
POINTS AND SPACES 

L. E. J. BROUWER 

1. The gradual disengagement of mathematics from logic. Beginning 
with a historical review of the development of mathematical thought, we have 
to consider successively (cf. 10, pp. 139-140): 

(1) The observational period. For some familiar regularities of (outer or inner) 
experience of time and space, which, to any attainable degree of approximation, 
seemed invariable, absolute and sure invariability was postulated. These regu­
larities were called axioms and were put into language. Thereupon extensive 
systems of properties were developed from the linguistic substratum of the 
axioms by means of reasoning, guided by experience but linguistically following 
and using the principles of classical logic. This logic was considered autonomous, 
and mathematics was considered more or less dependent on logic. 

(2) The revolution in science of space. In the course of the 19th and the be­
ginning of the 20th century, on the one hand geometry was gradually meta­
morphosed into a chapter of the science of numbers, and on the other hand 
Euclidean three-dimensional geometry lost its privileged character since a 
great number of other geometries originating from logical speculations, with 
properties distinct from the traditional but no less beautiful, found an arith­
metical representation likewise. 

(3) The old formalist school. Encouraged by the important part which had 
been played in the above metamorphosis of geometry by the logico-linguistic 
method, the old formalist school merged logic and mathematics into a single 
linguistic science, operating on meaningless words or symbols by means of 
logical rules, thus divesting logic and mathematics of their difference in character 
as well as of their autonomy. 

(4) The pre-intuitionist school, by which autonomy and apriority were re­
established for logic and established for the major part of "separable" mathe­
matics. For the continuum however, this school on some occasions seems to 
have contented itself with an ever-unfinished and ever-denumerable set of 
real numbers which can never have a measure positively different from zero; 
on other occasions it seems to have stuffed the continuum with elements pro­
viding measure by means of some logical axiom. In both cases, in its further 
development of mathematics, it has unreservedly applied classical logic. So, 
logic and an introductory part of mathematics were autonomous here. The 
rest of mathematics was dependent on them. 

(5) The new formalist school, by which autonomy and apriority were postulated 
for mathematics of the second order, i.e., for scientific consideration of the symbols 
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occurring in purified mathematical language, and of the rules of manipulating 
these symbols. This scientific consideration of language, later on called rneta-
mathematics, although using complete induction, apriorizes much less than 
pre-intuitionism. What it seems to have overlooked is that between perfection 
of mathematical language and perfection of mathematics proper, no clear 
connection can be seen. 

(6) The intervention of intuitionism by two acts of which the first seems 
necessarily to lead to destructive and sterilizing consequences, whereas the 
second yields ample possibilities for recovery and new developments. 

The first act of intuitionism completely separates mathematics from mathe­
matical language, in particular from the phenomena of language which are 
described by theoretical logic. It recognizes that mathematics is a languageless 
activity of the mind having its origin in the basic phenomenon of the perception 
of a move of time, which is the falling apart of a life moment into two distinct 
things, one of which gives way to the other, but is retained by memory. If the 
two-ity thus born is divested of all quality, there remains the common sub­
stratum of all two-ities, the mental creation of the empty two-ity. This empty 
two-ity and the two unities of which it is composed, constitute the basic mathe­
matical systems. And the basic operation of mathematical construction is the 
mental creation of the two-ity of two mathematical systems previously acquired, 
and the consideration of this two-ity as a new mathematical system. 

It is introspectively realized how this basic operation, continually displaying 
unaltered retention by memory, successively generates each natural number, 
the infinitely proceeding sequence of the natural numbers, arbitrary finite 
sequences and infinitely proceeding sequences of mathematical systems pre­
viously acquired, finally a continually extending stock of mathematical systems 
corresponding to "separable" systems of classical mathematics. 

The second act of intuitionism recognizes the possibility of generating new 
mathematical entities : 

First, in the form of infinitely proceeding sequences whose terms are chosen 
more or less freely from mathematical entities previously acquired ; in such a way 
that the freedom existing perhaps at the first choice may be irrevocably sub­
jected, again and again, to progressive restrictions at subsequent choices, while 
all these restricting interventions, as well as the choices themselves, may, at 
any stage, be made to depend on possible future mathematical experiences of 
the creating subject; 

Secondly, in the form of mathematical species, i.e., properties supposable for 
mathematical entities previously acquired, and satisfying the condition that, if 
they hold for a certain mathematical entity, they also hold for all mathematical 
entities which have been defined to be equal to it, equality having to be sym­
metric, reflexive, and transitive, and the empty two-ity being forbidden to be 
equalized to an empty unity. Mathematical entities for which the property in 
question holds, are called elements of the corresponding species. 

In the edifice of mathematical thought based on the first and second act 
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of intuitionism, language plays no other part than that of an efficient, but 
never infallible or exact, technique for memorizing mathematical constructions, 
and for suggesting them to others; so that the wording of a mathematical 
theorem has no sense unless it indicates the construction either of an actual 
mathematical entity or of an incompatibility (e.g., the identity of the empty 
two-ity with an empty unity) out of some constructional condition imposed 
on a hypothetical mathematical system. So that mathematical language, in 
particular logic, can never by itself create new mathematical entities, nor deduce 
a mathematical state of things. 

However, notwithstanding this rejection of classical logic as an instrument 
to discover mathematical truths, intuitionist mathematics has its general 
introspective theory of mathematical assertions, a theory which with some right 
may be called intuitionist mathematical logic, and to which belongs a theory of 
the principle of the excluded third. 

In intuitionism this principle is also called the principle of judgeability. It is 
either (in its simple form) an assertion A' about a single primary assertion A 
or (in its extended form) a species (A',) of assertions about the elements of a 
species (Aff) of primary assertions saying that each A, can be judged, i.e., can 
either be proved to be true or be proved to be contradictory. 

This principle of judgeability entails the following two corollaries which are 
weaker : 

(i) The principle of testability, being (in its extended form) a species (A"a) 
of assertions about the elements of the species (Aff) saying that each A, can be 
tested, i.e., can either be proved to be non-contradictory or be proved to be 
contradictory. 

(ii) The principle of reciprocity of complementarity, being (in its extended 
form) a species (A'",) of assertions about the elements of the species (A,), 
saying that each A,, if proved to be non-contradictory, can also be proved 
to be true. 

In intuitionism, of course, all three of these principles, being assertions 
about assertions, are only then "realized," i.e., only then convey truths, when 
these truths have been experienced. On this basis it can be proved that the 
extended principles are not only not true, but even contradictory. On the other 
hand, in their simple form, all three of the principles are, although not true, at 
least non-contradictory. 

The assertion of an incompatibility is called a negative assertion. In the field 
of negative assertions, the principle of reciprocity of complementarity is realized, 
and the principles of judgeability and testability are equivalent (9, pp. 1245-
1246). 

2. The refutation of the principle of the excluded third. The first act of 
intuitionism enables us to construct the linear rational grid. On the basis of 
this, by virtue of the second act of intuitionism, we introduce the linear con­
tinuum in the following way : By a limiting number we understand a (not neces­
sarily predeterminate) convergent sequence of rational numbers. Then, regard-
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ing as self-explanatory the meaning of a coincidence of two limiting numbers, 
we call the species of limiting numbers coinciding with a given limiting number, 
a limiting number core. A predeterminate limiting number is also called a sharp 
limiting number, and a limiting number core containing a sharp limiting number 
is called a sharp limiting number core. The species of the limiting number cores 
is called the linear continuum or the continuum. 

In order to furnish examples refuting the principle of the excluded third 
and its corollaries, we introduce the notion of a drift (cf. 9, pp. 1246-1247). 
By a drift we understand the union 7 of a convergent fundamental sequence 
of limiting number cores £1(7), £2(7)1 • • • called the counting cores of the drift, 
and the accumulation number core £(7) of this sequence, called the kernel of 
the drift, all counting cores lying apart from each other and from the kernel. 
(We say that a lies apart from b if there is some natural number n such that 
\b - a\> 2~n.) 

Let a be a mathematical assertion so far neither tested nor recognized as 
testable. Then, in connection with the assertion a and with a drift 7 the creating 
subject can generate an infinitely proceeding sequence R(y, a) of limiting 
number cores £1(7, a), £2(7, «), . . . according to the following direction: As 
long as during the choice of the cn(y> a) the creating subject has not experienced 
the truth of a [has neither experienced the truth nor the absurdity of a], each 
£«(7» <*) is chosen equal to c(y). But as soon as between the choice of cT-i(y, a) 
and that of cr{y, a) the creating subject has experienced the truth of a [has 
either experienced the truth or the absurdity of a], cT(y, a), and likewise cr+v(y, a) 
for each natural number v, is chosen equal to cr(y). This sequence R(y, a) 
converges to a limiting number core C(y, a) [D{y, a)] which will be called a 
conditional checking-core of y through a [direct checking-core of y through a]. 

Let 7 be a drift whose counting cores are rational and whose kernel is ir­
rational. Then the assertion of the rationality of a D(y, a) is not judgeable, 
but it is testable, because the assertion of irrationality of D(y, a) would entail 
the simultaneous contradictority of the truth and the absurdity of a, which is 
an absurdity. 

On the other hand, truth of a and rationality of C(y> a) are equivalent. So 
the assertion of the rationality of C(y} a) is neither judgeable nor testable. For, 
non-contradictority of rationality of C(y, a) would entail non-contradictority 
of a, i.e. testability of a, which was presupposed not to exist. Furthermore, if 
some day a would prove to be non-contradictory without being true, rationality 
of C(y, a) likewise would be non-contradictory without being true. So for 
rationality of C(y, a), just as for a, non-contradictority would not be equi­
valent to truth. 

Obviously the field of validity of the principle of the excluded third is identical 
with the intersection of the field of validity of the principle of testability and 
that of the principle of reciprocity of complementarity. Furthermore, the first 
field of validity is a proper subfield of each of the others, as is shown by the 
following examples: 

https://doi.org/10.4153/CJM-1954-001-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1954-001-9


POINTS AND SPACES O 

Let A be the species of the direct checking-cores of drifts with rational 
counting cores, B the species of the irrational limiting number cores, C the union 
of A and B. Then all assertions of rationality of an element of C satisfy the 
principle of testability, while, as we have seen, there are assertions of rationality 
of an element of C not satisfying the principle of the excluded third. 

Again, all assertions of equality of two limiting number cores satisfy the 
principle of reciprocity of complementarity, whereas there are assertions of 
equality of two limiting number cores not satisfying the principle of the excluded 
third. 

In the domain of mathematical assertions the property of absurdity, like 
the property of truth, is a universally additive property, that is to say, if it holds 
for each element a of a species of assertions, it also holds for the assertion 
which is the union of the assertions a. This property of universal additivity does 
not obtain for the property of non-contradictority\ However, non-contradictority 
does possess the weaker property of finite additivity, that is to say, if the asser­
tions p and a are non-contradictory, the assertion r, which is the union of p 
and cr, is also non-contradictory. 

Applying the latter theorem to the special non-contradictory assertions that 
are the enunciations of the principle of the excluded third for a single assertion, 
we see that a simultaneous enunciation of this principle for a finite number of 
assertions is likewise non-contradictory. 

As to the long belief in the universal validity of the principle of the excluded 
third in mathematics, intuitionism considers it as a phenomenon of the history 
of civilization of the same kind as the old-time belief in the rationality of ir or 
in the rotation of the firmament on an axis passing through the earth. And 
intuitionism tries to explain the long persistence of this dogma by two facts: 
first, the obvious non-contradictority of the principle for an arbitrary single 
assertion; secondly, the practical validity of the whole of classical logic for an 
extensive group of simple every-day phenomena. The latter fact apparently 
made such a strong impression that the play of thought which classical logic 
originally was, became a deep-rooted habit of thought which was considered 
not only as useful but even as aprioristic. 

The above rejection of the universal truth of the principle of the excluded 
third in mathematics will make it plausible that intuitionist arguing requires 
a preliminary formulation of several definitions which sometimes split atomic 
notions of classical mathematics. 

Two mathematical entities will be called different if their equality proves to 
be absurd. The notation for equality and difference will be = and 9^ respectively. 

Two infinite sequences of mathematical entities au a2, . . . and bu b2f . . . 
will be said to be equal, or identical, if av — bv for each v, and distinct, if a 
natural number can be indicated (or calculated) such that an and bn are different. 

A species is called discrete if any two of its elements can be proved either to 
be equal or to be different. 
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If the species M possesses an element which cannot possibly belong to the 
species Ny we shall say that M deviates from N. 

The species M will be called a subspecies of the species iV, and we shall write 
M C N if every element of M can be proved to belong to N. If, in addition, 
N deviates from M, then M is called a proper subspecies of N. If each element 
of N either belongs to M or cannot possibly belong to M, then M is called a 
removable subspecies of N. 

Two species are said to be equal, or identical, if for each element of either of 
them an element of the other, equal to it, can be indicated. They are called 
different if their equality is absurd, and congruent if neither can deviate from 
the other. 

Let M be the linear continuum, A and B the species of the rational and the 
irrational limiting number cores respectively, then M and the union of A and 
B are congruent and different at the same time ! 

A species which cannot possess an element is said to be empty. Two different 
species whose intersection is empty are called disjoint. 

If M and N are disjoint subspecies of the species P , and the union of M and 
N is congruent to P , we shall say that P is composed of M and N, and that 
M and N are conjugate subspecies of P . Thus, e.g., the species of exponents of 
Fermat's equation which render it solvable and unsolvable respectively, are 
conjugate subspecies of the species of the natural numbers. 

For a given P , for any subspecies Af, a subspecies N can be indicated such 
that M and N are conjugate subspecies of P . This Nf in general, is not even 
uniquely determined by P and M. Thus, e.g., if P is the linear continuum, and 
M the species of the irrational limiting number cores, then for N we may choose 
the species of those limiting number cores whose rationality is non-contradictory 
as well as the species of the rational limiting number cores. 

H H and K are disjoint subspecies of the species P , and the union of H and 
K is identical with P , so that H and K are conjugate removable subspecies of 
P , we shall say that P splits into H and K. Thus, e.g., the species of the prime 
numbers and of the composite numbers are conjugate removable subspecies 
of the species of the natural numbers. 

For an arbitrary proper subspecies H of P one cannot, in general, indicate 
a K such that H and K are conjugate removable subspecies of P . There are 
even species (e.g., the linear continuum) which possess no removable proper 
subspecies at all. 

If F and W are conjugate subspecies of P , and if in addition V consists of 
those elements of P which cannot belong to W, and W of those elements of P 
which cannot belong to F, we shall say that P is directly composed of V and W, 
and that V and W are directly conjugate subspecies of P. Thus, e.g., the species 
consisting of those elements of P for which a certain negative property is true 
and absurd respectively, are directly conjugate subspecies of P . 

If between two species M and N a (not necessarily predeterminate) 1-1 
correspondence can be created, i.e., if M can be mapped onto N in such a way 
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that equal and only equal elements of M have equal images in N, while each 
element of N is the image of some element of My we shall say that M and N 
are equipotential. 

A species which is equipotential to some natural number [to the infinite 
sequence of natural numbers] will be called finite [denumerably infinite], 

A species which contains a denumerably infinite subspecies will be called 
infinite. 

3. Spreads and fans. Spreads and fans are fundamental notions in in-
tuitionism. Their introduction requires some further definitions. 

By a node of order n we understand a sequence of n natural numbers (n > 1) 
called the constituents of the node. 

A node pf of order n + m (m > 1) will be called an mth descendant of the 
node p of order n, and p will be called the mth ascendant of pr, if the sequence 
of constituents of p is an initial segment of the sequence of constituents of p'. 

Urn — 1, p' will also be called an immediate descendant of p and p the im­
mediate ascendant of p'. 

The species Qv of the immediate descendants of the node p of order n con­
sidered in their natural order (i.e., ordered according to their last constituent) 
will be called a row of nodes of order n + 1 and the ramifying row of p, while 
p will be called the dominant of Qp. 

The species of the nodes of order 1 considered in their natural order will be 
called the row of nodes of order 1. 

A finite sequence of nodes consisting of a node pi of order 1, an immediate 
descendant pi of pu an immediate descendant pz of p2, . . ., up to an immediate 
descendant pn of pn-u will be called a rod of order n. 

An infinite (not necessarily predeterminate) sequence of nodes consisting 
of a node pi or order 1, an immediate descendant p2 or pi, an immediate des­
cendant pz of p2, and so on ad infinitum, will be called an arrow. 

Naturally an arrow may grow in complete freedom, i.e., in the passage from 
pv to pp+i, the choice of a new constituent for pv+1 to be joined to those of p9 

may be completely free for each v, for as long as the creating subject may desire. 
On the other hand this freedom in the generation of the arrow may at any stage 
be completely abolished, at the beginning or at any pv, by means of a law fixing 
all further nodes in advance. From this moment the arrow concerned will be 
called a sharp arrow. Furthermore, the freedom in the generation of the arrow, 
without being completely abolished, may, at any pv, undergo some restriction, 
and this restriction may be intensified at further pjs. Finally, all these inter­
ventions, by virtue of the second act of intuitionism, may, at any stage, be 
made to depend on possible future mathematical experiences of the creating 
subject. 

Let p be a natural denumeration of the species of the nodes, i.e., a denum-
eration ai, a2, . . • of the nodes such that each node comes before its descendants, 
and before the nodes which it precedes in its row of nodes. Then, without 
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knowledge of further details of this denumeration, as soon as in p for each av a 
sequence 

CL y ^ , tv y - , . . . , 

with ever increasing indices, can be indicated as its ramifying row, the sequence 
of constituents of any given av can be reconstructed. 

An example of a natural denumeration of the species of the nodes can be 
given as follows: Let Gn be the species of the nodes of order < n and constituents 
< n, Gnty the species of the nodes of Gn of order v, and An (n > 2) the species of 
the nodes of Gn not belonging to Gn-\. Each Gn.t v is counted in such a way that 
p precedes q if the first constituent in which they differ is smaller for p than for 
q. If we then make each GntV precede GnyV+\ we get a natural denumeration 
An of Gn. Finally, by successively counting G\ after Ai, A2 after A2, A% after 
A3, and so on, we arrive at a natural denumeration of the species of the nodes. 

We proceed to consider a (not necessarily predeterminate) species of nodes 
K containing: 

(i) of the nodes of order 1, either all natural numbers or those and only those 
natural numbers which do not exceed a definite natural number mQ ; 

(ii) for each n > 1, of the nodes of order n + 1 which are immediate des­
cendants of the node p of order n belonging to K, either all of them or those 
and only those whose (n + l)st constituent joined to those of p does not exceed 
a definite natural number mv. 

Such a species of nodes K will be called a spread direction, and the species 
w(K) of the arrows which consist of nodes of K will be called a spread. 

The spread direction for which from the above alternatives always the first 
is chosen is called the universal spread direction, and the corresponding spread 
is called the universal spread. 

A spread direction for which from the above alternatives always the second 
is chosen is called a fan direction, and the corresponding spread is called a. fan. 

As each spread direction is a subspecies of the universal spread direction 
USD (just as each spread is a subspecies of the universal spread US), any 
natural denumeration (in the above sense) of USD generates a natural denumera­
tion of each spread direction. Furthermore, if ah a2, . . . is a natural denumeration 
of a spread direction K, and for each av a finite or denumerably infinite sequence 

Q>ylf av%, . . . , 

with ever increasing indices, can be indicated as its ramifying row, then for 
any given av the sequence of its constituents in K can be reconstructed. 

A node & of a spread direction K, together with its descendants in K, 
constitutes a removable subspecies irb(K) of K which will be called a sector 
direction, and the species Pb{K) of the arrows composed of nodes of irb{K) 
will be called a sector. Both irb{K) and Pb(K) will be said to be dominated by 
their utop,} b. We shall speak of a free sector [sector direction], if b is of order 1, 
and of a horned sector [sector direction] of order n, if b is of order n + 1 (n > 1). 
In the latter case the constituents of the immediate ascendant of b will be said 
to form the horn of the sector [sector direction]. 
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A subspecies of the spread direction K will be called thin if none of its nodes 
is a descendant of any other of its nodes. 

If a (not necessarily predeterminate) subspecies of the spread direction K 
has the property that no arrow of K can avoid it, it will be called a crude block 
of K. A crude block of K which is thin and removable will be called a proper 
block or simply a block of K. 

The nodes of K which are not descendants of the block B{K) of K constitute 
a removable subspecies rB(K) of K which will be called a free stump, and which 
we shall say is carried by the block B (K). 

A node b belonging to TB(K), together with its descendants in TB(K), con­
stitutes a removable subspecies baB{K) of rB{K) which will be called a pyramid, 
and which we shall say is dominated by its "top" b. We shall speak of a free 
pyramid if b is of order 1, and of a horned pyramid of order n if b is of order n + 1 
(n > 1). In the latter case the sequence of constituents of the immediate 
ascendant of b will be said to constitute the horn of baB(K). 

If from the free pyramid b<rB(K) [from the horned pyramid baB(K) of order 
n] we take away the top b, the remainder bpB(K) (also in the case of its reducing 
to "nothing," if b belongs to B), will be called a horned stump of order 1 [of 
order n + 1]. The constituents of the removed top b will be said to constitute 
the horn of bpB(K). 

If from all nodes of a horned stump bpB{K) the horn is taken away, the remainder 
will be a free stump brB{K). This holds also in the case of b belonging to B, 
if "nothing" is added to the species of the free stumps. If bpB{K) was of order 
n, we shall call brB(K) a free substump of rB{K) of rank n, dominated by b. 

To explain the notion of absorption of a row of free sub stumps of rank n by a 
free substump of rank n — 1, let bu 62, . . . be a row of nodes of order n, dominated 
by the node a, and for each v let /3V be the last constituent of bv. For each v, 
to each node of bvrB{K) we add (3V as a first constituent, and to the horned 
stump of order 1 thus acquired we add the node /?„, thus arriving at a "row" of 
free pyramids <JI, 0-2, . . . whose union is aTB(K), a free substump of TB(K) of 
rank n — 1. This process of absorption can also be effected if some or all of the 
bvrB(K) reduce to nothing. 

In an analogous way, by absorption of a finite sequence or a fundamental 
sequence of free stumps of spread directions Kv a free stump of a new spread 
direction K comes into being. 

4. Well-ordered blocks and stumps. At this point, before continuing the 
study of spreads and fans, we have to insert some considerations about well-
ordered species. 

A discrete species D is said to be completely ordered if for any two different 
elements of D, say a and 6, one of the two mutually exclusive relations a < b 
(equivalent to b > a) and a > b (equivalent to b < a) is realized, in such a 
way that a < b, a — r and b = s implies r < s, and a < b and b < c implies 
a < c. 
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Let R be a fundamental sequence [an ordered finite species] of disjoint com­
pletely ordered species Nv. We construct a complete order of the union M of 
the Nv in the following way: Let e' belong to N' and e" to N". Then we put 
e' < e" in M if either N' < N" in R or N' = iV" = iV and e' < e" in iV. Denot­
ing the species M ordered in this way by M, we write 

M = i^i + N2 + . . . [M = i\Ti + N2 + . . . + Nm) or il? = £ tf„ 

and we shall say that M is the ordinal sum of the iV„. The generation of an ordinal 
sum will be called ordinal addition. 

On the basis of this definition of ordinal addition we can generate a con­
tinually extending stock of well-ordered species according to the following rules: 

(1) Each species containing one and only one element is a well-ordered 
species, and, as such, will be called a basic species. 

(2) If, out of the available stock of well-ordered species previously acquired, 
a fundamental sequence of disjoint well-ordered species has been indicated, 
their addition will be called a first generating operation, and their ordinal sum 
will again be called a well-ordered species and, as such, will be added to the 
stock. 

(3) If, out of the available stock of well-ordered species previously acquired, 
a non-vanishing ordered finite sequence of disjoint well-ordered species has 
been indicated, their addition will be called a second generating operation, and 
their ordinal sum will again be called a well-ordered species and, as such, will 
be added to the stock. 

In the case that only the second, not the first, generating operation is effected, 
we speak of bounded well-ordered species. 

Let F be a well-ordered species. All well-ordered species which, at some stage, 
have played a part during the construction of F will be called constructional 
subspecies of F. The constructional subspecies of F which have played a part 
in the final generating operation of F, will be denoted by Fv (y passing through the 
sequence of natural numbers or through an initial segment of it) and will be 
said to constitute the row of constructional subspecies of order 1 of F. The con­
structional subspecies of order 1 of FVx will be denoted by ¥VlV (v varying as 
above) and will be said to constitute a row of constructional subspecies of order 2 
of F. In general, the row of constructional subspecies of order 1 of FPl. . .Ffc 

will be denoted by FVlm . .„ „ (v varying as above) and will be said to constitute a 
row of constructional subspecies of order k + 1 of F. F itself will be considered as 
its own constructional subspecies of order zero. 

In this way each basic species, that is, each element, of F, and each con­
structional subspecies of F, turns out to be a constructional subspecies of finite 
order (which order, however, for appropriately chosen constructional subspecies 
may increase indefinitely. This property is easily proved by the inductive method, 
i.e., by remarking that it holds if F is a basic species, and that when a generating 
operation is performed, it holds for the generated ordinal sum if it holds for 
the terms of the sum. By the same method we state that the species of sequences 
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of indices of the constructional subspecies of a well-ordered species is a removable 
subspecies of USD, that every well-ordered species in whose construction the 
first generating operation has been effected at least once is denumerably infinite, 
and that every bounded well-ordered species is finite. 

It is also by the inductive method that we shall prove the following theorem: 
For each well-ordered species F there is a 1-1 correspondence between the species 

of its constructional subspecies of non-vanishing order and a free stump r such 
that each sequence of indices of a constructional subspecies of F corresponds to an 
equal sequence of constituents of a node of r, while a basic species of F corresponds 
to a node of the block carrying r, and the union of an Fv and its constructional 
subspecies corresponds to a free pyramid of r. 

For, let 

be a row of constructional subspecies of order n of i7, and for each *>, let 

be provided with a 1-1 equality-mapping of the sequences of the indices following 
v of its constructional subspecies onto a free stump rBy{Kv) (containing as 
constituents of its nodes only indices of order > n from F). Then the row 

TBI(KI), rBt(K2)1 . . . 
can be considered as a row of free substumps of rank 1 of a free stump TB(K), 

by which it can be absorbed. Accomplishing this absorption, and assigning 
to each sequence of indices following vn-\ of a constructional subspecies of 
Fvx. . ."n-i a n equal sequence of constituents of a node of rB{K), we arrive at a 
1-1 equality-mapping of the sequences of the indices following vn-\ of the con­
structional subspecies of FVl, . ,Vn_t onto rB{K). And if FVx. . ,Vn_x is a basic 
species of F the mapping as required by the theorem exists as a mapping of 
nothing onto "nothing." 

Blocks and free stumps which can play the part of a B(K) and a rB{K) as 
required by the above theorem will be called well-ordered blocks and well-ordered 
free stumps respectively. The free pyramids which are contained in a well-
ordered free stump will be called well-ordered free pyramids. Horned pyramids 
which after removal of their horns become well-ordered free pyramids will be 
called well-ordered horned pyramids. 

Obviously each free stump corresponding to a bounded well-ordered species 
is finite. 

The above assignment of a sequence of indices to each constructional sub­
species of non-vanishing order of a well-ordered species F was performed in a 
downward direction, but the same result can be obtained as well by an upward 
construction consisting in a gradual dressing-up of F parallel to its generation, 
according to the following prescriptions: 

(i) At each ordinal addition of an ordered sequence d of basic species, to 
each of these species is assigned, as its only index, the natural number 
indicating its place in d. 
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(ii) At each ordinal addition of an ordered sequence d of well-ordered species 
previously acquired, for each of these species (and for each of their 
constructional subspecies) the natural number indicating its place in d 
is added to its adhering sequence of indices previously acquired, as a 
first index. 

If, in an analogous way, for a given spread direction K in which a thin sub­
species C(K) has been indicated, we succeed in arriving at the free stump 
TB(K) by allowing in K the following sorts of acts: 

(i) the qualification of a node of C(K) as dominating a free substump 
"nothing," 

(ii) the formation of a free substump of rank n — 1 by absorbing a row of 
free sub stump s of rank n, 

then this gradual erection of the edifice of nodes of rB (K) (proving by the way 
that C(K) — B) is identical with the above upward construction of the edifice 
of sequences of indices of the constructional subspecies of a proper well-ordered 
species F, so that TB(K) is a well-ordered free stump and we may speak of a 
well-ordered erection of rB (K). 

By extending a given free stump to its spread direction we see that a natural 
denumeration of the latter yields a natural denumeration of the former. So 
also the species of the sequences of indices of the constructional subspecies of a 
well-ordered species can be denumerated in a natural way. 

We shall show by an example that not every block is a well-ordered block, 
and hence that not every free stump admits of a well-ordered erection. 

Let K be a spread direction, and let fiv be the species of the nodes of K of 
order v. Let a t;-union be a union of species pv with regard to which an infinite 
sequence of decisions qi, ç2, • • • successively decides whether 0i belongs to the 
union, whether /32 belongs to the union, and so on, and let F be the species of the 
^-unions. Let a be a mathematical assertion so far neither tested nor recognized 
as testable, and let va be the element of V generated as follows: As long as in the 
course of the successive choices of the decisions qv the creating subject has 
neither experienced the truth nor the absurdity of a, each qv will be chosen to 
be negative; but as soon as between the choice of the decision qr-i and that of 
the decision qr the creating subject has experienced either the truth or the 
absurdity of a, qr will be chosen to be affirmative and for each natural number 
v, qT±v will again be chosen to be negative. 

Obviously this va is a block of K of which we cannot say that it is a well-
ordered block. 

5. The fan theorem. If a (not necessarily predeterminate) subspecies 
C{K) of the spread direction K has the property that every arrow of K meets 
C(K), i.e., has a node in common with C(K), this subspecies C(K) will be called 
a crude bar of K. A crude bar of K which is thin will be called a proper bar or 
simply a bar of K. 

The definition of a crude bar means that for every arrow a of K the order 
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n(a) of the postulated node of intersection with C(K) must be computable, 
however complicated this calculation may be. For instance, the algorithm 
in question may indicate the calculation of a maximal order n\ at which will 
appear a finite method of calculation of a further maximal order n2 at which 
will appear a finite method of calculation of a further maximal order n% at 
which will appear a finite method of calculation of a further maximal order w4 

at which the postulated node of intersection must have been passed. And much 
higher degrees of complication are thinkable. 

If C(K) is a crude bar of K, then every node t of K has either been recognized 
as belonging to C(K) or been provided with a constructive mathematical argu­
ment ht proving that / is barred by C(K), i.e., that every arrow passing through 
/ has a node of intersection with C(K). 

For this mathematical argument ht no other basis is available than the 
characterization of C(K), and the species of constructional relations existing 
between the nodes of K. Now all these relations can be derived from the basic 
relations which for each node indicate its immediate predecessor in its row 
of nodes (or the non-existence of an immediate predecessor in its row of nodes), 
its immediate successor in its row of nodes (or the non-existence of an immediate 
successor in its row of nodes), its immediate ascendant (or the non-existence of an 
immediate ascendant), and the row of its immediate descendants. (Whether 
this system of basic relations is susceptible of further reductions, we shall 
leave undecided.) Consequently, if we split up the argument ht into an argu­
ment k t consisting exclusively of statements of atomic basic facts d and atomic 
immediately obvious inferences ey then, supposing t = v\... vr, the final inference 
of kt must deduce the barred condition of / either from t being recognized 
as belonging to C(K) or from the barred condition of v\ . . . vT„i (a so-called 
^-inference) or from the barred condition of v\ . . . vr\ for each X (a so-called 
P-inference). If, in particular, t is a node v\ of order 1, the final inference of kt 

recognizing that / is barred, must either be the recognition of / as a node of 
C(K) or the f-inference deducing the barred condition of vx from the barred 
condition of *>iX for each X. So in the latter case the recognition of the barred 
condition of vi has been preceded in kt by the recognition of the barred condition 
of *>iX for each X. From this follows that in kt the recognition of the barred 
condition of kVxVi preceding that of kVx must in its turn either be based on its 
belonging to C{K) or have been preceded by the recognition of the barred 
condition of kv,Vt\ for each X, from which it has been deduced by a ^-inference; 
and so on. 

Consequently, if t is a node of order 1, then in k t appear 
(1) a certain species of nodes Nt, including / a n d a certain thin subspecies 

Ct(K) of C(K), 
(2) the species St of the statements of the barred condition of an element 

of Nt, 
(3) a species It of f-inferences connecting elements of St 

such that each element of St is connected with the statement of the barred 
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condition of / by a finite sequence of elements of Iu that each element of Su 

with the exception of the statements of the barred condition of an element of 
Ct(K), has a row of predecessors in the argument with which it is connected 
by an element of Iu and that each element of Su with the exception of the 
statement of the barred condition of /, has a successor in the argument with 
which it is connected by an element of 11. 

If we now take for / successively each node of order 1 of K, and consider the 
union k of the corresponding arguments k u then in k appear 

(1) a certain species of nodes N, including all nodes of order 1 of K and a 
certain thin subspecies Co(K) of C(K), 

(2) the species 5 of the statements of the barred condition of an element of N, 
(3) a species I of f-inferences connecting elements of S 

such that each element of 5 is connected with the statement of the barred 
condition of a node of order 1 of K by a finite sequence of elements of I, that 
each element of S, with the exception of the statements of the barred condition 
of an element of CQ(K), has a row of predecessors in the argument with which 
it is connected by an element of / , and that each element of S, with the exception 
of the statements of the barred condition of a node of order 1 of K, has a suc­
cessor in the argument with which it is connected by an element of / . 

In this way from the argument k we have extracted an argument k' which by 
performing acts of the two following sorts in K : 

(i) taking an element of Co (K) as a basic pyramid consisting of barred nodes, 
(ii) taking the union of a row of pyramids consisting of barred nodes previously 

acquired and the dominant of their row of tops, thus obtaining a new 
pyramid consisting of barred nodes, 

has arrived at a row of free pyramids consisting of barred nodes whose row of 
tops is the row of nodes of order 1 of K. 

This argument kf comes to the same as the argument k" which by performing 
acts of the two following sorts in K : 

(i) assigning to an element a of Co(K) a free substump "nothing" dominated 
by a, 

(ii) having a row of free substumps consisting of barred nodes previously 
acquired, absorbed by a new free substump, 

has arrived at a free stump of K consisting of barred nodes. 
So, as was shown in §4, this argument k" in its turn comes to the same as the 

well-ordered erection of the species of nodes N as a well-ordered free stump of K, 
carried by the well-ordered block C0 (K). 

With which we have deduced the 

BAR THEOREM. Every crude bar contains a well-ordered block.1 

lCi. (6, pp. 63-65). The species JJU used there plays the role of the above species C(K). 
The equivalence of the principles of the excluded third and of reciprocity of complementarity, 
mentioned there in a footnote by way of remark, subsequently has been recognized as non­
existent. In fact, as was also shown in the present paper, the fields of validity of these two 
principles have turned out to be essentially different. 
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This theorem does not imply that every well-ordered block is a bar. 
In the case that K is a fan direction, its well-ordered free stumps, on account 

of their correspondence to bounded well-ordered species, are all finite; so the 
above species of nodes N is finite, and there will be a finite maximum 0{N) 
for the order of its nodes. Furthermore in this case the well-ordered block C0(K) 
is a bar. 

Now we easily prove the 

FAN THEOREM. Let K be a fan direction, and let us suppose that to each arrow 
a of K has been assigned a natural number p, (a). Then a natural number s can be 
indicated such that, for any a, p(a) is determined at the sth node of a (6, p. 66; 10, 
p. 143). 

For, since the natural number in question has to be known for each arrow 
of K at one of its nodes, the nodes yielding this knowledge constitute a species 
of nodes which each arrow of K is bound to meet, and which therefore is a 
crude bar C(K) of K. Because this C(K) contains a well-ordered block Co(K), 
and this well-ordered block Co(iT) in the present case is finite and a bar of 
K, a maximum 5 can be indicated for the order of its nodes, so that each arrow 
a of K meets C0(K) not later than at its sth node. Hence, for each a, at its 
sth node, p. (a) is determined. 

6. The continuity theorem. The infinite sequence of natural numbers 
passes into a located infinite sequence d, c2} . . . if for any two of its elements 
cT and cs a symmetric limiting number core function p(cT, cs), called the distance 
of cT and cSJ is indicated, which has the following properties: 

(1) For cr = c8, p(cr, c8) = 0. 
(2) For cr 9e cs, a natural number f(cr, cs) can be indicated such that 

p(cn cs) > 2 - / ( c - c'\ 

(3) p(crt Cs) < p(cr, Ct) + p(c„ Ct). 

(4) For each n a natural number p(n) can be indicated such that, if we 
denote the union of ci, c2, . . . and cM(w) by \l/n, then p(cv, ^n) < 4rn for each v. 

We shall express the property (4) by saying that the sequence ci, c2, . . . is 
approximated with any degree of accuracy by its successive initial segments. 

Let L be a located infinite sequence. An infinite sequence a,\, a2l . . . of elements 
of L (among which equalities may occur) will be said to be convergent if for each 
n a natural number y(n) can be indicated such that 

p(ay(n), av) < 2~n 

for any v > y(n). A convergent infinite sequence of elements of L will also be 
called a limiting element of L. Regarding as self-explanatory the meaning of 
coincidence of two limiting elements, we shall call the species of the limiting 
elements of L coinciding with a given limiting element of L, a point core of L. 
The species RL of the point cores of L will be called a located compact topological 
space. 
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If in a spread direction [fan direction] and in the corresponding spread [fan] 
each constituent of a node is replaced by some mathematical entity in such 
a way that in each node vxv2 . . . vnvn+\ the constituents vhv2l . . . , vn are replaced 
by the same mathematical entities as in the node v\y2 . . . vn, the result of this 
process will be called a dressed spread direction [dressed fan direction] with a 
corresponding dressed spread [dressed fan]. 

Let us consider a dressed fan direction SRL whose row of nodes bu b2y . . . of 
order 1 consists of the elements of \{/i, whilst each element of a rowr of nodes 

of order n + 1 consists of the immediate ascendant of the row followed by 
a constituent for which is chosen successively each element of a subspecies of 
\//fl+i which, though arbitrary to a certain extent, must include all elements of 
\pn+i at a distance < 2.4~w from the last constituent of bVlm..Vn, and must exclude 
all elements of ypn+i at a distance > 3.4~w from the last constituent of bVl...9n. 

Each arrow of SRL defines a limiting element of L. For in each arrow of SRL 
each accretion of order n, i.e., each last constituent of a node of order n has a 
distance less than 

(3.4~" + 3.4-n_1 + 3.4-*-2 + . . . ) = ±~n+1 

from each of its descendant accretions of order > n. 
Each limiting element of L coincides with an arrow of SRL. For, let au a2, . . . 

be a limiting element X of L, and vi < v2 < v% . . . an infinite sequence of in­
creasing natural numbers such that 

p{aVn,av) < 4rn~~2 

for any v > vn. If to each aVn we assign an element arl of \f/n at a distance 
< 4~" + 4~n~l from aVn, then from 

p(or», aWm) < rn + 4~n- \ p(a,m, a,.+l) < 4rn~2, p(a,m+l. *n+1) < lTn~l + 4~w~2 

follows p(orn, crn+i) < 2A~,lj so that the infinite sequence <ri, <T2, 0-3, • • • generates 
an arrow of SRL which, because p(<rn, aVn) < 4~n + 4 - n~ l , coincides with X. 

If two limiting elements Xi and X2 of L are at a distance < 4~n~2 from each 
other, then the distance of their respective aVn is < 3.4-n~2. Hence we can assign 
the same an to both these aVn, so that Xi and X2 correspond to two arrows of 
SRL which have an accretion of order n in common, and with which they 
coincide respectively. 

On the other hand, two point cores of RL coinciding with two arrows of 
SRL respectively which have a common accretion of order », are at a distance 
< 2A~n+l from each other. So that we have proved: 

LEMMA 1. To each natural number pz a natural number />4 can be assigned 
such that any two point cores of RL whose distance is < 2~p* contain respectively 
two arrows of SRL which have their rod of order p% in common. 

And conversely: 
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LEMMA 2. To each natural number pi a natural number p2 can be assigned 
such that any two arrows of SRL which have their rod of order p2 in common belong 
respectively to two point cores of RL which have a distance < 2~Pi from each other. 

Let R'L' and R"L" be two located compact topological spaces, and let / 
be a full mapping of R!L! onto R"L", i.e., an assignment of a point core of 
R"L" to each point core of R!L'. Such a full mapping implies the assignment 
A of an arrow <£ (E') of S"R"L" to each arrow E' of S'R'L' in such a way that 
to coinciding arrows E' coinciding arrows cj>(E') a r e assigned. 

Applying the fan theorem to this assignment A, we obtain : 

LEMMA 3. To each natural number p2 a natural number pz can be assigned 
such that the rod of order p2 of <j>(E') is for each Er determined by its rod of order 
pzj so that to any two arrows of S'R'L' containing the same rod of order pz two 
respective arrows of S"R"L" are assigned by A which contain the same rod of 
order p2. 

By successive application of Lemmas 2, 3, and 1 we find that to each natural 
number pi there corresponds a natural number p± such that to each pair of 
point cores of R'L' whose distance is <2~p* the mapping / assigns a pair of 
point cores of R"L" which have a distance < 2~Pl from each other. 

This result establishes the 

CONTINUITY THEOREM. Every full mapping of a located compact topological 
space onto another located compact topological space is uniformly continuous. 

In particular, a bounded function of a compact segment of the linear continuum 
is uniformly continuous (6, p. 67; 10, pp. 145-146). 
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