A REMARK ON THE CONTINUITY OF THE
DUAL PROCESS

MAMORU KANDA

§1. Introduction

Let S be a locally compact (not compact) Hausdorff space satisfying
the second axiom of countability and let & be the gs-field of all Borel
subsets of S and let .97 be the os-field of all the subsets of S which, for
each finite measure ¢ defined on (S, %), are in the completed o-field of
F relative to f. We denote by C, the Banach space of continuous
functions vanishing at infinity with the uniform norm and B, the space of
bounded _o7 -measurable functions with compact support in S.

Let X = (»,,¢, M,, P,;) be a standard process on S. Let us set

Gula, B) = | "e*'P,(z, € Bdt, a0,

where B is a ./ -measurable set and set G,f(x) =sz(y)G,,(ac,dy) for each
bounded .o/ -measurable function f. We say that the standard process
X satisfies the regularity condition with respect to a locally finite measure m(dx),
if the following holds :

(1) Gylz, K) is bounded on every compact set when K is compact.

(ii) G.(x,K) is absolutely continuous with respect to m(dx) for each a=0
and for each % € S.

(i) G.f(x) is finite and contivous for each f € B

We say that two standard processes on S X = (2,¢ M, P,) and
X = (2,6, M, P,) are in the relation of duality with respect to a locally finite

measure m(dx), if each of them satisfies the regularity condition with respect
to m(dz) and it holds that for each a =0

[ @G flaimdz) = _f@)C.g@mdz), f,9e B

Received August 25, 1967.
Revised September 18, 1967.
D For the definition see H. Kunita and T. Watanabe [3].
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where

Culw, B) =[P (4, & B)dt, C.f(@)={ fW)Cu(x,dy).

0

Our aim is to show the following theorem.

TueorREM. Let X and X be standard processes on S in the relation of
duality with respect to a locally finite measure m(dwx).  Further let us suppose that
the semi-group {T Yo of X and {T:}iso of X are strongly continuous operators
on C,.  Then the process X is a continuous process, if and only if X is a
continuous process.

In the author’s previous paper [2], we studied the process X connected
with the following strictly elliptic differential operator on the ball 2 of
R® (d=3)

He % o* &3
= B, uam, @ie)) — B —(al@)),
where D is assumed to satisfy the condition (L), that is,
—-SQDv(m)dx =0

holds for every non-negative C*-functions » with compact support in 2 and
the coefficients {a;;, i-7=1,2,+++,d} and {a, ;i =1,2, - - -,d} are bounded
and uniformly Hoélder continuous such that a;; = ay,.

By using the above theorem and the proposition in §4, we can show

the following

CorOLLARY. The process X connected with the operator D which is mentioned

above is a continuous process.

§ 2. Resolvent kernels.

Throughout this section we use the notations in H. Kunita and T. Wata-
nabe [3].

A function R,(z,A), defined for « >0, xz of S and A4 of &, is said
to be a resolvent kernel if it satisfies the following conditions (a)-(d). (a).
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For each a >0 and x of S,R,(x,-) is a locally finite measure. (b). Let
f be a bounded .o/-measurable function of compact support, then R,f is
& -measurable and bounded on every compact set, where we write R,f
for [ fW)R.(+,dy). (c). The resolvent equation R,f— Rsf + (a — HR.Rsf
= O is satisfied and (d). agﬂ R.f(x) = O for each 2 and for each bounded

¥ -measurable function f of compact support.
Since R.(x,A) = Rj(x, A) for each A of

Ro(x’ A) = hm a—)ORa(x, A)

exists for each 4 of & and defines a measure on ..

Let {R.,(z,A)} be a resolvent kernel and m, a measure defined over
(S, 7).

{R.(%, A)} is said to be dominated by m if, for each « >0, R,(z,A)
satisfies the condition (ii) of §1.

{R.(z, A)} is said to be integrable if Ry(-,A) satisfies the condition (i) of
§1.

{R.(x, A)} is said to be regular if, for each continuous function f of
compact support, aR,f converges boundedly on every compact set to f as
a—> -+ oo,

A resolvent kernel {R,(x,A)} is called the co-resolvent kernel of {R,(x, A)}
with respect to m(dx) if, for each f,g of B, and for each a >0

sz (@)R, g(x)d =Ssg(x)1?,f (x)dz.

A non-negative & -measurable function # is said to be (R, a)-excessive
if BR..pu < u for all >0 and if ﬁlim BR,.pu = u.
. — 4-co

Given a number a=0, a jointly (= . X %) measurable function
R.(z,y) is said to be the potential kernel of exponent « if the followiﬁg condi-
tions are satisfied : (a) R,(z,dy) = R.(z,y)m(dy) ; (b) R.(y,dz)=R.(x,y)m(dx);
(€) Ry(+,y) is (R,a)-excessive for each fixed ¥y and (d) R,(x,-) is (R,a)-
excessive for each fixed .

The following lemma is Theorem 1 in H. Kunita and T. Watanabe

(3L

Lemma 1. (H. Kunita and T. Watanabe). Let {R,(x, A)} be a resolvent
kernel and {Rs(x,A)} be the co-resolvent kernel of {R.(x,A)}.  Assume that
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{R+(x, A} and {R.(x,A)} are dominated by the locally finite measure m(dx). Then
there is a unique potential kernel of exponent a for a=O0.

§3. Fundamental lemmas.

Throughout this section we treat two standard processes on S X
= (2,,¢, M,,P,) and X = (2,,¢, M, P,) which are in the relation of duality
with respect to a locally finite measure m(dx) without special mentioning.

Evidently {G.(z,A)} is a resolvent kernel and {G,(x, A} is the co-
resolvent kernel which are dominated by m(dz) by the condition (i) in
§ 1. Hence the following lemma is a direct consequence of lemma 1.

Lemma 2. There is a unique potential kernel Gi(x,y) of exponent « for all
a=0.

Let E be an analytic set in S and let us set o =inf(¢t >0, x,€ E),
=+ oo if the set (¢t >0, z,< E) is empty.

The next lemma plays an essential role in this paper, which is first shown
by G.A. Hunt [1] under his assumptions (F) and (G) and P.A. Meyer [4]
has next shown it under a little different assumption. Our case follows
directly from P.A. Meyer’s result.

LemMA 3.  Suppose that the semi-groups {T }i=o and {T'}i=o of the processes
X and X respectively are the strongly continuous operators on C,. — Then, for each
analytic set E in S, it holds that

Ssco(x,z)ﬁ,,(x% e dz) =SSGO(z,y)Px(qu € dz)
Jor eaxch x and y in S.

Progf. Let us note that the notion /G, a)-excessive” is equivalent to
“a-excessive with respect to {T,”?. Then the semi-group {7T,} of
X and {T\} of X are in the relation of duality in Meyer’ s sense by Lemma 2.
Therefore, for each a >0 it holds that

the notion

| G.evPs,d2) ={ Gu(z,2)P3w, a2),
N N

where Py(x,dz) = E (e *F ; xs,€ dz), Pily,dz) = E‘y (€% ; B4, € d2).
Noting that lin(} G.(x,y) T Gy(2,y), we have

2) We say that a non-negative .7 —measurable function (%) is a-excessive with respect
to {T.}, if Ej(e™*tu(x,;), t <{)=<u(x) for each £ >0 and ltinol E,(t~*u(x,), t <C) = u().
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M) [.cote, 0)P2(2, a0 < Gole, 9Pu(wa, € a2),
[.Gutm 0P3(y, d0) = Gila, )Py (20, € d2).

On the other hand, we have for each fixed g>0

| G, 0)Piw, d2) = lim | 6.2, 4)Ph=, d2) <lim | Gu(z,9)P3(a, d2),

N a0 JS a0 JS

| 6w, 2PYy, d2) = lim | G.(2,2)Phy, d2) <lim | G.(z,2)P5(y, d2).
S a0 JS a0 J8

Hence by tending 8 to zero we can show that

@) | GuevPuao, € an lim | Gulz, 0)Piz, d2)
SSGo(x, )P, (s, € dz) < lim SSGu(x, )Py, dz).
a—0

From the inegqualities (1) and (2) we can prove the lemma.

Now, let us note that {G,(x, A)} and {G.(x, A)} satisfy the hypothesis (B)
in H. Kunita and T. Watanabe [3], that is, G.(x,A4) 1is integrable and
dominated by a locally finite measure m(dz), {G.(x,A)} is regular and
G.f, =0 is continuous and finite everywhere for each f of Bg. Then,
by Theorem 7 in H. Kunita and T. Watanabe [3], Proposition 7. 11 in [3]
is valid for the processes X and X. Hence we have the following

LemMa 4. If the measures p, and p, define the same potential, 1i.e.

SsGo(x,y),ul(dy) =§SGo(x,y),u2(dy), which s integrable over each compact set, then
we have py = ps.

§4. Proof of the Theorem.

In this section we always treat the processes X and X mentioned in
the Theorem.

Let us assume that X is a continuous process. Since m(dx) can be
considered as a reference measure by the regularity condition, according to
Corollary to Theorem 4. 2 in S. Watanabe [5], for the proof of the con-
tinuity of the process X, we have only to show that

3) {oo} is adjoined to S and S U {e} denotes the one-point compactification of S. For
each function f we set f({oo} = 0.
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) P (850 € 9Q U {0} ; 5. < + ) = P (60.< + ), z€Q

for a bounded and non-empty open set @, where Q°=S—Q. We shall
first prove the following equality

) Ssco<z, 2)P.(Zog € d2) = Ssco(z, )P, (0p0 € d2)

for each # and 2z,€ Q. When 2 is in the interior of @, the equality (4)
holds by the continuity of the path of X. In case ze @° U dQ"*?, where
@ denotes the closure of @ and 9Q"°? denotes the set of all regular points
of 9Q for X, the lef-hand side of (4) equals to Gy(zx,z,). For zeaQ"*’ it
is clear that the right-hand side of (4) equals G (x,x,) too. When z € Q°,
by the continuity of the path we have

Ssc,‘o(z, 2)P,(ay, € d2) = Ssco(z,x(,)mx.,a e d2),
and by lemma 3
Ssco(z, 8P, (oq € d2) = SSGO(x, 2)P, (2og < d2).

Noting that P, (%5 € dz) = 8,,(dz), where §,(dz) is the Dirac measure at
%, We have ‘

| Gutz, 20Pu(wes, < d2) = Gola, 20).

Hence the equality (4) holds on S — (3Q —3Q"*?). On the other hand we
have m(3Q — aQ"?) = 0. Indeed, G(z,0Q —aQ"**)=0 for each z< S,
because 0Q —dQ"*" is a semi-polar set, therefore G,(z,0Q —dQ"") =0 for
each z € S and « =0, because G,=G,. Noting that al_i}fooaf;,f(x) = f(z)

uniformly for each fe C,, we can choose ¢ function feC, and a >0
such that G,f(z) >6>0 on 9Q —4Q"**. Hence it holds that

0 = | Gul2,0@ — 27" f(@)m(an) = |
= om(5Q — 3Q"),

aQ_aQregéaf(y)Wl(dy)

which implies m(0Q —9Q"¢’) =0.  Therefore the equality (4) holds (m)-
almost everywhere. Since the both sides of (4) are (G,0)-excessive, the
equality holds everywhere. Applying Lemma 3 to the equality (4), we
have
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Ssao(x,z)ﬁzo(oa,,qe € dz) = Ssco(x,z)ﬁ%(maq e dz2), x,€Q,

for each z. Hence by Lemma 4 we have
P,o(:taqc € dz) = on(maq € dz), x,€ Q,
which implies (3). We complete the proof.

§5. Green function and standard processes in the relation of
duality
Let G(x,y) be a Green function on the domain 2 < R%d =3) in the
sense of [2], p. 46, with the condition (S), i.e.,

TS 26, N2 e, myS K, d>a>0,

where K is a compact set in 2 and C,,C, are strictly positive constants
depending only on K. We say that G(x,y) is quasi-symmetric, if G(x,y) is
continuous in 2 X 2 except on the diagonal set and both Gf(x) and Gf(x)
maps By into C,, where Gf(z) = SQG(x,y) f(y)dy and Gf(z) = SQC(x,y) Fw)dy,
G(x,y) = G(y,x) and further G and G satisfy the weak principle of the
positive maximum.®

LemmA 5. For a Green function G(x,y), with the condition (S) in Q in the
sense of [2], there corresponds a standard process such that

| "Ts@at = Gr@), fe Br.
This lemma is shown in [2].

ProrosiTioN. For a quasi-symmetric Green function G(x,y) with the condition
(S), there correspond standard processes X = (%.,¢, M,,P,) and X = (%, ¢, M,P,) in
the relation of duality with respect to Lebesque measure dx such that

("1 r@at = 6 1), | Tir@at = 6@, fe By

Further, let Gix,y) be a kernel for « =0 which is constructed in Lemma 2 by
setting m(dx) = dx, then we have

4) We say that a kernel G(x,y) satisfies the weak principle of the positive maximum if, for a
continuous function f of compact support such that Gf = 0, Gf attains its (strictly positive)
maximum at a point of S where f is strictly positive.
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Gz, y) = Gy(x,y).

Proof. The existence of such processes follows from Lemma 5. The
relation of duality between X and X is evident by the definition of G and
G. Hence it is sufficient to show G,(z,y) = G(z,y). Since G,(x,¥) = G(z,y)
holds (m)-almost everywhere for fixed z (m(dx) = dz), we have only to prove
G(z,y) is (G,0)-excessive function of y for each fixed 2.9 For each f & By,
Gf is (G,0)-excessive, therefore oG,Gf(x)< Gf(x) for each a«>0 and
hence

®) |6 v)aC.(@,dz) < Gla,y)

holds for (m)-almost all y for each fixed z. As G(z,y) is continuous in
y(+ %) and SQG(z,y)aéa(x,dz) is lower semicontinuous in y, the inequality
(5) holds everywhere. ~On the other hand, if we set G, ,(x) = min{G(z,y)
A n}, we have

lim { Gz, 9)aC.(x,d2) = lim_ Sgén,y(z)aé‘,(x,dz) =G, ,(@).

a—>-4-o00

By tending » to infinity, we have

(6) lim (aG(z,9)C.(x, d2) = C(a, v).

a—>40c0

The inequalities (5) and (6) introduce lirf Sgé(z,y)aéa(x,dz)=C(x,y),

which means G(z,y) is a (G,0O)-excessive function of y for each fixed x.
Thus we have proved the Proposition.

Remark. Also we can prove that G(x,y) is a (G, O)-excessive function
of z for each fixed y in the same way.
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