In this case, Corollary 5.4 could be applied to a continuous group
homomorphism 7' (X,z) — G(F,4((2))) using both w® and @. One obtains two tensor

functors V,V: Rep 4G — A-Locy and tensor isomorphisms

B € Isom® (w°, forget owz o V) (Fy((2)))

and
3 € Isom® (@, forget owz 0 V) (Fq((2))-

Because cl(w®,w) is trivialised by a finite unramified extension Fyn ((2)) of Fy((2)) by [15,
8.6], the pairs (V,) and (V,3) become isomorphic after tensoring with Fn ((2)).

6. The period morphisms

In this section we fix a local G-shtuka G, = ((L*G)r,bo*) over F and a bound Z with
reflex ring R, = x[€]. We set E, = 5((€)) and E :=F((€)). For any point (G,0) € Mé: (S)
with values in S € Nilpéz, the quasi-isogeny d: G5 = G 5 lifts to a quasi-isogeny
0: G — Gy g by rigidity [4, Proposition 2.11]. To construct period morphisms for local
G-shtukas we need to lift the universal 6, which is defined over the zero locus V()

of ¢ in MG , to the entire formal scheme MG . This lift will no longer be a quasi-
isogeny, because it acqulres larger and larger powers of z in the denominators by lifting
successively modulo ¢?". To describe what the limit of this lifting procedure is, we need
the following generalisation of [50, Lemma 2.3.1] and [41, Lemmas 2.8 and 6.4]. For
an F[(]-algebra B that is complete and separated with respect to a bounded norm
|.]: B—>{zeR: 0<z <1} with 0 < |(| <1, we define the F((z))-algebra

Blz,z7'} = {Zbizi: bi € B, |bi]|¢]™ = 0 (i — —o0) for all r > O}. (6.1)
i€z
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Note that the convergence \b ||¢|"* — 0 for i — —oo implies that |b;| < 1 for i > 0. The

element t_:=[[;cy, (1- ) lies in B[z,z 1} and satisfies zt_ = (z —()o*(t_); see (4.3).
Note that B[z,z71} contalns B[z] and 27! and that B[z,27'}/(¢) = B[2][2] =: B((2)),
for B := B/(B. Moreover, note that o*(t_) € B[%][[z—(]] , and B[z,27 1} C B[ 1Mz =¢]

by 32 biz' =30, bi (CH (2~ O)i =2 02 bi (1)¢ (2 — ¢)™. Therefore,
B,z }oiy) € Blell=—<]- (6.2)

Lemma 6.1. Let B be an F[(]-algebra as above. Let b € LG(F) = G(F((2)), A €

G (B[] ]) and A € LG(B) = G(B((2))) such that A-(A mod () =b-0*(A) in
G(B((2)). Then there is a unique A € G(B[z,27'}[]) with Amod¢=A and A- A=
b-o*(A) in G(B[zz"'}&]).

Proof. We choose a faithful representation p: G — GL, p [.] over F, [z]- There is a
positive integer N such that p(b),p(b~') € M, (2"VF[z]), as well as p(A),p(A71) €
M, ((z = ¢()"VB[z]), and p(ﬁ),p(ﬁ_l) € M, (272NB[z]). We choose Co,Dy €
M, (272N B[z]) with Co = p(A) (mod ¢) and Dy = p(ﬁfl) (mod ¢). For m > 0 we
inductively define

Com = (27N p(0))0* Cr—1 (2 = )N p(AT1))

D = ((2= )" p(A)0* D1 (2~ N p(b71))
in M, (2~2N(m+1 B[z]). The assumption on A implies

C1—Co = p(ba*(A)A™") = p(A) = 0 (mod ().
By induction on m, we obtain that
Ot = Cm = (27 p(0))0* (Crn = Cra—1) (2 = OV p(A7H))
=0 (mod o™ (¢™")"(¢))

0 (mod (™) (C)).
Therefore, the sequence (C,)n converges to a matrix C' € M, (B[z,27'}) and the

sequence (] ,(1— %)_N -Cr), . converges to the matrix = -C € M, (B[z,2"'}[;-])
with (t=NC) = C = p(A) (mod ¢). The equation

[0 <) G pl4) = plb)-o" (ﬁ <1—<5>‘N-0m-1>

i=0 1=0
implies (t=V C)p(A) = p(b)o* (t=NC) in M, (B[z,27'}[7]). In the same way, one sees that
(Dim)m converges to a matrix D € M, (B[z,z7*}) with ((2VD)p(b) = p(A)o*(t=N D) in
M, (B[z,z7'}[]) and (t=V D) mod ¢ = p(ﬁ_l). We obtain the congruences
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Id, —t=2YCD =0 (mod ¢) and by induction

Id, —t=2NCD = p(b) - o*(Id, =t “*NCD)p(b)™' = 0 (mod ¢7") for all m.

By looking at power series expansions in z of the matrix coefficients, these congruences
imply by the separatedness of the norm |.| that (t=NC)(t=V D) =1d,; that is, t-VC €
GL, (B[[z,27'}[+]). Because (0™*C) mod (¢ = ¢™*(C mod ¢) = p(¢™*A), it follows

that
m—1 P
t=NC)mod ¢?" = (H (1— CZ)_N~C’ml> mod (7"
=0

- p(b-... M=V (p) . g™ (R) . o M=D* (A1) -A—l) mod 4"

satisfies the equations that cut out the closed subgroup scheme p(G) of GL,. Because
B is separated with respect to the norm |.|, we must have t=VC = p(A) for a matrix
A € G(B[zz7}H1]).

Finally, to prove the uniqueness of A, we assume that A’ also satisfies the assertions
of the lemma. Then U := p(A) — p(A) satisfies U € M, (¢- B[z,27'}[;~]) and U = p(b) -
o*(U)-p(A~1). Because B is separated with respect to the norm |.|, it follows that U =0
and A" = A. O

We can now define the period morphism as a morphism of E—analytic spaces
wr (ME )™ HE,

as follows. Let S be an affinoid, strictly E—analytic space and let S — (Mé;l)an be

a morphism of E—analytic spaces. With it we have to associate a uniquely determined
morphism S — ’Hg“ e Then the period morphism is obtained by glueing when S runs

through an affinoid covering of (Mﬁ;l)an.

Before we proceed, we recall that an algebra B over RZ =TF[£] is admissible in the
sense of Raynaud [82] if it has no &-torsion and is a quotient of an R 4-algebra of the form

Ry(Xy,.... Xo) = Y by X{" - X[ by€Ry lim by, =00,  (6.3)
neng |n|—o0
where n = (nq,...,ns) and |n| :=n; +... +ns. A formal }?Z-scheme < is admissible if it

is locally RZ—isomorphic to Spf B for admissible Rz—algebras B; see [18, §1].

Recall that (./\;lé:)an is constructed as the union of the strictly E-analytic spaces
associated with a family of admissible formal Rj-schemes, which are obtained by
admissible formal blowing-ups of Mé;l in closed ideals; see [80, Chapter 5] or [13, §0.2].
By Raynaud’s theorem, the morphism S — (/\;léo_l)an is induced by a morphism from a

quasi-compact admissible formal Rz—scheme < with #" = S to one of these admissible
formal RZ—SChemes; see [18, Theorem 4.1] or, for example, [50, Theorem A.2.5] for a

https://doi.org/10.1017/51474748021000293 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000293

The generic fibre of moduli spaces of bounded local G-shtukas 839

formulation with Berkovich spaces. Composing with the map to Mé;l yields a morphism
of formal schemes . — Mé;l. The latter corresponds to (G,0) € ./\;lé: (7).

Lemma 6.2. There is an étale covering ¥’ = Spf B’ — . of admissible formal RZ'
schemes such that there is a trivialisation a: G, == ((LTG)s1,Ac*) for some A €

G(B'[2l[:%])-

Proof. We may choose an étale covering .7 "of 7= V #(¢) together with a trivialisation
@: G == (LTG)5. After refining the covering 7', there is by [19, Lemma 1.4(a)] an

étale morphism .’ — . of admissible formal R -schemes lifting 7' — 7. Because
& is quasi-compact, we may further assume that ' = SpfB’ is affine. By [56,
Proposition 2.2(c)], there is a lift a: Gy = (L*G)» of the trivialisation &. Because
G is bounded by 71 , this lift induces an isomorphism «: gy, ((L+G)y/ Ac* ) for
Ae G(B’ﬂz]][% 1); compare the proof of Proposition 2.6(a). O

In addition, the quasi-isogeny ¢: G- — G, 5 corresponds under @ to an element
Ac LG(E/). We apply Lemma 6.1 to obtain a uniquely determined element A €
G(B'[z27}[;1]) lifting A with AA =bo*(A) for A as in Lemma 6.2. We set

yimo" ()AL G(BE][s—]) = b A G(BE][=— <) (6.4)
€ GBI~ 0)/G(B LI ).
Because G is bounded by Z~!, the inverse A~! yields a point of Z*(.%/2") = ﬁénz (2.

Because 0*(A) € G(B'[z,27'}[=2—]) and o*t_ € B’[%][[Z—C]]X, we have

vE G(B/[%MZ*CH) ”annZ = r)annZ

using (6.2) and Definition 2.2(b)(v). If we replace our trivialisation « by a different
trivialisation o’ gy, ((L*G) 1, A'0*), there is an h € LYG(B') = G(B'[#])
G(B [ 1[z—¢]) with o/ =h-a and A’ = hAc*(h)~!. Then the quasi-isogeny & corresponds

to A =Ahle LG(EI) and A’ = Ah~! is the lift of A’ from Lemma 6.1. This yields
v = b G(B e —¢l) = 0T AG(B[Ell= (D) =

Therefore, v descends to an element € ’H“‘“ (S ) giving the desired morphism S — 7-72;1 e
This completes the construction of the perlod morphism.

Definition 6.3. The morphism 7: (/\;lé;) ’H‘”‘ of E- analytic spaces constructed

above is called the period morphism associated with @0 and Z.

Remark 6.4. If G = GL, and B is an admissible F[(]-algebra in the sense of Raynaud,
there is an equivalence [56, §4] between local GL,-shtukas and local shtukas M = (M, 7r)
over . =Spf B consisting of a locally free B[z]-module M of rank r and an isomorphism

™ : U*M[;C] = M- c]- The de Rham cohomology
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p = Hip (M, B[¢][2 —(]) := 0" M @pp) Bl][z—(]
of M over .#?" carries a natural Hodge-Pink structure
¢ = 7 (M ®pp BlE[ <) € p¥ ]

see [54, Definition 3.4.13]. If, moreover, there is a fixed local GL,-shtuka G, over F
with associated local shtuka (M,7y) = (F[2]",b0*) and a quasi-isogeny 0 : Gspecn)(c)
Go, spec B/(¢) given by A € LG(B/(C)), then the lift A from Lemma 6.1 provides an
isomorphism

that transports the Hodge-Pink structure g2 to the family
o*(A) oty (M @pp Blgllz —<])

of Hodge-Pink structures on the constant z-isocrystal H. . (M,F((2))) := o*M &g} F((2));
see [54, Definition 3.5.14]. Our period morphism 7 associates this family of Hodge-Pink
structures with the universal local GL,-shtuka over /\;léo_l. More precisely, this family
equals - B[ [z —¢]" where the element ~ from (6.4) is the image under % of the local

GL,-shtuka (M,6) € ./\/léO (Spt B).

Remark 6.5. The period morphism 7 is equivariant for the action of J := J,(F¢((2))).
Indeed, j € J acts on Méo_l by j: (G,0) = (G,jod). In terms of (6.4) this means that
j€JCG(F(z) sends A to j-A and 7 to o*(j)-. Thus, it coincides with the action
on ’HZ“ defined in Remark 4.17.

Remark 6.6. As in the arithmetic case, these period morphisms are not compatible
with Weil descent data of source and target. Here the source is equipped with the Weil
descent datum induced by the one in Remark 3.3. On the target we have the natural Weil
descent datum given by the fact that H2" G2 is defined over E,. In order to ensure such a
compatibility, one has to extend the perlod morphism by a second component mapping
to m1(G)r. For a more detailed discussion we refer to [80] or [79, Properties 4.27(iv)].

Remark 6.7. In the above construction the bounded local G-shtuka ((L*G)y/,Aa*)
over ./ with A € G(B/[[z]][i]) induces an étale local G-shtuka ((LTG)g/,Ac*) over
S’ = (&)™ in the sense of Definition 6.8, because (z — ()™ ' = -2 (12l €
O (5")[#] implies B’[[z]][zi ] € Os/(5")[z]. The isomorphism a: G, == ((L*G).»1,Ac™)
yields a descent datum g := prjaopria™ € LTG(") with priA-o*(g) = g-priA,
where " := ' X o . and pr;: " — ' is the projection onto the ith factor.
Viewing g € LTG(S”) where S” := (") = 5" x5 S’ provides a descent datum
pri(LTG)g == pri(L*TG)gs on the LtTG-torsor (LTG)g via multiplication by g on the
right. This allows to descend ((L“‘G)y,AU*) to an étale local G-shtuka over S = ./?"
which by abuse of notation we denote again by G. In this way we obtain the universal
family of étale local G-shtukas over (Mg;l)an
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Definition 6.8. Let S be an F((¢))-scheme or a strictly F((¢))-analytic space. An étale
local G-shtuka over S is a pair G = (G,7g) consisting of an L*TG-torsor G on S and an

isomorphism 7g: 0*G ~ G of LT G-torsors.

Proposition 6.9. The period morphism factors through the open E—analytic subspace
va
HG,Z,b'

Proof. Let z be a point of (Méo_l)an with values in a complete field extension L of E

and let v:=7(x) € ﬁg‘z be its image under the period morphism. Then z corresponds to

a pair (G,0) € Mg:(Spf Op) where G is a local G-shtuka over the valuation ring Oy, of
L. Choose a faithful F,[z]-rational representation (p,V') of G, and under the equivalence
between local GL(V')-shtukas and local shtukas from Remark 6.4 let M := M (p.G) be the

associated local shtuka over Op, and let M (p.d) be the associated quasi-isogeny. By [50,
Proposition 2.4.4] the o-bundle F,, . (V') is isomorphic to M ®¢, 1. L(&,2 7"} and hence

_ ) SK
T, (V) ®L<ﬁ72_1} L(%,zil} = Fo,P9m; see [50, (Proof of) Theorem 2.4.7]. In other
words, v € ;anZ b O

Proposition 6.10. The period morphism 7 : (Mé:)“” — 7:[2: 50 is €étale.

For later use, we formulate one smaller step in the proof as a separate lemma.
Lemma 6.11. (/\Zé:)“d is separated and partially proper over E.

Proof. The irreducible components of its special fibre are proper by Theorem 3.5. Thus,
the lemma follows from [63, Remark 1.3.18]. O
Proof of Proposition 6.10. Let #"8: (/\;lé:)rig — (ﬁgzb)rig be the associated
morphism of rigid analytic spaces and let 724 (/\Zéo_l)ad — (7-V[GG 5 b)ad be the associated
morphism of adic spaces in the sense of Huber [63]. By [63, Assertion (a) on p. 427],
the morphism 7 is étale if and only if #2d is étale and partially proper. The subspace

(7—2“G 5 b)ad C (;QG’ZA)ad is open by Theorem 4.20 and [63, Assertion (1) on p. 431]. There-

fore, (#aG,Z,b)ad is separated over E by [63, Lemma 1.10.17]. So by [63, Lemma 1.10.17(vi)]

and the above lemma, 724 is partially proper.

It remains to show that 72 is étale. By [63, Proposition 1.7.11], this is equivalent to 78
being étale. So by [21, Proposition 2.4] we must show that for any admissible RZ—algebra
B in the sense of Raynaud and for any ideal I C B with I? = 0 and any commutative
diagram with solid arrows

So := SpB/I[}] (ME " yrie (6.5)
S
- o ﬁ.rlg
T v 1 a ri
S = SpB[%] (HG,Z7b) &
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there is a unique dashed arrow f making the diagram commutative. We set .% := Spf B,
as well as By := B/I and % := Spf By. We will construct f as a morphism . — /\/lZ_
after replacing . by an admissible blowing-up. Note that every admissible blowmg—up
of .%y is induced by an admissible blowing-up of .. Moreover, in the course of the proof
we may replace S by a quasi-compact, quasi-separated, étale covering S’ — S. Namely,
by [19, Corollaries 5.10 and 5.4], every such covering is obtained from a quasi-compact
morphism .’ — . of formal schemes that is faithfully flat after replacing . by an
admissible blowing-up. By the uniqueness assertion for f it suffices to construct f over
" and descend it back to 7.

After replacing . by an admissible blowing-up, the morphism fy extends to fo: S —
MG and corresponds to a pair (G,,0) € ./\/lZ (F) where G, is a local G-shtuka
over Y. By Lemma 6.2 we may replace % by an étale covering such that G, =
((L*G).%,,Agc*) for some Ay € G(Bo[[z]][zic]). By [45, Théoreme 1.8.3], this étale
covering lifts uniquely to an étale covering of .. The quasi-isogeny &g : Qo, 7, @0, Z,
over . := SpecBy/(() corresponds to an element Ag € LG(Bo/(¢)) that lifts by
Lemma 6.1 to a unique Ag € G(BO[[Z z’l}[ L ]) with Ag mod ¢ = Ag and Ag- Ay =
b-o*(Ag). If we let o € HGZb(SO) be the pullback of v € HGZb(S), then ~9 =

0" (80)Ag " - G(Bo[¢)]z—¢]) and 0 (Ao) 170 = Ay - G (Bo[¢gl[z — ¢])-

We claim that 0*(Ag) lifts to a uniquely determined element of G(B[z,27'}[-=1-]).
Indeed, after choosing a faithful F,[z]-rational representation p: G < SL, there is
an integer e such that the matrix t¢ - p(Ag) € Bo[z,271}"*". Because o*(I) = 0, the
morphism o*: B — B, z +— 29 factors over B - By — B, and so (6*t_)¢-p(c*Ag) =
o*(t¢ - p(Ag)) € Blz,z~1}7*". This implies p(c*Ag) € SL, (B[z,27 ' }[=2—]) and 6*(A¢) €
G(Blz2""}51)- By (6.2) it follows, moreover, that o*(Ag) € G(B[¢][2—(])-

We now replace S by a quasi-compact, quasi- separated étale covering over which
0*(Ag)~'y is induced from an element g € G(B [ J(z=¢))). Consider the element

=(gmodI)~'A ' € G(BO[ 1z —¢])- Because the kernel ofB[ z—<¢] — Bo[ 1Iz—<]
is a nilpotent ideal and G is smooth ¢ lifts to an element c € G(B [ 1z —¢]) and replacmg
g by ge yields gmod I = Aj*'. Also, o*(Ag) 1y € (’;‘—ulcj)rig(S) by Definition 2.2(b)(v),
whence ¢g-G(B [1}[[2 —(]) € (Zg®gpE)"&(S). We denote the corresponding morphism of
rigid analytic spaces by a: S — (Z B® EE)“g Let R be an extension of R, over which

a representative Zr of Z exists and such that Frac(R) is a finite Galois extension of
E,. We let R be the ring of integers in the completion of the maximal unramified
extension of Frac(R), and we set Z 5= ZrXrSpf R. By applying Galois descent with
respect to the field extension Frac(R) / E in the end, we may restrict to the case where
& is a formal scheme over Spr and not just over SprZ' Let . C ZRQRY be the
(-adic completion of the scheme theoretic closure of the graph of a. It is projective over
% by Proposition 2.6(d) and therefore (/)& = .#"8 So ./ — .7 is an admissible
blowing-up by [19, Corollary 5.4] and we replace . by .#’ to obtain an extension
a S =2 - After replacing . by an étale covering, this morphism « is of the form
A7t G(B[z]) € ZR(Y) for an element A~! € G(B[[z]][i]), compare the proof of
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Proposition 2.6. Because g and A~! both correspond to the morphism a: S — (7:LG Z)rig,
we have g-G(B[%] [:=¢])=A4"1 ~G(B[%][[z—(]]) in (#G’Z)“g(S). We consider the element
ag := Ag(A~ mod I) € G(By [[z}][z%]) Its image in (7:[G 5)"8(Sp) equals

(97" mod I)(A™* mod I)- G(Bo[ 2]~ C]) = (9™ g mod I)- G(Bo[ ][~ C])
= 1-G(Bo[ =~ C]);

that is, ag € G(BO[ [z —¢])). By the following Lemma 6.13, this implies that ag €

G(Bo[z]). Again, because the kernel of B[z] — By[z] is nilpotent and G is smooth,
ag lifts to an element a € G(B[z]), and replacing A=! by A~'a~! yields A mod I =
Ap. We consider the local G-shtuka G := ((L+G)y,Aa*) with gj, =G, Then A,
lifts to A:=bo*(Ag) A7 € G(B[z,27'}[;~]) and A:= A mod (¢): Gz — Gy 7 is the
unique lift of the quasi-isogeny &y = Ag by rigidity. We let f: .7 — Mﬁo " be the
morphism given by (G,A) € Méo_l (). It makes the diagram (6.5) commutative, because
o*(A) A GBIz — () = o*(Ao)g-G(BIEII:—C]) =

To prove that f is uniquely determined, let f': . — /\;léo_l be a second morphism
making the diagram (6.5) commutative. The corresponding point (G',0’) € Mé:(ﬁ’)
is of the form G’ = ((L+G)y,z4/0'*> with A’ mod I = Ag and A’ = bo*(Ag) A1 €
G(Blz2"'}[7]). We assume that it is mapped under 7' also to 7. This means
o*(Ag)A~L -G(B[%][[z—(]]) =5 = o*(Ag)A1 -G(B[%][[z—(]]), whence ® := A’A71 €
G(B[%][[z —(]) G(B[%]((z —¢))). From Lemma 6.13 it follows that ® € G(B[z]). Also,
o*(®) = o*(AA "  mod I) = 0*(1) = 1 implies ®A = A'0*(®) and & = A’"TA. We
conclude that @ is an isomorphism (G,8) = (G',6"). This means f = f’ and finishes
the proof. O

Remark 6.12. When G = GL,, the proof starts in terms of Remark 6.4 with a local
shtuka M over .#y. Then it considers the de Rham cohomology of M, which lifts to .
by its crystalline nature. Next it produces from the Hodge-Pink structure v a Hodge-Pink
structure on the de Rham cohomology of M, over .# that lifts the Hodge-Pink structure
of M. This lift of the Hodge-Pink structure corresponds to a unique lift of M to a local
shtuka M over . by [41, Proposition 6.3]. In that sense, our proof is a direct translation
of [80, Proposition 5.17].

Lemma 6.13. Let B be an F,[(]-algebra without (-torsion that is (-adically com-
plete, and let a € G(B[[z]][;lc}) such that the image of a in G(B [ (z =) lies in

G(B[%][[z— Cl). Then a € G(B[z]).

Proof. Note that B[z] has no (z —{)-torsion, because B has no {-torsion. Let p: G — SL,.
be a faithful representation over F,[z] and consider the matrix p(a) € SLT(B[[z]][ZiC]) C

Bl
It is enough to show that this matrix is in B[z]"*" as SLT(B[[zﬂ[z—ig]) NB[z]"" =
SL,(B[z]) and SL,.(B[z]) ﬁp(G(B[[zﬂ[ziC])) = p(G(B[z])) as p is defined over Fy[z].
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After multiplying p(a) by (z —(¢)™ for sufficiently large n, its denominators disappear
and its image in B[%][[z —¢]"*" is divisible by (z —¢)™. Thus, it suffices to show that an
element f of B[z]] whose image in B [%][[z — (] is divisible by z —( is already divisible by
z—( in B[z]. This follows as in Lemma 7.6. O

We end this section with some examples.

Example 6.14 (The Drinfeld period morphism.). This example is due to Drinfeld [35].
A good account is given by Genestier and Lafforgue [39], [40]. Let d be a positive integer
and let D be the central division algebra over Fy((2)) of Hasse invariant 1/d. Let Op be
its maximal order. We may identify D 22 @} Fa((2))II and Op = @) Fa[2]11 with
1% = z and Ila = o(a)II for a € F a((2)). We let G := O}, be the group scheme over F,[z]
with G(A) = (Op ®p,[.] A)* for F,[z]-algebras A. Consider the matrices

1 - 0 _ 1 0
0201 0 0010

The field extension Fa of F, splits the division algebra D by the isomorphisms D ®p,
Foi = Fya((2)™¢ and Op @p, Fea = {g € Fya [2]"*“: g mod zislowertriangular} sending
I®1toT and a®1 to diag (¢?~*(a),0%2(a),...,a) for a € Fa((2)) C D. So G ®p, Fya is
the Iwahori group scheme I :={g € GLq: g mod zislowertriangular}. Let b=I1€ LG(F,) =
D* and let the bound Z be represented over R =T 4 [¢] by

g = LTI-T . LTI/LYI C Fl;r = Fla.r.

Its reflex ring is R, = F,[(] and ’}-V[G,ZA = ]P’]‘;icl)). The quasi-isogeny group Jp equals GLg.

We are going to describe M(Z;:.

The category of LTG-torsors over a scheme S € N ilpp,[¢) 1s equivalent to the
category of Og[z]-modules with ODopp®FqOS—action, which are Zariski locally on S
of the form (’)D@Fq Og, where (’)Dopp@wq Og acts by multiplication on the right. This
equivalence sends an LtTG-torsor G that is trivialised over an étale covering S’ — S
by a: Ggr = (LT G) g with h:=pjaopja € LTG(S") = (Op ®r, ) 1(5",05)[2]) ",
where p;: §”:=5"xgS" — S’ is the projection onto the ith factor, to the Og[z]-module
M obtained by descent from M’ := (’)D@Fq Og with the descent datum p5M’ == pi M,
m — hm. Then M is Zariski locally trivial by Hilbert 90; see [56, Proposition 2.3].
It s e Nilqudm, then M’ = OD@)Fqux decomposes as a direct sum of eigenspaces
M; on which a € Fja C Op acts as a? € Og for i € Z/dZ. Under the isomorphism
Op @Fq Og 2{ge€ Oy [[zﬂdXd: gmod zislowertriangular} the ith eigenspace M/ is mapped
to the (d—i)th column in the matrix space (for 0 <14 < d). Multiplication with IT on the
right defines morphisms IT: M] — M/, ;. If G is a local G-shtuka over such an S, then
7g maps o*M] to M/ ,[1]. It is bounded by Z~1 if and only if for all i the map 7g is

a morphism o*M; — M] , with cokernel locally free of rank 1 over S’. This means that
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M is the local shtuka (called ‘module de coordonnées’ in [39], [40]) of a special formal
Op-module of dimension d and height d? in the sense of Drinfeld [35].

The formal scheme Mé;l = 11,97 and the space (./\;lé:)an =11,Q% are the disjoint
unions indexed by the height of the quasi-isogeny ¢, where

Q= ]P’d F(O) Cl) \ all F,((¢))-rational hyperplanes
is Drinfeld’s upper halfspace over E = F((¢)) and Q7 is its formal model over F[(]
constructed by Drinfeld, Deligne and Mumford. The representablhty and structure of

MZ is described in detail in [39, Chapitre II|. The period space 'HG b= HG“Z , also

equals Q7 and on each connected component of (/\/l([Z;0 )3 the period morphism is the
identity of Q?. The fibres of 7 are in bijection with Z = D* /O},; compare Proposition 7.16
and Theorem 8.1(a). Note that this example has a Q,-analogue also going back to
Drinfeld, which is discussed by [80, 1.44-1.46, 3.54-3.77 and 5.48-5.49]. Our exposition
differs from [80] because they take covariant Dieudonné modules of formal Op-modules,
whereas the local shtuka functor [40, §2.1] is contravariant.

Example 6.15 (The Gross-Hopkins period morphism.). This example is also discussed
n [40]. Gross and Hopkins [60], [61] take G = GL,, with the upper triangular Borel
subgroup and the diagonal torus. Let b € LG(F,) be the matrix T from (6.6), and let
the bound Z = Z<,, be as in Example 2.7 for p=(0,...,0,—1) € Z" =2 X, (T) and with
reflex field £ := E, =F,((¢)). Then Z = Zj(, Yaom With (=£)dom = (1,0,...,0); compare
Example 2.7. The quasi-isogeny group Jp is the unit group of the central skew field over
F,((2)) with Hasse invariant 1/r. The Rapoport-Zink space is the Lubin-Tate space

= HSprF[[Qul, e Upo1]
zZ

of 1-dimensional formal F,[z]-modules of height . Its connected components are indexed
by the height of the quasi-isogeny §; that is, the 1mage of § € ]-'éGLr under the map
Flar, — mo(Flar, ) =m1(GL,) = Z. The period space is "Hgaz by = ’H n F((C))’ compare
[50, Example 3.3.1]. To define the Hodge-Pink structure on the universal formal F[z]-
module, Gross and Hopkins [61, §11] used the universal additive extension. See [53,
Remark 2.5.43] for a comparison of this definition with our definition of the Hodge-
Pink structure in Remark 6.4. In [61, §23] they constructed the period morphism 7 and
showed that its image is (IP’gl)a“; compare Theorem 8.1(a). Note that Gross and Hopkins
treated the Q,-analogue simultaneously; see also [80, 5.50].

Example 6.16 (The ¢-adic Carlitz logarithm.). The following example was computed by
Breutmann [24]. Let G = GLa, and let the Borel, the maximal torus, the bound Z= Zg P
and y be as in the previous example. Let b= (2 ). Then Jj, is the diagonal torus in GLs.
The Rapoport-Zink space descends to F,[(] as the formal scheme

ME = ] sefFlcnl.

(i,5)€2?
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whose underlying affine Deligne-Lusztig variety X z-1(b) = [[,. SpecF, is 0-dimensional.
Over the component (i,7) € Z%, the universal local GLy-shtuka G is given by the local
shtuka M (G) = (F,[¢, ] [2]%,7ar) with 7ar = (7,¢9); see Remark 6.4. The universal quasi-

ho1
isogeny
_ 2 0
0= ) . _
DIy L
lifts to
S z
¢ 0
‘ u];[O Z = qu
A= [es) hqy
i _ i
D PP

The F-analytic space (/\;léo_l)a“ is the disjoint union indexed by (4,5) € Z? of the open
unit discs with coordinate h and M2, =M, | = AL =PL\{(0:1)} C HE = PL;
compare [50, Example 3.3.3]. On the component (i,j) the period morphism 7 is given
by h— (770"t )| s=¢ logcarit, (h), where t_ was defined in (4.3) and logc,, (R) :==
Ziom is the (-adic Carlitz logarithm; see [42, §3.4]. In particular, 7 is
surjective onto H’é‘?Z’b; compare Theorem 8.1(a). This example is analogous to the period
morphism for p-divisible groups [80, 5.51, 5.52] given by the p-adic logarithm, which was
constructed by Dwork; compare [66, §§7,8].

7. The tower of étale coverings

In this section we fix a local G-shtuka G, over F and a bound Z with reflex ring R, =
k[€]. Let again E, = x((£)) and E =TF((¢)) and I:EZ = F[¢]. We write M for the strictly
E-analytic space (Mé:)an. We shall construct a tower of finite étale coverings of M
obtained by trivialising the Tate module of the universal étale local G-shtuka G over M
from Remark 6.7.

We start more generally with a field extension L/ F that is complete with respect to
an absolute value extending the absolute value on E and with an étale local G-shtuka g
over a connected strictly L-analytic space X as in Definition 6.8. We choose a geometric
base point z of X.

Definition 7.1. Let p: G — GL; be in Repy, [,j G. Let M = (M,7pr) be the étale local
shtuka of rank r associated with the étale local GL,-shtuka p.G obtained from G via p,
see [4, §3], and let M, denote its fibre over Z. Then the (dual) Tate module Tg z(p) of G
with respect to p is defined as the (dual) Tate module of M, ;

Tg,z(p) == T.M, = {me M,: rp(c*m) =m}.

By [94, Proposition 6.1] it is a free F,[z]-module of rank r with a continuous monodromy
action of 7$*(X,z). This action factors through 7% (X, ).
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Let now p: G — GL, be in Repy,_(.)G. Let N = (N,7n) be the locally free Ox ((2))-
module of rank r and the o-linear isomorphism associated with p,.LG obtained from LG
via p. Let N denote its fibre over Z. The rational (dual) Tate module Vg z(p) of G with
respect to p is B

Vgz(p) = {n€Ng: 7v(0*n) =n},
a finite-dimensional F, ((2))-vector space with a continuous monodromy action of 7¢*(X, 7).

Remark 7.2. As was pointed out to us by S. Neupert (see also [76, 2.6]), one can also use
the following direct way to define the Tate module of an étale local G-shtuka that does
not use tensor functors. Let G = (G,7g) be an étale local G-shtuka over a base scheme or a
strictly F((¢))-analytic space S; in other words, 7¢g induces an isomorphism 7¢g : 0*G == G.
Consider for each n € N the 7-invariants of the induced map ¢*G,, — G,,. Here G, is
the G/Gyp-torsor induced by G where G,, is the kernel of the projection G(F,[[z]]) =
G(F,[[2]]/(2™)). These T-invariants form a G(F4[[2]]/(z™))-torsor that is trivialised by a
finite étale covering. One can then define the Tate module of G as the inverse limit over
n of these torsors.

Remark 7.3. (a) Let (p'V) € Repy_(.) G. Let Ag be any F[z]-lattice in V. Then the
stabiliser in G(IF,[z]) of Ao is open and, in particular, of finite index in the compact
group G(Fy[z]). Therefore,

A= (] Alo)(Ao)
g€G(Fy[2])

is an intersection of finitely many translations of Ag and hence a lattice in V.
By definition, A is G(F,[z])-invariant. Thus, p’ is induced by (p,A) := (p'|a,A) €
Repy, .1 G- From the definition above, we obtain

Vo.5(p") = Tg,2(p) ®r, 121 F ()

In particular, the vector space ng(p’ ) is of dimension dim V.

(b) These definitions are independent of the chosen base point Z, because for any other
geometric base point Z’' of X there is an isomorphism of fibre functors Tg z = Tg, 4
and Vg, ; 2 Vg z by [31, Theorem 2.9] and Remark 7.2.

(c¢) From the definition one obtains that the Tate module and the rational Tate module
are tensor functors

Tg.s: Repg, )G — Repify (75'(X,2)) = Repify (71%(X,7))  and
Vg,i‘: Requ (2) G — Rep%?zr(l(tz)) (’/Tft (X,f)) .
In terms of Definition 5.2, we may view Tg’i and Vg, # as tensor functors

Tg: Repg,[.]G — Fqlz]-Lock and (7.1)
VQ: Repg, (:)G — F,((#z))-Locy, (7.2)
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with Tg z = F$oTg and Vg z = FStoVg. The tensor functors (7.1) and (7.2) also
exist if X is not connected. B

Furthermore, T, g,z and T g are functorial on the category of étale local G-shtukas
G with isomorphisms as morphisms, and Vg@ and Vg are functorial on the category
of étale local G-shtukas G with isogenies ‘as morphisms. Indeed, an isomorphism,
respectively an isogeny, of étale local G-shtukas canonically induces an isomorphism
between the corresponding M, respectively V.

Recall the forgetful functors w¢ : Rep4 G — FMod and forget: Repd™ (7$t(X,z)) —
FMod 4 from Definition 5.1. For an étale local G-shtuka G over X, the sets

Trivg,z (Fy[z]) := Isom® (wg, [2]-forget 0Tg,z)(Fylz]) and (7.3)

Trivg s (Fq((2))) := Isom® (w®, forget o Vg z) (Fq((2)))

are nonempty; see [4, after Definition 3.5]. This is due to the fact that we assumed
G to have connected fibres. In [80, 5.32], where nonconnected orthogonal groups are
also allowed, the isomorphism class of the étale fibre functor analogous to fOTgetOTg,i
can vary. By the definition of the Tate functor, Trivg z(IF,[2]) carries an action of
G(F,[2]) x ©'8(X,Z) where the first factor acts through wg, 1) @nd the action of 18(X ,7)

is induced by the action on the Tate functor. Similarly, Trivg ; (F,((2))) admits an action
of G(Fq((2))) x 7§ (X,z). For every choice of an element 7 € Trivg ;(F,[z]), we obtain a
G(F,[=])-equivariant bijection

G(Fy[z]) = Trivg z(Fy[z]), g+—noyg, (7.4)

where G(F,[z]) acts on itself by multiplication on the right. Under this bijection, the
. alg _ .
action of 77°%(X,Z) corresponds to a group homomorphism

T8(X,z) — G(F,[z]), h+——n"toh(n)

that is independent of 7 up to conjugation by elements of G(F,[z]). Similar statements

hold for Trivgz (Fq((2))) with G(Fy[z]) and 78(X,z) replaced by G(Fy((2)) and
ét = a

i (X,T).

Definition 7.4. Let G be an étale local G-shtuka over a connected F(({))-analytic space
X, and let K C G(F,[z]) be an open subgroup. Then an integral K-level structure on G
is a 73'8(X,Z)-invariant K-orbit in Trivg z(Fy[z]).

If K C G(Fy((2)) is an open compact subgroup, a rational K-level structure on G
is a 7{'(X,Z)-invariant K-orbit in Trivg ; (Fy((2))). For nonconnected X we make a
similar definition choosing a base point on each connected component and an integral,
respectively rational K-level structure on the restriction to each connected component
separately. Note that every integral K-level structure on G defines a rational K-level
structure but not conversely.

For an open subgroup K C G(F,[z]), let XX be the functor on the category of L-analytic
spaces over X parametrising integral K-level structures on the étale local G-shtuka G
over X.
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Proposition 7.5. (a) XX is represented by the finite étale covering space of X that
corresponds to the finite ©i9(X,z)-set Trivg z(Fy[2])/K wunder the equivalence
(5.4). In particular XX is a strictly L-analytic space.

(b) For Ko = G(F,[2]), the morphism assigning to G the Ky-orbit of all elements of
Trivg,z(Fq[2]) induces an isomorphism X = X Ko,

(¢) For any inclusion of open subgroups K' C K C G(F,[z])), forgetting part of the
level structure induces compatible finite étale surjective morphisms

7YFK7K/ IXK/ *)XK,
which are Galois with Galois group K/K' if K' is normal in K.

Proof. Denote by XX the finite étale covering space of X from (a). Let f: Y — X be
a connected L-analytic space over X and let nK be an integral K-level structure on
f*G; that is, 1 € Trivj-g 5(F4[2]) and the K-orbit nkK is 73'(Y,§)-invariant where § is
a geometric base point of Y. We must show that nK arises from a uniquely determined
X-morphism Y — XK. Moving z by Remark 7.3(b), we may assume that f(y) =z,
and hence Tf*g’g = TQ@. Consider the finite étale covering space XX xx Y — Y. Then
Ff;tg()zK xxY)= Ff}i()?K) = Trivg z(Fy[2])/K for the étale fibre functors from (5.3).
In particular, the element nK defines a W?lg(Y,gj)—equivariant map from the one-element
set {g} = Iy ;(Y) to Ff}fg(}?K xxY). By [31, Theorem 2.10], this map corresponds to
a uniquely determined Y-morphism Y — XK X x Y. The projection ¥ — XX onto the
first component is the desired X-morphism that induces the integral K-level structure
nk over Y.

(b) and (c) follow directly from (a). O

For arbitrary X and G, Proposition 7.5 is the best one can hope for. However, if
X = (/\;I(IZ;: )21, one can even replace Ty, ; and Trivg, z (Fy[2]) by Vg,z and Trivg 5 (Fq((2)))
and allow compact open subgroups K C G(Fy((2))); see Corollaries 7.11 and 7.13. To
explain this (also as a preparation to define rational level structures in Definition 7.10),
we keep the field L introduced at the beginning of this section and consider in the
following an admissible Op-algebra B in the sense of Raynaud; that is, B is a quotient
B: Op{Xy,...,Xs) — B that is (-torsion free; see (6.3) and [18, p. 293]. Then X := Spf B
is an admissible formal Op-scheme. Let B [%] be the associated strictly affinoid L-algebra.
We equip B[%] with the quotient map §: L{Xy,...,X ) — B[%] and the L-Banach norm
0] := inf{| flsup: f € B71(b)}, where |f|sup denotes the Gaufl norm on the Tate algebra
L(X1,...,Xs). Then B={be B[%]: |b| < 1}. The Berkovich spectrum X = BSpecB[%] is
the L-analytic space X'*" associated with the formal scheme X.

Lemma 7.6. Recall the notation from (6.1). Let f = > b;z* € Bz,27'} and a € B with
i€z
la] <1 and assume that f € B[z] or a € O \{0}. If f(a) = > bja* =0 in B[%], then f =
i€z

biat~""1 e B.

i>n 0t

(z—a)-g for a uniquely determined g= 3" ¢, 2™ € Blz,27 1} withc, =Y
nEL
Moreover, if f € B[z] then also g € B[7].
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Proof. First of all, b; € B and |a| <1 implies that the series ¢, := >, b;a’~ "~ converge
in B for all n € Z. One easily computes that f = (z—a)-g for g:= > _,c,2". To prove
uniqueness let g=3, 7 Cn2" € Blz,z7 1} also satisfy f = (z—a)-g. Settmg ch =cp—Cp
yields ¢/,_; = ac,, whence ¢, = a™ "¢}, for all m > n. Lettmg m go to oo and using
¢, € B shows that |c},| is arbitrarily small, and therefore ¢/, = 0 for all n. This proves the
uniqueness of g.

If f € B[z] and n <0, then ¢, =a~""!- f(a) =0 and therefore g € B[z]. If a € O\ {0},
we must verify the convergence condition lim,,_, _ o |¢,|]a|™ =0 for all » > 1. We compute
en=— e, bia" " L If i <n, then |a|" P < |a|"~ Y and hence
|i—n—1+(r—1)i+n

|Cn|‘a|rn < max‘biHa — maX‘biHari_l,
i<n i<n

The latter goes to zero for n — —oo because f € B[z,271}. Therefore, g € B[[z,271}. O

Remark 7.7. In addition to the loop group LG, we consider over F,[¢] the loop groups
defined as the fppf-sheaves on Fy[(]-algebras R by

) and L G(R) = G(R[z[:z55])

and the canonical maps of groups LG — LG = L,(,_)Gand LTG = L,_G = L,(._¢)G
that coincide as homomorphisms LTG — L G If ( € R* is a unit, note that z—( €
R[z]", and hence L,_ G =L"G and L., G LG On the other hand, if ¢ is nilpotent
in R, then L,_G = LZ(Z—C)G = LG.

Recall from [4, Definition 4.22] that a local G-shtuka over an admissible formal Op-
scheme X' can be viewed as a projective system (G, )men of local G-shtukas G = over
X =V(")CXwithg =G ®x, Xn_1. On &, the element ( is nilpotent.

Now let B and B[%] be as before. If (G,5) is an Spf B-valued point in Mé;l(Spr),
then the étale covering Spf B’ — Spf B from Lemma 6.2 is given by a faithfully flat ring
homomorphism B — B’ by [18, Lemma 1.6], and this implies that G comes from an
L*G-torsor G over Spec B together with an isomorphism of the associated L,_G-torsors
7¢: L,—c0*G = L,_G. We view (G,7g) as the bounded local G-shtuka over SpecB
induced from the bounded local G-shtuka G over Spf B. A quasi-isogeny w: (G',7g/) —
(G,7g) between two such bounded local G-shtukas (G,7g:) and (G,7g) over Spec B is an
isomorphism of the associated LG-torsors u: LG =~ LG that satisfies uo7g = 7goo*u
as isomorphism of the associated L, ,_¢)G-torsors.

In particular, (G,7g) induces an étale local G-shtuka on the L-analytic space X =

(Spt B)*» = BSpec(B[%]).

L.¢G(R) := G(R[=][=

The following proposition is a weaker analogue of the fact that lifts of p-divisible groups
and morphisms between them correspond uniquely to lifts of the Hodge-filtrations on
the associated crystals (respectively morphisms between them). We do not dispose of
the full analogue of this assertion because in our (in general nonminuscule) context
Griffiths transversality does not hold; compare the discussion of Genestier and Lafforgue
in [41, §11].
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Proposition 7.8. Let X = Spf B be an admissible formal O -scheme and let X := X"
be its associated L-analytic space. Assume that X is connected and choose a geometric
= = v 51

base point T of X. Let (G,6) and (G',8") be (representatives of ) points in Méo (X). Then
7(G,8) = %(G8") in ﬁg"Z(X) if and only if the unique lift of the quasi-isogeny 6 o8’
by rigidity [/, Proposition 2.11] is a quasi-isogeny u: G' — G over Spec B in the sense of
Remark 7.7. In this case, u induces an isomorphism of the rational Tate module functors
Vu 5! Vg - Vg z over X and the following assertions are equivalent:

(a) u: G' — G is an isomorphism of local G-shtukas, that is (G,0) = (G',0") in Méo_l (X),

(b) Vu,i s an isomorphism ngf = Tg@ of the integral Tate module functors,

(¢) Vi.z(p) is an isomorphism TQ,,—J(p) =5 Tg,z(p) for some faithful p € Repg, 1.1 G-

Moreover, for every rational G(Fy[z])-level structure nG(Fy[z]) on G with n €
Trivg,z (Fq((2))) there is an admissible formal blowing-up ¥ — X and a (G",0") €
Méo_l (V) with ﬁ(g@ = 7”3(9',5”) and (Vynz)"tone Trivgr z(Fq[2]), where u”: G =g
is the unique lift of 61 od".

Remark. The last assertion uses the ind-projectivity of the affine flag variety F/¢s and

is in general false if G is not parahoric; see Example 8.6.

Proof of Proposition 7.8. By Lemma 6.2 there is an étale covering X = Spfg —
X of admissible formal Op-schemes and trivialisations a: § == ((L G) ,Ac*) and

o: G =5 (LTG)5,A'0") with A,A’ € G(B[[zﬂ[ ]) Note that B C B[ ] because B

has no (-torsion. In addition, the quasi-isogenies & and ' correspond under o and o to
iy ~
elements A,A" € LG(B/(¢ )), which lift by Lemma 6.1 to uniquely determined elements

AN € G(E[[z,z_l}[t%]) with AA=bo*(A) and A’A" =bo*(A’). In particular, the quasi-
isogeny 6 108 : G — G' over SpecB/(¢) lifts to U = A™1A’ € G(é[[z,zil}[t%}) with
UA’ = Ac*(U). The morphism # sends (G,0) and (G,6') to

yi=o"(A)A! -G(B [%][[z—(]]) and
v = ot (A)A) - G(BIE]—¢])
=0 (M) AU -G (B[ —]).
If u is a quasi-isogeny over Spec B, then U € G(E[[z]][%]) G(B [%][[z—d]) and hence
#(G,0) =y =7 =#(G’d') in H2 .

Conversely, the condition #(G,6) = 7(G',¢") yields U € G(E[%][[Z —(]). We claim that
this implies U € G(B[[z 2*1}[0* — )]) To prove the claim, let p: G — GL, be a faithful
representation. Then the entries of p(U) and p(U)~1 are of the form ¢~¢ f with e € Ny and
f € B[z,2"'}. We must show that there is a g € B[z,2~!} with t=f = ¢*(t_)°g. Recall
from (4.3) that t—¢f = (1— %)_ea*(t,)_ef. Ife>0,then U € G(E[%] [z —(]), respectively
U-le G(E[%H[zf(]]), implies that f({) =01in E[%] By Lemma 7.6 we find f = (2 —()g1 =
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(1- %)zgl with g, € B[z,27'}, and hence t=¢f = (1 g)1_60 (t_)—© z91 Continuing in
this way for p(U) and p(U)~!, we obtain that p(U) € GL, (B[[z 2N =t *(t ]). The claim

follows.
This shows that o*(U) € G(éﬂz,z‘l}[%]) C G(E[%][[z—(q}]), where we use (6.2).

Because A, A’ € G(B [%][[z— (qi]}) for all ¢ > 0, we obtain
U=Ao*(U)(A)~" € G(B[}][z—¢]).

Analogous to the previous paragraph, this implies that U € G(Eﬂz,zil}[%]) and
iteratively U € G(B[[z 2_1}[[”*@ )D for all ¢ > 0. It follows that the entries of p(U)
converge on all of {0 < |z| < 1}, whence lie in B[z,27'}, and so U € G(B[z,27'}).

Now let p C E[%] be a minimal prime ideal and let z € X* = BSpec(E[%]) be a
point given by a multiplicative semi-norm |.|;: E[%] — R>¢ such that {b € E[%] bl =
0} = p. Note that |.|, exists by [7, Corollary 2.1.16], for example as the preimage of
the multiplicative_Gaufl norm on L(Xj,...,X4) under a Noether normalisation map
L(Xy,...,Xq) — B[ 1/p; see [17, §6.1.2, Theorem 1]. Let Q be the completion with
respect to |.|; of an algebraic closure of B[C]/p and let Oq be the valuation ring of

Q. Then the image of B in Q lies in Og. We denote the image of U in G(OQ ﬂz,z_l})
by Up. By [4, Lemma 2.8] there are elements Hy,H, € G(Q[z]) with Ac*(H,) = H,
and A’'0c*(H,) = H, that provide a trivialisation of the Tate module functors By [54,
Remark 3.4.3], we even have p(Hy),p(Hy) € GL, (%)) for every s > <. We compute

p(Hy'UpHy) = plo*(Hy AT UpAlo *(H'))fU p(Hy ' UpHy) € GL(Q <év z7'}), and
this implies p(H, 1UpH{J) € GL, (F4((2))) because Q<CS’ 27117 =F,((2)). Let N, € Ny
be minimal such that v p(H, 'U, Hy), 2N p( glUpH;) Ve F[2]"*". Then N, =0
if and only if p(H, 'U,H}) € GL,(Fq[z]); that is, H, 'U,H] € G(F4[z]). Moreover,
2 p(Uy), 2N p(Up)~1 € Q(E)™" N Oqllz,27 1} = Oq[z]"™". Because this holds for
all of the finitely many minimal prime ideals of B [%} and the intersection of these is
the nil-radical N of E[%], we see that U € G(E[[z,zil}) implies 2N p(U),2Np(U~1) €
B[] + N[z~ for N := max{N,: p minimal}. Because E[%] is Noetherian, the
nil-radical is nilpotent and there is an integer m such that N 7" = (0). In particular,
2Np(o™*(U)) € B[[z]"*". Let n be such that (z—()"p(A),(z—)"p(A)~! € B[]"*".
Then

< 1:[ (z— CW") N p(U) = (2= Q)" p(A) ... ((z= )" p(A)) - 2N p(a™* (U))-
= oM (2= Q) p(A) ) (2= Q) p(AN) T
€ B[]™"

and applying Lemma 7.6 with a = qu for i =0,...,m—1 to the entries of this matrix
yields 2V p(U) € B[z]"™". In the same way, we see that 2 p(U ') € B[z]""". This implies
p(U) € GL, (B[2][%]) and U € G(B[Z][%]) = LG(B). We conclude that U defines a quasi-
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isogeny U: G5 — ng which induces the isomorphism of the rational Tate module functors
Ve = H_lUpH Vg = Vg,z for the geometric base point Z: BSpec(Q2) — X. By
uniqueness U descends to a quasi-isogeny u: G’ — G over Spec B as desired.

In this situation, clearly (a) implies (b) and (b) implies (c¢). We further see that (c) for
our representation p implies p(Hp_lUpH{,) € GL, (F4[z]) for all minimal p C é[l]7 and
hence the integer N defined above is zero and U € G (E [2]). In particular, (c) implies (a),
because u: G’ =~ G is an isomorphism of local G-shtukas if and only if U € G(Bﬂz]])

It remains to prove the last assertion about the rational G(F,[z])-level structure
nG(Fy[z]) on G where 1 € Trivg; (Fy((2)). Let p”: 7$"(X,z) — G(F,4[2]) be the
homomorphism by which the fundamental group acts on n; that is, g(n) =n-p”(g) for
g € 7$"(X,z). Note that p”(g) indeed lies in G(F,[z]) because g fixes nG(F,[z]). In
particular, p factors through a representation 7'8(X,z) — G(F,[z]). By Corollary 5.4,
Proposition 5.3 and [4, Proposition 3.6], p” comes from an étale local G-shtuka Q’L’
over SpecB [%] together with a tensor isomorphism 3 € Trivgr z(Fy[2]), and the tensor
isomorphism n3~!: VQW = Vg,i is of the form Vug’j for a quasi-isogeny u : (]" — g (1]
over SpecB[%]. This means that G7 = (G7,7”), where G} is an Lt G-torsor over Spec B[¢]

and 77: 0*G) == GY is an isomorphism of LT G-torsors. Also, u/: LQ” = LQB[ | is

,\,‘,_.NH

an isomorphism of the associated LG-torsors with w7 o7” = 75 0 c*u}. Note that the
assumption on the nilpotence of ¢ in [4, Proposition 3.6] is not satlsﬁed for Spec B [ ],
but is also not used in the proof of [4, Proposition 3.6]

We may thus apply the following Lemma 7.9 by taking the LG-torsor associated with G
as the LG-torsor G in Lemma 7.9. It provides an extension of the pair (g” u) to a local
G-shtuka G” bounded by Z7 ' and a quasi-isogeny u”: G"” — G over a blowing-up Y of
Spec B in a finitely generated ideal b C B containing a power of ¢. By [18, Propositions 2.1
and 1.3] the ¢-adic completion Y of Y is the admissible formal blowing-up of X = Spf B
in the ideal b. In particular, J)*" — X is an isomorphism. We set 6" := & o (u” mod ().
Then (G",6") € Mg;l (), and #(G,0) = #(G",8") by the first part of the proposition, and
(Vurrz)"ton = 3 € Trivgr z(F,[2]) by construction. O

Lemma 7.9. Let B be an admissible formal Op-algebra. Let G be an LG-torsor
over SpecB and assume that there is an étale covering Spt B — Spf B of admissible
formal Op-schemes such that G admits a trivialisation o: G ® g Spec B =~ LGSpccE'
Let 7g: Lo(.—¢y0*G == L,(._¢)G be an isomorphism of the associated L., G-torsors.
Furthermore, let G be an LT G-torsor over SpecB[%}, let 7": 0*G] = G7 be an
isomorphism of LT G-torsors and let uf : LG} == QB[%] be an isomorphism of LG-torsors
over SpecB[%] satisfying v} ot = 1goo*uf.

Then there is a blowing-up Y of Spec B in a finitely genemted ideal b C B containing
a power of ¢, an Lt G-torsor G" over Y, an isomorphism 7gi: L,_c0*G" == L,_G" of
the assocwted L, G- torsors over Y and an isomorphism v : LG" == Gy of LG-torsors
satisfying v orgn = 1g 0o o*u”, such that the pullback of (G",7gr,u'") to Y xp SpecB[C] =
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~

SpecB[%] is isomorphic to (G}, 7"W}) via an isomorphism of L™ G-torsors h: gg[l] s
¢
G}, satisfying hotgn =7"00*h and u" =ujoh. B
Moreover, if the element a*aOTgl oa~le G(B[[z]][#]) G(B [H[[z]][zlc]) maps
to a point in Z“”(BSpecE[%}) then 1 is bounded by Z~' and G" = (G",1g») is a local
shtuka over Y bounded by Z~ Y in the sense of Remark 7.7.

Proof. We consider the functor Mg on Spec B-schemes classifying quasi-isogenies of
(unbounded) local G-shtukas to G := (G,7g), which on affine B-schemes S = SpecR is
defined by

Mg (S) :={Isomorphism classes of (G",7g»,u"): where G” is an L*G-torsor over R,
where 7g/: L,(,_¢)y0"G" == L.(,_¢)G" is an isomorphism of the associated
L.(.—¢)G-torsors and u”: LG" =+ G x g S is an isomorphism of LG-torsors,
with 7goo*u” =u" o7gn }.

Here (G",7g,u”) and (G’ 7g/,u’) are isomorphic if there is an isomorphism h: G” =~ G’
of Lt G-torsors satisfying horgr = 7groo*h and v’ =’ oh.

The functor Mg is representable by an ind-projective ind-scheme over Spec B as follows.
We consider its base change ./\/lg ®RB B and fix a trivialisation «: GRp B LG g. Over
a B- algebra R the data (Q”aou ) are represented by the ind- projective ind-scheme
FlaX XF, SpecB over Spec B. Indeed, over an étale covering SpecR of SpecR the LTG-
torsor G” can be trivialised by an isomorphism f3: Q% == (L*G) g and then aou” o~ 1
yields an R-valued point of Flg that is independent of all choices and descends to an

R-valued point of F¢; see [56, Theorem 6.2] or [4, Theorem 4.4] for more details and for
the inverse construction. Over Spec R, also

Borgnoo*B ™t = Bo(u ) orgoo*u oo*p7! € LZ(Z,C)G(E) (R[[zﬂ[z(z C)D

is uniquely determined by ”. This shows that Mg ®p Specé = Flg Q]Fq SpecB is an
ind-projective ind-scheme over Spec B. It descends to an ind-projective ind-scheme Mg
over Spec B, because B — B is faithfully flat by [18, Lemma 1.6]; see [4, Theorem 4.4] for

details.

The triple (G7,7",u}) corresponds to a morphism f: SpecB[%] — M. Because its
source is quasi-compact, f factors through a subscheme M(QN) that is projective over
Spec B; see [56, Lemma 5.4]. The scheme-theoretic closure I' of the graph of f in Mgv)
is a projective scheme over Spec B and the projection I' — Spec B is an isomorphism over
Spec B [%] By the flattening technique of Raynaud and Gruson [83, Corollaire 5.7.12],
there is a blowing-up Y of Spec B in a finitely generated ideal b C B containing a power
of ¢, such that the strict transform of I — that is, the closed subscheme of I' x g Y defined
by the sheaf of ideals of (-torsion — is isomorphic to Y. The morphism ¥ —T" — M(QN)

corresponds to an extension over Y of the triple (G/,7",u/) from Spec B [%] This means
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that over Y there is an LTG-torsor G”, an isomorphism of the associated L...—)G-
torsors 7g 1 L.(,—y0*G" == L (_¢yG" and an isomorphism of the associated LG-torsors
LG" = G xpY with rgoo*u” =" orgs and over Y xp SpecB[%] = SpecB[%] an

1somorph1sm of L*G-torsors h: G7, 1, == G} satisfying hotgr =7"00c*h and v’ =u/f oh.

Bl¢]
We claim that 7g» comes from an isomorphism of L,_.G-torsors 7gr: L,_c0*G" ==
L,_:G". We choose a trivialisation of G" over an étale covering Y of Y X Spec B SpecB

and write the Frobenius g/ of G” as an element 7g» € G(O YHZH[Z(Z—C)])' Our claim

means that 7g~ actually lies in G(Oy [[z]][i]) To prove the claim, we choose a faithful
representation p: G — SL, and we consider the matrix entries g;; of p(rg~) that satisfy
(z—{)™gij € Oy[z][2] for an appropriate power m. Because 7g differs from 7/ over
Yy :=Y ®p, L by the isomorphism h of L+G-torsors, we see that (z — O™gij € Oy, [2].
Because the intersection of Oy [z][1] and Oy, [2] in Oy, [2][] equals Oy [2], this shows
that (z—()™gi; € O5[2]. In particular, g;; € Oy ﬂzﬂ[ﬁ], and this proves our claim.

It remains to show that G” is bounded by Z~! under the additional assumptions on
7g. By [18, Propositions 2.1 and 1.3], the {-adic completion ) of Y is the admissible
formal blowing-up of Spf B in the ideal b. By Propos1t10n 2. ()(d) there is an integer n
such that for all representatives (R, Z r) of Z the morphism Z r—F ESL _r factors through

}_ESLT,R' By enlarging n, we may assume that the morphism f: Y- ]'YG,RZ — ffSLT,RZ
defined by Tg_,,l factors through ﬁ(sz) R, . Let (R Z r) be such a representative and

set Yp = Y%, SpfR. Thus, f& ldR Ir - Flgn = Flon% s,  Fla nand Zp

is a closed formal subscheme of ]-"KG’ R, defined by a sheaf of 1deals a on .ﬁ(g )R. We
must show that (f& idg)*a = (0). The associated morphism of Frac(R)-analytic spaces
(& idg)™: (V)™ — (.ﬁg)R)a“ is given by 75, = (o*u”)"' o715 ou” and factors
through Z?%n, because o*« OTg_l oa"le ZA%‘(?“), as well as aou”,oc*(aou”)"t €
G(Opan[2 —(]), and Z3* is invariant under multiplication with G(Ogz..[z —(]) on the
left. This implies (f® idz)**a = (0) on (Yr)* and because O3, € O (5,)an: We obtain
(f® idg)*a = (0) on Vg. Therefore, the morphism Vg — j-'\f(g)R given by Tg_,,l factors
through the closed formal subscheme Zg. By Definition 2.2(d) and Remark 2.3(c), this
means that 7'5,,1 is bounded by Z and G" is bounded by Z-1. O

To define MY for all compact open subgroups K C G (Fq((z))), we proceed slightly
differently than Rapoport and Zink [80, 5.34] and instead use the following definition and
corollary. For a comparison with [80, 5.34], see Remark 7.14.

Definition 7.10. Let X be a connected affinoid strictly L-analytic space with geometric
base point Z, and let K C G(Fq ((z))) be a compact open subgroup. Consider the category

of triples (G,0,nK) where (G,6) € Mg;l(X) for an admissible formal model X of X

and nK € Trivg ; (Fy((2)))/K is a rational K-level structure on G over X. Morphisms
between two such triples (G,,61,mK) and (G,,02,m2K) over admissible formal models
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X1, respectively &>, are quasi-isogenies u: G, — G, as in Remark 7.7 over a model X
dominating both X; with 50 (umod ¢) = &; such that Vu z0m K =n K. In particular,
all morphisms are isomorphisms and by rigidity of quasi-isogenies [4, Proposition 2.11],
all Hom sets contain at most one element.

For K C G(FF4[z])) we consider over MK the triple (G5 n"V K) where 5™V K
is the rational K-level structure on G"*" induced from the universal integral K-level
structure on G"™ via the inclusion Trivg ;(F,[2]) = Trivg s (F4((2))).

Corollary 7.11. Let M = (/\Zé;l)an and for every open subgroup K C G(F,[z]) let

ME be the finite étale covering space from Definition 7./ parametrising integral K-level
structures on the universal local G-shtuka G*™" over M from Remark 7.7. Then ME
also parametrises isomorphism classes of triples (G,0,nK) in the sense of Definition 7.10.

Proof. Let X be a connected affinoid strictly Lanalytlc space with geometric base point
z, and let (G,0,7K) be a triple over X, where (G,6) € MG ( ) for an admissible formal
model X of X, and nK is a rational K-level structure on Q over X. We may assume that
& = Spf B is affine. By Proposition 7.8 there is an admissible formal blowing—up Y= X
and a (G",6") € Mé;l (V) with 7(G,6) = 7(G",6") and an isogeny u”: G — G" over Y lifting
(6")71 04 such that Vi zon € Trivgr z(Fy[2]). The pair (G",6") induces a morphism of
E—analytic spaces X = V™ — M that is independent of the admissible formal blowing-
up Y. By Proposition 7.5(a) the integral K-level structure (V,zon)K on G” defines a
uniquely determined M-morphism f: X — MX such that (f*GUmiv, fryuniv | frpuniv ) —
(Q//vS”?(Vu”,i OW)K) = (gag’nK)' O

Definition 7.12. Let K C G(Fq((z))) be a compact open subgroup. Let K’ C K be a
normal subgroup of finite index with K’ C G(F,[z]). (Such a subgroup exists because
KNG(F,[#]) C K is of finite index due to the openness of G(F,[z]) and the compactness
of K.) Then we define MX as the E-analytic space that is the quotient of MX by
the finite group K/K'; see [7, Proposition 2.1.14(ii)] and [10, Lemma 4]. Here gK' €
K/K' acts on MK’ by sending the universal triple (G"Y,6"V nuiv 7Y over ME" from
Corollary 7.11 to the triple (G™™V,§™ 5y K'). By Remark 7.14, this means that K’ €
K/K" acts on MX" as the Hecke correspondence t(g) . In particular, MKo = (./\;l([Z;,O_l )

for Ko = G(F,[[2]). We denote by ("™,§"V nu"i¥ ) the triple over MX induced by the

universal triple (G, 5V iV 7Y over ME'| It is universal by the following corollary.

By Proposition 7.5(c), the definition of MZX is independent of the normal subgroup
K’ C K and Proposition 7.5(c) continues to hold in this more general setting. We will see
in Theorem 8.1 that M¥ always is a strictly E-analytic space.

Corollary 7.13. If K C G(F,((2))) is any compact open subgroup then ME s an E-

analytic space that isisepamted and partially proper over E and parametrises isomorphism
classes of triples (G,0,nK) in the sense of Definition 7.10.

Proof. That M¥ is separated and partially proper over E follows from Lemma 6.11
and [63, Lemma 1.10.17 (iv), (vii)]. Let X be a connected affinoid strictly L-analytic
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space with geometric base point Z, and let (G,0,nK) be a triple over X where (G,6) €
/\;lg;()() for an admissible formal model X of X and where nK € Trivg,; (Fq((2)))/K
is a rational K-level structure on G over X. Let K’ C K be a normal subgroup of finite
index with K’ C G(F,[#]). Consider the étale covering space X’ — X corresponding to
the $*(X,z)-set {n K’ € Trivg ; (F4((2)))/K’: WK =nK} that is isomorphic to K/K’
under the maps 'K’ — n~1n'K’ and ngK’ <+ gK'. In particular, X’ — X is a K/K'-
torsor. By Corollary 7.11 there is a uniquely determined E-morphism X’ — MX" which
is equivariant for the action of K/K' and therefore descends to a uniquely determined
E’—morphism X - MK, O

Remark 7.14. We have an action of G(F,((z))) on the tower (MK)KC(;(FQ((Z))) by Hecke
correspondences defined as follows. Let g € G(F,((2))) and let K be a compact open
subgroup of G(Fy((2))). Then g induces an isomorphism

Wg)x: ME =5 M9 Kg (7.5)

by sending the universal triple (G, 5"V, iV i) over MX from Definition 7.12 to the
triple (gu“iv,gu“iv,n““i"Kg = n““i"g(g’lKg)). The morphisms ¢(g) are compatible with
the group structure on G(Fy((2))); that is, they satisfy ¢(gh)x = t(g)n-1xnoL(h)x for all
g,h € G(Fy((2))) and all K. They are also compatible with the projection maps g, x';
that iS7 L(g)K o ﬁ-K,K’ = ﬁ-g’IKg, g—1K'g©° L(g)KI.

If both K and g~! K g are contained in G(F,[z]), we can translate the definition of ¢(g) x
in terms of integral K-level structures by inspecting the proof of Corollary 7.11. Namely,
we start with the universal integral K-level structure n™™VK € Trivguiv 5(Fq[2])/K on
G over MK The rational g~ K g-level structure N K g = nivg(g~1Kg) yields a
pair (G",0") € M(Z;O_l () for an admissible formal blowing-up Y — X with 7 (G, univ) =
7(G",0") and Vi z on™™Vg € Trivgr z(F,[2]), where u” is the unique lift of (6") =1 o5univ,
Then the morphism ¢(g)x is given by

L(Q)K . (guniv’gunivvnunivK) — (gl!7 5//7 (Vu”,zi ° nunivg)gflKg)' (76)

This shows that the definition of ¢(g)x in this case and therefore the definitions of MK,

7k, i and v(g)k for all K coincide with the definitions analogous to [80, 5.34].
Although it is not explicitly stated in [80], the analogue of Corollary 7.13 also holds

in their setup, because it can be deduced from the existence of the 1(g)x as follows.

If (G,6) € Méo_l(.)() and nK with n € Trivg ; (F4((2))) is a rational K-level structure
on G over X = X* we can choose an element 7y € Trivg, z(F,[2]) and set g :=n,'n €
Aut®(w®) = G(Fy((2)). Then nKg~' =no(gKg~") is an integral gK g~ -level structure
on G and defines a uniquely de‘vuermined E—morphivsm X — MK Composing with
1(9)gxg-1 produces the desired E-morphism X — M.

Proposition 7.15. The period morphism 7 induces compatible morphisms 7 : ME =
HE for all compact open subgroups K C G(Fq((z))) In terms of Corollary 7.13, it

has the form 7tg: (GU™,6%M nuriv ) s it (GUT §U) where n"" VK is the universal
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(integral or) rational K-level structure on G“™. These morphisms commute with the
Hecke correspondences in the sense that Ty-1x401(9)x = Tr for all g and K.

Proof. To construct #gx, we choose a normal subgroup K’ C K of finite index with
K'C G(F,[z]). We let 7txr := T oG, [2]), K" ME 7—22‘2 It has the given form. If g €
G(F,((2))) satisfies g7 K'g C G(F,[2]), we see from the description of ¢(g) k- in (7.6) that
Ttg-1K1g0L(9) kK = T . In particular, ifg € K, then g is K/K'-invariant. Therefore, 7 -
descends to a morphism 7 : ME — ’7'-1,?Ln that has the given form. By Proposition 7.5(c),
the definition of 7y is independent of the chosen K’ and satisfies 7y 071'K 7 =7 for

all compact open subgroups K C K C G(F4((2))). From this #,-15,0t(9)x = Tk also
follows. L

The following result is the analogue of [80, Proposition 5.37] and can be proved in the
same way. However, we give a different proof using Corollary 7.13.

Proposition 7.16. Let K{,K5 C G(]Fq((z))) be compact open subgroups and let £ be an

algebraically closed complete extension of E. Then two points z, € MKl(Q) and x4y €
ME2(Q) satisfy 7, (z1) = 7K, (x2) if and only if they are mapped to each other under
1

a Hecke correspondence; that is, if there is a g € G(Fy((2)) and a y € MENgE2077 ()

with Tg, Kk ngksg—1(Y) = 1 and Tg, g-1K,gnK, © L(9) KingKag—1 (Y) = T2. In particular,
the geometric fibres of i are (noncanonically) isomorphic to G(F,((2))/K.

Proof. Because one direction was proved in Proposition 7.15, we now assume 7, (x1) =
Tk, (22). In terms of Corollary 7.13, let z; correspond to the triple (G,,0;,7;K;). Because
Q is algebraically closed, we may choose representatives 7; € Trivg sspec(e) (Fq((z))) of
n;K;. By the description of % in Proposition 7.15, we have #(G,,01) = %(QQ,SQ) and so
Proposition 7.8 ylelds a quasi-isogeny u: G, — G, over SpecOgq with ¢; o (u mod ()
52 We set 7]1 = Vu ,BSpec(2) © 72 E TI'lVg BSpec(Q)( ((Z))) Then To = (g (52,772K2)
(Ql,él,ang). Therefore, g := 771 1€ Aut®( °) = G(Fq((z))) and y = (gl,él,m(Kl N
gKag9™1)) € MEINgK207"(Q)) solve the problem.

Thus, after the choice of the representative 77 of 7 K7, the bijection between
G(F((z )))/K1 and the fibre of 7, over g, (1) is given by gK1 — (G,,61,mgK1) with
inverse 7y 'n} K, < (G,,01,m K1). O

It

Remark 7.17. Finally, the action of j € J, (F,((2))) on /\Zéo—l from Definition 3.1 induces

actions on each of the spaces MX individually by
jr MK — M5, (G,6,nK) — (G,jodnK).

In other words, the pullback F*(GUMY, 6V iV ) of the universal triple over ME g
isomorphic to (G"™™",7 0 5™V UiV K) in the category of triples from Definition 7.10. Using

the universal property of Mz"—l the condition j*(G"™VY,6"™V) 2 (G, j 0 §"V) shows
that there is an isomorphism <I> GG >y GUY of Jocal G-shtukas with j*§"iV =

jod8"Vo (®; mod (). By rigidity of quasi-isogenies [4, Proposition 2.11], the isomorphism
®; is uniquely determined and a straightforward calculation shows that ®;0j*®; = ®;;.

https://doi.org/10.1017/51474748021000293 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000293

The generic fibre of moduli spaces of bounded local G-shtukas 859

It follows from Definition 7.10 that j*n"niVK = (nglj on"™V)K. The J,(Fq((2))-action

on MX is compatible with the projection maps 7k g+ and the Hecke action.

Lemma 7.18. The action of J := J,(Fy((2))) on Mé;l and the induced actions on each

ME are continuous.

Proof. For the first assertion we have to show the following claim. Let S € N’ ipg, [¢) be a
quasi-compact scheme and (G,8) € /\jlg: (S). We must show that there is a neighbourhood

U of 1€ J such that for j € U we have j(G,8) = (G,6); that is, 5! 0jod lifts to an
automorphism of G over S.

To prove this claim, let d: G — G, ¢ be the quasi-isogeny that lifts by rigidity of
quasi-isogenies [4, Proposition 2.11]. Let S” — S be an étale covering that trivialises
G~ ((LTG)s/,Ac*). Because S is quasi-compact, there is a refinement of this covering
such that S’ = Spec B is affine. Then 0 corresponds to an element A € LG(B). We fix
a faithful representation p: G < SL, and consider the elements p(A) and p(A~1) of
LSL,(B) =SL,(B[z][1]). Let N € Ny be such that the matrices z™¥ - p(A) and 2V - p(A™1)
have their entries in B[[z]. If p(j) = 1 mod 22V, then p(A~!.j-A) € SL,(B[z]), and hence
A~'.j-A e LTG(B) and 6 'ojod € Aut(G). Because the map J € LG(F) 25 LSL,(F)
is continuous with respect to the z-adic topology, the claim follows.

Because the action on ./\/lzf is continuous, the same holds for each MK by 9,
Lemma 8.4]. Note that contlnmty of the J-action is defined as continuity of the
homomorphism J — ¢ (./\/lK ), where g(MK ) is the topological automorphism group
defined by Berkovich [9, §6]. The topology of ¥(MX) is defined via compact subspaces
of MX. Therefore, the continuity of the J-action on M(Z;,: we proved above and [9,

Lemma 8.4] are applicable although Mé;l is not quasi-compact. O
Remark 7.19. We keep the notation from Remarks 3.7 and 4.21 and let e: G — G’
be a morphism of parahoric group schemes over F,[z]. If e(Z) C Z’" and Gy = .G, &
(LTG)p,b'0*) where Gy = ((LTG)r,bo*) and b’ = e(b), then there is a commutative
diagram of E-analytic spaces

v o5—1 Ex v g—1
M@o Mﬁé
o 6 J
a a
HG,Z,b HG’, VAR

where 7 and 7’ are the period morphisms from Definition 6.3 for G, and Z, respectively
for Gj) and Z’, and where the horizontal morphisms e, and & were described in (3.4) and
(4.5). This diagram is equivariant for the action of J that acts on the right column
via the morphism J& — Jg' from (3.5). The diagram is indeed commutative, because
in the notation of Lemma 6.2 and equation (6.4), the left morphism 7 sends G,
(L*G).»1,Ac*) to v :=0*(A)A™! =b~ A and the right morphism #’ sends ,(G) s
(L+G") rn,e(A)o™) to 7' 1= 0 (e(A))e(A) 1 = £(b)~e(A) = (7).

1R
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The tensor functors Y, and V,, from Theorem 5.7 are part of a commutative diagram
of tensor functors

y
Repg, (2) G Fo((2)-Locy.
e* Ts*
Vbl
R G’ — F -Loca
€PF, (2) q((2) ﬁycczﬂ,’ y
where the right vertical arrow denotes pullback of local systems of F,((z))-vector spaces
along the morphism e: H¢, ., — Mg, ,,,, from (4.5), and the left vertical functor sends

(V' p) to (V' p' o€); see Remark 4.21.
Moreover, the Tate module functor Tg from (7.1) satisfies 7%, g(p") = Tg(p’ o¢); that is,
Ts*g = Tgoe*, and likewise VE*Q = Vgoa*. This defines a map of the sets from (7.3)

e": Trivg z(A) — Trive g z(A), n+—— £°(n)

for both arguments A =F,[z] and A=TF,((2)). In particular, if K C G(A) and K’ C G'(A4)
are compact open subgroups with (K) C K’, then the map e,: nK — ¢.(n) K’ sends K-
level structures on G to K’-level structures on £,G. This yields a commutative diagram
of E’—analytic spaces

o Ex v /
ME ME]
o )
TK Uy’
Z 6 o
a a
HG,Z,b HG’, VAR

which is again JC-equivariant. It is further equivariant for the action of g € G(F,((2)))
that acts on the left column by the Hecke correspondence ¢(g)x from Remark 7.14 and
on the right column by the Hecke correspondence L(s(g)) K

8. The image of the period morphism

In this section we fix a local G-shtuka G, = ((L*G)g,bo*) over F and a bound Z with
reflex ring R, = k[¢]. We set E, = £((§)) and E:=F(¢).

We will determine the image of the period morphism 7 from Definition 6.3. This is the
function field analogue of [51, Theorem 8.4], where the situation of PEL-Rapoport-Zink
spaces for p-divisible groups was treated. Note, however, that our proof here is entirely
different from [51, Theorem 8.4], because here we already constructed a tensor functor to
the category of local systems in Theorem 5.7 and will use this to determine the image of
7. In [51, Theorem 8.4], the proof proceeds in the opposite direction and first determines
the image of the period morphism and then constructs the local systems.

o

Theorem 8.1. (a) The image W((/\jlé:)an) of the period morphism ¥ equals the

union of the connected components of 7-vl“GZ on which there is an Fy((2))-

b
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rational isomorphism [: w® == wy 5 between the tensor functors w°® and wy 5 from
Remark 5.8.

(b) The rational dual Tate module Vg of the universal local G-shtuka G over (./\jlé:)‘m
descends to a tensor functor VQ from Rep]Fq((Z))G to the category of local sys-
tems of Fq((2))-vector spaces on %((A;léo_l)an), It carries a canonical J,(Fq((2)))-

linearisation and is canonically Jy(Fq((2)))-equivariantly isomorphic to the tensor
functor V, from Theorem 5.7.

(¢) The tower of stmctly E-analytic spaces (ME )KCG(F, (=) 18 canonically isomorphic
over W((Méo )2") in a Hecke and J,(Fq((= ))) -equivariant way to the tower of étale
7~

covering spaces (éK)KCg(Fq((Z))) of%((MG )"m) associated with the tensor functor

VY, in Remark 5.9.

Remark 8.2. (a) Note that if the analogue of Wintenberger’s  theorem (5.6) is

established, the union of connected components in (a) is simply Hra A In particular,

this would imply that MX # () if and only if [b] € B(G,Zg). This is the analogue of [79,
Conjecture 4.21].

(b) By Theorem 8.1(c), the tower (MK)KCg(Fq((Z))) only depends on the triple
(GFq((Z)%[bLZAE), where [b] is the o-conjugacy class of b under LG(F). Indeed, the tower
(SK)KCg(Fq((Z))) only depends on this triple; see Definition 4.16 and Remark 5.9. In the
arithmetic situation, the analogues of the tower (MK ) KCG(F, (=) are called local Shimura
varieties; see [79, §5.2] and [90, §24]. For the same reason they also only depend on the
group scheme over @Q,, the bounding cocharacter p and the o-conjugacy class [b]; see [90,
Proposition 23.2.1 and thereafter].

To prove Theorem 8.1, we will take a Tannakian approach and make use of the following
proposition.

Proposition 8.3. Let G be a faithfully flat affine group scheme over a Dedekind domain
A and let B be an A-algebra. Let Rep 4 G be the Tannakian category of representations of G
on finite projective A-modules and let w°: Rep, G — FMody be the forgetful fibre functor.
Let w: Repy G — FModp be a tensor functor to the category FModg of finite projective
B-modules, which sends morphisms in Rep 4 G that are epimorphisms on the underlying
A-modules to epimorphisms in FModg. Then Isom®(w°® ®4 B,w) is representable by a
G-torsor over B (for the fpqc topology).

Proof. Let BG = [Spec A/G] be the classifying stack of G that parametrises G-torsors
over A-schemes. By [32, Tags 0443 and 06WS], the category of linear representations of G
on (arbitrary) A-modules is tensor equivalent to the category Modpg of quasi-coherent
sheaves on (the big fppf-site of) BG; see [32, Tags 06NT and 03DL]. This equivalence is
given by the functor that sends a quasi-coherent sheaf F on BG to its pullback under
the morphism pg: Spec A — BG. The quasi-inverse functor sends a representation of G
on an A-module F to its faithfully flat descent on BG. By faithfully flat descent [44, IV,
Proposition 2.5.2], F is finite locally free if and only if the representation is a finite locally
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free A-module. In particular, the category Rep4 G is tensor equivalent to the category
FModpgg of finite locally free sheaves on BG.

If we write G = SpecI’, the multiplication of G makes I into a comodule, which is the
filtered union of its finitely generated subcomodules by [91, §1.5, Corollaire]. Because T’
is a flat A-module and A is Dedekind, these finitely generated subcomodules are torsion
free and hence finite projective and dualisable. The Hopf algebroid (A,T') is therefore
an Adams Hopf algebroid and the stack BG is an Adams stack; see [85, §1.3]. Due to
our assumption, the tensor functor w defines a tensor functor from FModgg to Modpg
that sends locally split epimorphisms ¢ to epimorphisms. Indeed, if U is a scheme and
u: U — BG is an fpgc covering over which u*@ splits, then u*p is an epimorphism
of quasi-coherent sheaves on U. Because U X g Spec A — Spec A is an fpgc covering,
fpge descent [44, TVy, Proposition 2.2.7] shows that pje is an epimorphism on the
underlying A-modules, and our assumption applies. Thus, by [86, Corollary 3.4.3] and
[85, Theorems 1.3.2 and 1.2.1], the functor w corresponds to a morphism f: Spec B — BG
and an isomorphism of tensor functors a:: f* ==+ wopyg.

By definition of BG, this morphism corresponds to a G-torsor p: X — Spec B, which
is obtained as the base change

X h Spec A
pi ipo
Spec B *f> BG.

We will show that X represents Isom® (w°® ® 4 B,w). Because pg is an equivalence between

~

FModpe and Repy G, the tensor functor p*a: h* opf = p* o f* == p* owopg induces a
tensor isomorphism p* o (w° ®4 B) = h* = p*ow over X and hence a morphism X —
Isom®(w® ®4 B,w). To prove that the latter is an isomorphism, let s: S = Spec R —
Spec B and let § € Isom® (w® ® 4 B,w)(S), which we view as a tensor isomorphism 3: s*o
(w°®4 B)opy = s* owopg. Let r: Spec B — Spec A be the structure morphism. The
two morphisms fos and pgoros from S to BG induce the pullback functors s* o f* and

s*or*opf = s*o(w®®4 B)opf, which are isomorphic by
B los*a: s o f* 5 sfowoph = 5% o (w®®aB)opy.

Again by [86, Corollary 3.4.3] and [85, Theorems 1.3.2 and 1.2.1], the latter isomorphism
corresponds to an isomorphism 7 between the morphisms fos and pgoros from S to BG.
The data (s,70s,n) define a morphism S — X and this proves that X -~ Isom®(w° ®
B,w) as desired. O

We also need the following easy lemma.

Lemma 8.4. Let Q2 be an algebraically closed field, which is complete with respect to
an absolute value |.|: & — Rxo, and let Oq be its valuation ring. Let mq C Oq be the
mazimal ideal and kg = Og/mgq.

(a) If p C Oq[Z] is a prime ideal then one of the following assertions holds:
(i) p is contained in po == {> ;o gbiz’: b € mg } = ker(Oq[z] — kalz]),
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(ii)) p=(z2—«) for an o € mg or
(iil) p = (2)+mgq is the mazimal ideal of Oq[z].

(b) The mazimal ideals m of the ring Oq((2)) := Oq[2][1] are all of the following form:
m=(z—a) for a € mg\ {0} with Oq((2))/m=8Q or m = my := {3, b;iz": b; €
mg } = ker (Oq((2)) = ra((2) with Oa((2)/m = ra((2)).

Proof. (a) If (i) fails — that is, if p ¢ po — then there is an element f =" b;z" € p with
b, € O, for some n. We may assume that b; € mq for all 4 <n, and hence the image foff
in ko [z] has ord, (f) =n, where ord, is the valuation of the discrete valuation ring rq[2].
If n =0, then f would be a unit, which is not the case. So |by| < |b,| =1 and the Newton
polygon of f has a negative slope. By [74, Proposition 2] there is an element o € mg and
a power series g = > > ¢;z" € Qz] with f = (2 —a)-g; that is, b; = ¢;_1 — ac;, such that
the region of convergence of f is contained in the one of ¢. In particular, g converges for
all z in mq.

We claim that g € Oq[z]; that is, |¢;| <1 for all i. Assume contrarily that there exists an
m >0 with |c,,_1] > 1> |by|. Then ac,, = ¢p_1 — by, implies |c,| = | tem_1] > |em_1]
and by induction |¢;| = |a|™ 1% c,,_1| for all i > m — 1. This implies that g does not
converge at z = a. So we obtain a contradiction and the claim is proved.

For the images in xgq[2] we obtain f = z-g and ord,(g) = ord. (f) — 1. Continuing in this
way, we find that f=(z—aq)-...-(z—ay)-h for a; € mg and a unit h € Oq[z]*. Because
p is prime, it contains z — «; for some 7. Under the isomorphism Ogq[z]/(z — «;) == Oq,
z — «;, the quotient p/(z — ;) is a prime ideal in Oq. If p/(z — ;) = (0), then p = (z — ;)
and we are in case (ii). If p/(z — ;) = mq, then p = (z — a;) + mq = (2) + mq and we are
in case (iii).

(b) follows from (a) via the identification of the prime ideals in Oq((z)) with the prime
ideals in Oq[#] not containing z. O

Proof of Theorem 8.1. (a) Because the proof is quite long and involved, let us give
a summary first. By [31, Theorem 2.9], the subset of points 4 admitting an Fy((2))-
rational isomorphism §: w® == w5 between the tensor functors w® and wy, 5 is a union
of connected components. Thus, the task is to prove that it agrees with the image of the
period morphism.

We start with a point 4 € 7:[“G P b(Q) with values in an algebraically closed, complete
field 2 and a tensor isomorphis)m) B. In Step 1 we construct from these data a tensor
functor T,: Repg ;G — ]Fq[[z}]—@g}{o over an étale covering space Eg, of ’}-v[“G 20
By the admissibility of 4, in Step 2 this tensor functor will induce a tensor functor
M : Repg, [ G — FModp,,[.], V = My, which gives the underlying module My of a local
shtuka M . Unfortunately, it is not clear that the functor V — My is exact without
using the hypothesis that G is parahoric. This might even be false for groups G with
nonreductive generic fibre, as Example 8.6 shows. Nevertheless, we show in Step 3 that
V = My @021 Oa((2)) is exact and corresponds to a G-torsor G over Oq((2)). From |3,
Proposition 11.5], we obtain that G = G ®g, ] Oa((?)) is trivial. This allows us in Step 4 to

apply Lemma 7.9 to produce a local G-shtuka (G",A”) € /\jlé: (Oq) with #(G",A") = 7.
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1. Let v € 7—[“ and let 4 be a geometric point lying above ~ with algebraically
closed, complete re&due field §. We consider the tensor functor Vy: Repg .)G —
F,((2))- LocHa B from Theorem 5.7 and the two fibre functors wy 5 := forgetowv oV,

and w® Rep[F )G — FModg, (.) from Remark 5.8 and assume that there is an F,((2))-
rational 1som0rphlsm

B w® = wh 5 (8.1)

of temsor functors that we fix. It induces an isomorphism of group schemes
G = Aut®(wpy) == Aut®(wo) = Gy, (») over Fg((z)). Consider the compact open

subgroup Ko := G(F,[2]) C G(F,((2))) and the étale covering space Ex, of HGZb

from Remark 5.5 associated with the local system )V, on HéZb The point Ky €

O (w®,w5) (Fq((2)) /Ko = F&(Ek,) corresponds to a lift of the base point 7 to a
geometric base point 5 of £, such that the morphism ¢ (Ex,,7) — ﬂi’t(ﬁg 7))
G(Fy((2) from (5.7) factors through Ko. By Corollary 5.4 the induced morphism

78 (Exyy) — Ko yields a tensor functor T: Repy, [, G — Fqﬂzﬂ—@g% and an

Isom

isomorphism w® == forget ows o T,, which equals the restriction of 5 by construction. In
particular, for each V' € Repy, 1.] G, the fibre T, (V)5 is a free F,;[2]-module of rank equal
to the rank of V.

2. Let (pv,V) € Repg, ;) G- Then the z-isocrystal with Hodge-Pink structure

Dy, (V) = (V &g, 11 F(2)),pv (0b)o*,ap(V))

over §) is admissible and comes from a pair (My,,dy) where M, = (MV,TMV) is a local

shtuka over Oq with My = Oq[z]" and s, : J*Mv[zi | = My [ ¢| and with the
notation (6.1),
v My @0, Oallz Y] =5 (Vew,p Oalze Y tlov(b)e) (82

is an isomorphism satisfying dy o Tar, = pv (b) 0 0*dy, such that
ap(V) :=pv(3) -V @, ) 2z — (] = %0y o7y (My ®0q 121 2z —C])
and so
Ty 0005 0 pv(3): V @, 121 Qllz — (] = My ®0q 121 2z —¢]- (8.3)

This follows from [50, Proposition 2.4.9] with X = SpQ and X = Spf O, where our pair
(M,,0v) is the rigidified local shtuka of [50, Proposition 2.4.9] We may apply this propo-
sition by taking Q' := T, (V)5 ®r, [:] (&) inside Q:=F, 5 (V) = Q@ ®q(5) U &2 1} for
an s with 1 > s> %; see Remark 5.6. Note that our notation here of the underlying z-
isocrystal deviates from [50]. Namely, our D, (V) = (V ®g, . F((2)), pv (0*b)o*) was called
o*(D,Fp) in [50, Proposition 2.4.9]. So the (D, Fp) from [50, Proposition 2.4.9] is equal
to our (V &g, ) F(2)),pv (b)o*). The latter equals the z-isocrystal associated with the
local GL(V)-shtuka py .G, over F that was used in (the proof of) Lemma 6.1.
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As can be seen from the proof of [50, Proposition 2.4.9], there is an isomorphism
cvi My ©o, AE) = Q = Ty(V)s 0e, AE) vielding TLMy = ()7 =T, (V)s.
Alternatively, [50, Proposition 2.4.4] provides an isomorphism ey: My ®ogq[z]
Qz,271} = F, (V) vielding T.My @, Fy(2) = (£, (V)7 = Ty(V)5 @r,pa
F,(2)) = Vy(V)5. Now the existence of a uniquely determined pair (My,,dy) with
ev(T.M\,) =T,(V)5 follows from Proposition 7.8.

We claim that the underlying free Ogq[z]-module My of the local shtuka My, defines a
tensor functor M : Requ [2] G — FModo,,[.), V = My. We use the isomorphisms

o* oy OT]\_/&/ : My ®0,[:] Oa [[z,z_l}[%] == V&r, [z On [[z,z_l}[t%] and (8.4)

(Bv ® idg(zy)~ Loev: My @0, UE) == Tp(V)5 ®p, 1) UE) == V &r, 11 2E),

N (8.5)

where Sy : V=w(V)° =5 wy, 5(V) is induced from the isomorphism 3 from (8.1). Consider
the identification

hv: Ty (V)5 ®r, 121 U &2 il = Fo s (V)] = &3 (V)[H] =V ®p, 1 A &2

1

Then the isomorphisms o*dy OTIT/&/ and (By ® idQ<Cis>)’ oey satisfy

hyvo(Bv ® id, T )o ((Bv ® ida(z)) toey) ® ‘
(0‘ 6VOTMV)® ldQ<<%7Z71}[t1 MV ®Osz[[2]| Q<Ci - }[15i

and My, is obtained from the intersection
o 5VOTM (My) = V @, [ Ogﬂz,z_l}[%]ﬁhVﬂV(V@)qu[z]Q<§>) (8.6)

inside V ®p, [-] Q<ZT7Z_1}[%]
To prove compatibility with morphisms f: V — V' in RequHZ]IG, we consider
the induced morphisms &,5(f) = f® id, oz, P Bt : &5 (V) = & 5(V') and

Ty(f)v: Ty(V)y = Ty(V')5. Because hy: OIb(f)* = gb,w(f) ohy and T,(f)5 0 By
By o f, the morphism f induces via (8.6) a morphism My : My — My.

Finally, if V.V’ € Repy, .G then (My,0v)® (My,6v/) has Dy, (V) @ Dy, 5 (V') =
Qb’;y(V@) V') as z-isocrystal with Hodge-Pink structure and T, M, @ T, M, =T, (V)5 ®
T,(V')5 =T,(V®V')5 as Tate-module. This implies that (My gy, 0vey:) = (My,0v)®
(My,0v) and so M is indeed a tensor functor.

Unfortunately, it is not a priori clear that this tensor functor comes from a G-torsor
over Oq[z]. Namely, a necessary (and by Proposition 8.3 also sufficient) condition is that
for every sequence 0 — V' =V — V" — 0 in Repy, [.; G, which is exact on the underlying
free IF, [2]-modules; also, the sequence 0 — My — My — My — 0 of free Oq[z]-modules
is exact. This is not obvious without using the hypothesis that G is parahoric and may
even be false if the generic fibre of G is not reductive as Example 8.6 below shows.
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3. We first claim that the sequence of Ogq[z]-modules 0 — My — My — My — 0
becomes exact after tensoring with Oq((2)) := Oq[2][1]. Namely, because the cokernel C
of MV[ | = My [Z] is finitely generated, it suffices by Nakayama’s lemma to prove that
C/mC = (0) for every maximal ideal m C Oq((2)). By Lemma 8.4(b) there are two cases,
namely, m =mg =ker (Oq((2)) > ko ((2))) and m = (2 — ) for & € mg \ {0}. In the first case,
the morphism Oq[z] — Oq((2))/mo = ko((2)) factors through Ogq[z,z7'}[;~], because

~ =1 (mod mg), and hence C/moC = coker(V — V") ®p, . ka((2)) = (0) by using the

isomorphism (8.4). In the second case, if || > |¢]®, the morphism Ogq[z] — Oq((2))/m =
Q, 2+ « likewise factors through Og[z,27*}[;1], because t_(a) = [Lien, (1- %) #
0, and hence C/moC = coker(V — V") @p .1 2 = (0) by using the isomorphism (8.4)
again. Finally, in the second case, if |a| < |¢|®, the morphism Ogq[z] = Oq((2))/m =
factors through (%), and hence C//moC = coker(V — V") @, -] 2 = (0) by using the
isomorphism (8.5).

Now Proposition 8.3 shows that G := Isom® (w° @, (2) Oa((2)), M @0,z Oa((2)) is a
G-torsor over Oq((2)) for the fpgc-topology, and hence for the étale topology, because G
is smooth. By [3, Proposition 11.5], the G-torsor G over Oq((z)) is trivial.

4. From the triviality of G and from the isomorphism (8.5) we obtain an Ogq((2))-
rational, respectively (2(Z)-rational, tensor isomorphism 6: w® ®p, () Oa((z) =

M ®pq121 Oal(2)), respectively 05: quHZ]] ®F, [2] Q(?) == M ®04q[2] Q(f), which we
fix in the sequel. Over Q(C%)[z_l] the composition ug, := 6! 06, corresponds to an
element ug, € G(Q(Ci)[zfl]) C G(((2))) = LG(Q). The isomorphisms

galoTMVOU*QV: V®OQ[[Z]][Z(Z17C)] = 0o Mv[
= V®OQ[[Z]][Z(Z_O]
provide an automorphlsm of the tensor functor w® ®p, () OQ[[Z]][Z(Zi)], that is, an

element A € G(Og[][-t5

= Ao*: 0" L —)Go, = Lz(z—c)GOQ of trivial L, _¢ G-torsors. Likewise, the
isomorphisms

o) = Myl

Z(Z ]) = L.:—)G(Ogq). We consider A as an isomorphism

Oy oby : V®(’)g[[z,z_1}[t%] == My @041 Ogﬂz,z_l}[%] Ras V®OQ[[Z,Z_1}[%]

provide an automorphism of the tensor functor w® ®p, (.) Oq ﬂz,zfl}[%]; that is, an
element A € G(Oq[z,27'}[7]). The equalities py (b) 00 *8y = v 0 Tay,, yield the equality
b-o*A=A-Ain G(Oq[zz"'};+]). Finally, the isomorphisms

QQVOT]\/[VOO' Oo,v: V®Q<qu> = G*Mv®Q<C§S> Mv®Q<<qg> - V®Q<g§s>

provide an automorphism of the tensor functor wyg [[ 1 ©F,[2] Q(ﬁ) that is, an element
A e G(Q(CQS» C G(Q[z]) = LTG(Q). 1t satisfies ugy - A” = A-o*uf,. We view A” as an

isomorphism 7 := A”¢c*: 0*LTGq " LTGgq of trivial L*G—torsors satisfying ug,o 7"’ =

Tg o o*ug.
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Moreover, choose a representative 5 € G(Q((z —())) of ¥ € HZ“Z(Q) C Grg®®(Q). Then
the element h:=A-0*A~1 -5 € G(Q((2 —())) satisfies py (k) = 0y, oTar,, 00*5y, 0 py (7).
In formula (8.3) we computed that this is an automorphism of V ®g, 1.1 [z —(]J. Thus, h €
G(Q[z—]), and hence A~! = o*A~1.5.h~! lies in Z**(Q), because o*A € G(Q[z—(]).
Therefore, the pair (LG p,,,Tg) consisting of the trivial LG-torsor over Oq associated with
G and 7g := Ac*, as well as the pair (G35, 7"") consisting of the trivial Lt G-torsor G¢) :=
LTGq over Q with 7" := A”c*, together with ug) satisfy the hypothesis of Lemma 7.9
with B = 0Oq and L = . We apply this lemma. Because every finitely generated ideal
of Oq is principal, Y = SpecOgq. We obtain a local G-shtuka G"” = (G",7¢~) over Oq

bounded by Z~! and an isomorphism u”: (LG",7g/) = (LGo,,,7g) of LG-torsors over

Oq satisfying u” o 7gn = 7g 0o 0*u”. The reduction modulo ¢ of A” := Aou” provides a

quasi-isogeny Ql(lgg/(o = Gy,04/(c)> because A ou"orgn =A-Aocc*u” =boo*(Aou").
This yields an Og-valued point (G”,A”) € ./\;lé:((’)g). Its image under 7 is computed
as #(G"\A") =b"tA"-G(Qz—(]) with b A" =b"tAou’ =*A- A7 u" =5 -h~ ",
Because h,u” € G(Q[z—(]), this shows that #(G",A”) =7 and finally (a) is proved.

To prove (b), fix a representation p € Repg, (.)G. By Remark 7.3, the rational Tate
module Vg(p) is a local system of F,((2))-vector spaces on M= (Mé: )22, In order that

it descends to a local system on ﬁ((A;léo_l)a“) =:im(7), it suffices by [31, Definition 4.1]
to show that

(i) #: M — im(%) is a covering for the étale topology and

(ii) there is a descent datum 1 :pr{VQ(p) = pTé‘Vg(p) over M Xim(#) M where pr; :
M Xim(#) M — M is the projection onto the ith factor, such that ¢ satisfies the
cocycle condition on M Xy ) M Ximz) M.

Statement (i) follows from Proposition 6.10. To prove (ii), let L and B be as introduced
before Lemma 7.6 and let X = Spf B and X = A" = BSpec(B[%}). Consider an X -valued
point of M Xy, (x) M and its image in M x z M. By [18, Theorem 4.1}, this X-valued point
is induced by two Spf B-valued points (G,8) and (G',6") of /\;lg: with #(G,0) = #(G',6")
in H% . (X) possibly after replacing Spf B by an affine covering of an admissible formal

G,Z,b
blowing-up; see the explanations before Lemma 6.2 for more details. Now Proposition 7.8

(together with Proposition 5.3) yields a canonical isomorphism 1 : pri Vg (p) == pri Vg (p)
of local systems of [F,((z))-vector spaces over X which is functorial in p and satisfies
the cocycle condition by canonicity. Therefore, Vg(p) descends to a local system of

F,((z))-vector spaces on %((Mé;l)a“). Clearly, Vg: p+ Vg(p) is a tensor functor. The
isomorphism ®;: j*G -~ G from Remark 7.17 yields a canonical .J, (F,((2)))-linearisation
Vo, : Vg = Vj=g = Vg on Vg over /\Zgo—l that descends to ﬁ((/\hé;)an) because the
period morphism 7 is J, (F,((2)))-equivariant by Remark 6.5.

Let p: G — GL; be in Repy, . G- By [50, Proposition 2.4.4] the pullback to Mé: under

7 of the o-bundle F, (p) over 7 ((/\;lé:)an) from Remark 5.6 is canonically isomorphic to
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MP®OM§O’1

GL,-shtuka p,G"™" obtained from the universal local G-shtuka G over Méo_l. This
isomorphism is functorial in p and compatible with tensor products and pullback under
the action of j € J,(F4((2))) because the period morphism # is .J,(F,((2)))-equivariant.

<C%,z_1} where M, is the local shtuka over Mg;l associated with the local

Descending it to %((M(Z;:)a“) and taking 7-invariants yields a canonical isomorphism of
tensor functors ac: YV, = VQ, which satisfies cop; = V@], oj*a where @;: 7*V, ==V, is
the linearisation from Theorem 5.7.
v 51
(¢) We fix a geometric base point 7 of %((M((Z;O )**) and consider the canonical family

of morphisms (fxk : ME gK)KCg(Fq((Z))) that sends an X-valued triple (G,6,7K) over
ME from Corollary 7.13 with

nK € Trivg s (Fy((2)))/K = Isom®(w®, forget ows o Vg) (Fq((2))) /K

to the X-valued point of &g given by the K-orbit BK € Isom®(w°,forget o wx ©
V) (Fq((2))) /K of tensor isomorphisms where 3 := (forget ows)(a) ! on; see Remarks 5.8
and 5.5(a). The map fx does not depend on the chosen base point 4 by [31, Theorem
2.9] and is thus defined on all connected components of the MX. The family (fx)x is
equivariant for the Hecke action of G(F4((2))) on both towers defined in (5.5) and (7.5).
For any algebraically closed complete extension ) of E, the morphism fg is bijective on
Q-valued points because the fibres of MX () and Ex(Q) over a fixed Q-valued point of
7“7((/\2([2;,;1)&“) are both isomorphic to the quotient G(F,((2)))/K by Remark 5.5(a) and
Proposition 7.16. Hence, fx is quasi-finite by [8, Proposition 3.1.4]. Because MXE and
Ex are étale over %((Mé;l)an), the morphisms fx are étale by [8, Corollary 3.3.9] and
hence isomorphisms by [51, Proposition A.4].

To prove that the fx are Jy (Fq((z)))—equivariant, we must show that the upper
‘rectangle’ in the diagram

o I K v
ME - MK
~N
! " N 4 ;
Eg — if:f___ K
\i \\\\;
J"EK o Ex

is commutative; that is, fx ojx = Jjg, © fx holds. Recall from Remark 7.17 that the
action j o« : ME - MK of j e J (Fq((2))) is defined on the universal objects by

j*(guniv’gunivvnunivK) _ (j*guniv’ ] ° 5univ ° (<I>] mod C)v fOTQEt(Vq:;‘,f) OnunivK) .
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This triple on the source of the morphism j v« : ME 5 MK s mapped under the
dashed arrow f to (forgetows)(j*a) ™! oforget(f/q:;f)on[( = (forgetows)(p; ' oa™t)onK.
Likewise, the image fx(G™",6™,n"VK) = (forget ows)(a) " onK on &k of the
universal object on M¥ is mapped by [51, Formula (2.11)] to (forgetowzy)(gaj_l) o(forgeto
wﬁ)(a)_l onK on j*éK. This proves the commutativity of the upper ‘rectangle’ and the
Jy (Fq((2)))-equivariance of the isomorphism fx. O

Corollary 8.5. Fvery point x € ME has an affinoid neighbourhood U that is finite

étale over its image w(U) in H“GZb This image 7(U) is an affinoid subspace of the

projective variety 7:lG 5. In particular, ME s quasi-algebraic over E; compare [30,
Définition 4.1.11].

Proof. Note that the affinoid neighbourhoods of #(z) in Hé n form a basis of

neighbourhoods of 7 (z) by [7, p. 48]. By Theorem 8.1(c) and by the definition of an

étale covering space, the point 7 (z) therefore has an affinoid neighbourhood V' in He C.2b

such that #=1(V) is a disjoint union of E-analytic spaces, each of which is mapping finitely
étale to V. We can thus take U as the connected component of #~1(V) containing . [J

Example 8.6. We exhibit a case in which the tensor functor M: Repg G —
FModopg,[:}, V = My used in the proof of Theorem 8.1(a) does not come from a G-
torsor over Oq[z]. This is also the function field analogue of [89, Remark 5.2.9].
Consider the nonreductive group scheme G =G, x G, over Fy[z] and its representations
p: G {(19}—>GLyon V=F 0217 and p': G — Gy, on V! =F,[z]. They sit in an
exact sequence in Repp, ;) G

—~
—=o
~

(1,0)

0 (V'.p') (V.p) 1 0, (8.7)
where 1: G — {1} C G,,, is the trivial representation on F,[[z]. Let b= ((1) ) € G( (= )))
md 3= (4 ) € GlO=-0)) /GO~ CI)

Consider the local G-shtuka G = (L*@)og,mg = (§ 492) Jover Og. Recall the functor
from Repg, [.] G to the category of local shtukas that assigns to (V,p) the local shtuka M,

associated with the local GL(V)-shtuka p,G from Remark 6.4. The underlying Og[z]-

module of My, equals V ®p, ] Oa [=].- Applied to Q this functor yields the exact sequence
of local shtukas

0—= M =(Oqlz],rmr =(—2) = (M" &M\, 7= (§2.)) = M"=(Oa[z], 7 =1) — 0.

Let f:= 9+/—1-t,. Then the rational Tate module V, 5 = =V, g is ‘generated by’ ( ) =

(0 C*z) -o* ( ), that is, the tensor isomorphism 3: w® —~=» wp, 5 is given by multiplication
with

p(69): w(Vop) =V =5 wy5(V,p) = Vap.G.
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Now we let ™ € Oq satisfy 797! = ¢ and we choose a different tensor isomorphism
B: w® " wy 5 which is given by multiplication with p(} %) = p((5%)-(12)), where
(19) € G(F4((2))). The construction in step 2 of the proof of Theorem 8.1(a) with 3
instead of 5 replaces every My, by a quasi-isogenous one. We claim that for the sequence
(8.7) it yields the upper row in the commutative diagram of local shtukas

0 M/ ( z ) M _ (OQ[[ZHQ,TM _ ((1) Cjz)) ﬂ)M// (8.8)
0 M/ (?) M//@M/ (170) M// 0

To prove our claim, we note that (8.8) yields over R := Ogq/(¢) the diagram

0 M mode— ) mede Oy medc

5’:zi 5—(6T)i 6”:1l

0 —— (R[z],p'(b) = —2) o (R[2%p(0) = (} °.)) o Bllp" () =1) ——0.

Also, when we consider the element

Q] 5y = T 2 LHER I gy 10T o) toty),

the upper row of (8.8) is right exact on Tate modules, because it induces the following
commutative diagram:

0
0 Fyle] — o F o — % ] 0
f-i: (? _z”f) o :ll.
0 TZM/ (771,) TZM ( ) TZMN —— 0

Finally, the vertical quasi-isogeny in the middle of (8.8) induces the following commutative
diagram on Tate modules:

0[] F, [ F, 0
f (}1” Of)
-7 ~ z ~ 10
(? zf) = - (Of)
M T.(M" ).
(61)

This proves the claim.
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Now, in diagram (8.8), the map (z,7) in the upper row is not surjective, and this
provides an example where the tensor functor (V,p) — My is not exact and hence does
not come from a G-torsor G over Oq[z]. One can also check, although

b9 GY=0G5) =G0 ) e oo onam

it is not possible to write it as a product in G(Oq((2))) -G(Q(%)). This corresponds to the

fact that the quasi-isogeny M — M"” @& M’ does not come from a quasi-isogeny G — Q of
local G-shtukas over Ogq, because G does not exist. Note also that in terms of the proofs
of Proposition 7.8 and Lemma 7.9, it is not possible to extend the étale local G-shtuka
G" over Q) to Oq, because G is not parahoric and Flg and M@ are not ind-projective.

9. Cohomology

In this section we provide basic properties of the cohomology of the towers of moduli
spaces. This theory and all of the proofs parallel the one for Rapoport-Zink spaces in [36]
to which we also refer for some arguments that go over to our case without modification.
Note that instead of the E—analytic space M in the sense of Berkovich, we may work
with the associated adic space in the sense of Huber by [63, Proposition 8.2.12 and
Theorem 8.3.5].

Let ¢ be a prime different from the characteristic of F, and let E be the completion of
an algebraic closure of E.

Definition 9.1. We denote by HE(MK@)EE,QZ) the f-adic cohomology with compact
support oi the analytic space Mﬁ . For short, we denote it by H? (MK ,Qp) and write
Hc. (MK7Q€) = Hc. (MKaQE) ®Qz @Z'

Because the spaces ME are in general only quasi-algebraic, the definition of the
cohomology needs some explanation, for which we refer to Fargues [36, §4.1].

These cohomology groups are equipped with the following group actions. The action of
J == J,,(Fy((2)) on MPX induces an action on H(M*,Qy) for each K. Furthermore, we
obtain an action of the Weil group Wg of E. Indeed, the inertia subgroup Gal(Esep/ E’)
acts on the coefficients F inducing an action on the cohomology. The action of Frobenius
o € Wg is induced by the Weil descent datum of Remark 3.3. As in [36, Remarque 4.4.3],
one can show that the induced morphism on cohomology is invertible and thus induces an
action of Wg. Furthermore, for varying K the action by Hecke correspondences induces
an action of G(Fy((2))) on the cohomology groups of the whole tower.

If e: G — G is a morphism of parahoric group schemes over Fy[z] as in
Remarks 3.7, 4.21 and 7.19 with e(K) C K’, we obtain a morphism

et HA(ME Q) — H2(ME,Qp)

that is compatible with the actions of the Weil group W, the Hecke action of G (Fq((2)))
that acts on the source via the morphism G(F,((2))) — G’ (Fy((2))) and the action of the

group JbG that acts on the source via the morphism JbG — Jsa(;).
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Lemma 9.2. For each K, the J x Wg-representation HQ(MK,Qg) is smooth for the
action of J and continuous for the action of Wg.

Proof. As in the arithmetic context (compare [36, Corollaire 4.4.7]), this follows from
the fact that the M are quasi-algebraic by Corollary 8.5 and that J acts continuously
on MK by Lemma 7.18, using [36, Corollaires 4.1.19, 4.1.20], two general assertions on
the cohomology of Berkovich spaces. Note for this that J has an open pro-p subgroup,
namely, {j € JNLTG(F): j =1 mod z}. O

Next we are interested in finiteness and vanishing properties of cohomology groups. We
need the following finiteness statement for the set of irreducible components.

Lemma 9.3. The action of J on the set of irreducible components of ./\;lé: has only
finitely many orbits.

Proof. This is a statement about the underlying reduced subscheme; that is, on the
set of irreducible components of the affine Deligne-Lusztig variety X z-1(b) from (3.2).
By [81, Theorem 1.4 and Subsection 2.1] there is a closed subscheme Y C Flq of finite
type such that for each g € X, 1(b) there is a j € J with j~'g € Y. In other words,
g has a representative satisfying g='bo*(g) = h~'bo*(h) for some (representative of an
element) h=j 'g € YN X, 1(b). In particular, it is enough to show that ¥ N X, 1(b)
has only finitely many irreducible components. This follows because Y N X z-1(b) is of
finite type. O

Proposition 9.4. For each compact open subgroup K C G(Fq[[z]]), the J-representation
H(MX,Qy) is of finite type.

Proof. Let X;,...,X; be representatives of the finitely many orbits of the action of J on
the set of irreducible components of Mé;l (compare Lemma 9.3). Let Ko = G(F,[#]) and
let U C (Mé:)an = M = M¥o be the tube over X := X;U...UXy; that is, the preimage
of X under the specialisation map sp from (/\;lZ _1)3“ to the underlying topological space

of MG ; see [11, §1]. If Vj is a quasi-compact open subset of MG containing X, then the
complement Y ;=15\ X is open and quasi-compact, because Vj is Noetherian. Therefore,
V :=sp~ (V) € ME0 is a compact neighbourhood of U and V\U = sp~1(Y) is compact,
whence U is open in M¥o. Let Uy := %]}i w(U) c MK,

Under the fully faithful functor [8, §1.6] from strictly E—anz_ﬂytic spaces to rigid analytic
spaces, U and Ug correspond to U™8 = sp~!(X) and Up® = (%;%,K)_l(Urig), where
sp: (,/\?lgo_1 )ris Méo_l is the specialisation map [13, (0.2.2.1)]. These are admissible open
subspaces of (./\;lé:)rig and (M)rig, Under the fully faithful functor [63, (1.1.11)] from
rigid analytic spaces over E to Huber’s adic spaces, U™8 and U;;g correspond to U4 =
sp~H(X)° and U = (258 1) ~1(U??), where sp: (Mé;l)ad — Mé; is the specialisation
map [63, Proposition 1.9.1] and sp~!(X)° denotes the open interior. These are open
subspaces of (Mé:)ad and (M)2d By definition [63, formula (*) on p. 315],

( rlg Qf) = Hg(U?(da@Z)7
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and this is a finite-dimensional Qg-vector space by [65, Corollaries 5.8 and 5.4]. Because X
is proper over F by Theorem 3.5, U;(ig is partially proper over E by [63, Remark 1.3.18].
So HY(Uk,Q) = HI(ULE,Qq) by [64, Proposition 1.5]. Note that the proof of [64,
Proposition 1.5] only uses that U“g is partially proper over E and not the stated
assumption that Uk is closed. (We thank Roland Huber for explaining these arguments
to us.)

Let J' C J be the stabiliser of Uy, a compact open subgroup. Then the ¢- Uy for
g€ J/J are a covering of MK We consider the associated spectral sequence for Cech
cohomology of [36, Proposition 4.2.2],

EY"= @ H!(Uk(a),Q) = HIM(M",Q),

acJ)J

with the sum being over subsets o with —p+ 1 elements and where Uk (o) = ﬂgea g-Uk.

It is concentrated in degrees p <0 and 0 < g < dim(Mé:)‘m. Furthermore, it is J-
equivariant where g € J acts via

gr: HI(Uk («),Q) = H(g- Uk (), Q).

For a C J/J',let J;, =(;eq9J'9~ " By Lemma 7.18, J;, C J acts continuously on Uk ().
Hence, the H?(Ugk(a),Qg) are smooth J/-modules. We can rewrite EY? as compact
induction

B = @ c-Ind), HI (Ux (0),Q0)

where the sum is now over equivalence classes @ of subsets o C J/J’ with —p+1 elements
up to the action of J diagonally on (J/J')"P*l. We claim that there are only finitely
many such @ with Ug () # 0.

To show this claim, note that if A is a finite union of irreducible components of MZ
then the set {g € J: g- AN A #£ (0} is compact. In particular, J”" ={g € J: g-Ux NUk 7& (Z)}
is compact and contains J'. Thus, if @ = {g1,...,9—p+1} is as above with Uk («) # 0, then
for i # j we have g; ! g; € J"”. Modulo the left action of J on the index set we may assume
that g_,1+1 € J”/J’; hence, all g; are in J”/J’, a finite set. In particular, the index set is
finite.

Altogether we obtain that E¥? is a finite sum of compact inductions of finite-dimensional
representations and hence a representation of J of finite type. By [12, Remarque 3.12],
the category of smooth J-modules is locally Noetherian. Because HP4 (MK,QZ) has a
finite filtration with all subquotients of finite type, it is itself of finite type. O

Corollary 9.5. Let Il be an admissible representation of J. Then for all K, p and q
dimg, Bxth oo (HE(M,Q),TT) < 0.

Proof. This follows from the preceding proposition together with the following fact. Let
H be a reductive group over F,((2)) and let II; be a smooth representation of H of finite
type and II, an admissible representation. Then dim(Exty oo (IT1,112)) < co. This
fact can be shown in the same way as for p-adic groups; compare [36, Lemme 4.4.15]. O
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