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CM Periods, CM Regulators, and
Hypergeometric Functions, I

Masanori Asakura and Noriyuki Otsubo

Abstract. We prove the Gross–Deligne conjecture on CM periods for motives associated with H2 of
certain surfaces ûbered over the projective line. _enwe prove for the samemotives a formula which
expresses the K1-regulators in terms of hypergeometric functions 3F2 , and obtain a new example of
non-trivial regulators.

1 Introduction

Periods and regulators of a motive over a number ûeld are very important invariants,
whose arithmetic signiûcance can be seen from their conjectural relations with values
of the L-function at integers. Such conjectures include those of Birch–Swinnerton-
Dyer, Deligne, Bloch, Beilinson and Bloch–Kato. If the motive has complex multipli-
cation (CM) by a number ûeld, especially by an abelian ûeld, those invariants take a
special form.

If A is an abelian variety with CM by a subûeld of the N-th cyclotomic ûeld, its
periods are written in terms of values of the gamma function at 1

NZ. When A is an el-
liptic curve, the formula is due to Lerch [15] and was rediscovered by Chowla–Selberg
[8]. Gross [13] gave a geometric proof of a generalization of the formula and proposed
a conjecture for any motivic Hodge–de Rham structure with CM by an abelian ûeld,
whose precise form was given by Deligne. Using Shimura’s monomial relation [23],
Anderson [1] proved the formula for CM abelian varieties by reducing to the case of
Fermat curves.

In this paper, we study a surface X ûbered over P1 (t-line) with the general ûber
deûned by yp = xa(1 − x)b(t l − x)p−b , where l and p are distinct prime numbers.
It admits an action of µ l p and its second cohomology modulo the image of classes
supported at singular ûbers gives a Hodge–de Rham structure H = (HdR ,HB) with
multiplication by K ∶= Q(µpl) (see §2.2). We shall prove that HB is one-dimensional
over K (_eorem 4.12). For each embedding χ∶K ↪ C, let H χ be the eigencompo-
nent. We shall determine its period and the Hodge type independently, and prove the
Gross–Deligne conjecture.
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_eorem 1.1 (Period formula, see _eorem 5.4) For each χ∶K ↪ C, let χ(ζp) = ζn
p ,

χ(ζ l) = ζm
l , and put α = { na

p }, β = { nb
p }, µ = {m

l }. _en we have

Per(H χ) ∼K′× B(β, µ)B(1 − β, β − α + µ),

where K′ ∶= Q(µ2 l p), and the Gross–Deligne conjecture holds.

On the other hand, regulators of the Fermat curve of degree N are written in terms
of values at 1 of hypergeometric functions 3F2 with parameters in 1

NZ [18]. _e con-
jectural relation with L-values is veriûed for some cases in [19,20]. Recall that the beta
function is related to the value of Gauss’ hypergeometric function 2F1 at 1. It is also
suggestive that the classical polylogarithm can be written as

Lik(x) = x ⋅ k+1Fk (
1, 1, . . . , 1
2, . . . , 2

; x) ,

and hence special values of Dirichlet L-functions are written in terms of k+1Fk-values.
For the surface X, we consider the Beilinson regulator [7] from the motivic coho-

mology to the Deligne cohomology

rD ∶H3
M (X ,Q(2)) Ð→ H3

D(XC ,Q(2)).

In terms of algebraic K-theory, we have H3
M (X ,Q(2)) = (K1(X) ⊗Z Q)(2) (the sec-

ond eigenspace for the Adams operations). Let Z1 be the union of ûbers over µ l and
consider the image of H3

M ,Z1
(X ,Q(2)) → H3

M (X ,Q(2)). _e Deligne cohomology
can be regarded as functionals on F 1H2

dR(X) up to periods, and we restrict them to
F 1HdR.

_eorem 1.2 (Regulator formula, see_eorem 6.5) Let χ be an embedding such that
H χ
dR ⊂ F 1HdR. _en, for any z ∈ H3

M ,Z1
(X ,Q(2)) and ω ∈ H χ

dR, we have

rD(z)(ω) ∼K× B(1 − α, β) ⋅ 3F2 (
1 − α, β, β − α + µ

1 − α + β, β − α + µ + 1
; 1) ,

where α, β, µ are as before.

Moreover, we shall show the non-vanishing of the regulator image under a mild
assumption (_eorem 6.6).

Regarding these examples, it is tempting to ask if the regulators and hence the
L-values of a motive with CM by an abelian ûeld can be written in terms of values of
k+1Fk , with k depending on the weight. In a forthcoming paper [4], we shall study
more general ûbrations of varieties over P1 with multiplication by a number ûeld
whose relative H1 has a special type of monodromy.
Concerning the period conjecture, there is a result of Maillot–Roessler [16] using

Arakelov theory on the absolute value of the period. Recently, Fresán [12] proved the
formula for the alternating product of the determinants for any smooth projective va-
riety with a ûnite order automorphism by reducing to a result of Saito–Terasoma [22].
Since we prove dimK HB = 1 and H1(X) = H3(X) = 0, the Gross–Deligne conjecture
for our H follows from Fresán’s result. However, we need our precise computations
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for the study of regulators. Our method is quite diòerent from previous works men-
tioned above. A crucial step is to compute explicitly Deligne’s canonical extension
He of the Gauss–Manin connection on the relative ûrst de Rham cohomology. Our
ûbration is smooth outside D ∶= {0,∞}∪ µ l , and there is a connection

∇∶He Ð→ Ω1
P1(logD) ⊗He .

We will describe it explicitly and determine the Hodge structure of H. _e 1-periods
of the ûber are Gauss hypergeometric functions 2F1. By the integral representation of
Euler type, the 2-periods of X are ûrst written in terms of 3F2-values, which then turn
out to be 2F1-values. _e conjecture follows by comparing these computations.

It is more delicate in general to compute the regulators of given motivic elements,
even for a ûbration of curves. Here we use a new technique [3], originally unpub-
lished, but now included in the appendix of the present paper. Via the canonical ex-
tension, we shall represent elements of F 1HdR by certain rational 2-forms. _en the
regulators are expressed as integrals of those rational forms over Lefschetz thimbles,
which are again written in terms of 3F2-values.

_is paper proceeds as follows. In Section 2, we ûx the setting and compute the
1-periods of the ûber and 2-periods of X. In Section 3, we determine the Gauss–
Manin connection and the canonical extension. In Section 4, we determine theHodge
structure and show that HB is one-dimensional over K. In Section 5, we give a basis of
F 1HdR and verify the Gross–Deligne conjecture. In Section 6, we prove the regulator
formula anddiscuss the non-vanishing. _e appendix, due to the ûrst author, provides
the technique to compute the regulators.

1.1 Notations

_roughout this paper, Q denotes the algebraic closure of Q in C. For each positive
integer N , µN denotes the group of N-th roots of unity and we put ζN = e2πi/N . For a
real number x, we write x = ⌊x⌋+{x}with ⌊x⌋ ∈ Z, 0 ≤ {x} < 1, and put ⌈x⌉ = −⌊−x⌋.
For α ∈ C and an integer n ≥ 0, (α)n = ∏

n−1
i=0 (α + i) is the Pochhammer symbol and

the generalized hypergeometric function is deûned by

pFq (
α1 , . . . , αp

β1 , . . . , βq
; x) =

∞

∑
n=0

∏
p
i=1(α i)n

∏
q
j=1(β j)n

xn

n!
.

We o�en drop the subscripts from pFq . It converges at x = 1 whenRe(∑ j β j−∑i α i) >
0. We use the standard notation for the product of Γ-values

Γ(
α1 , . . . , αp

β1 , . . . , βq
) =
∏

p
i=1 Γ(α i)

∏
q
j=1 Γ(β j)

.

For a variety X over Q, Hn
dR(X) = Hn

dR(X/Q) denotes the algebraic de Rham coho-
mology and Hn(X ,Q) denotes the Betti cohomology of the analytic manifold X(C),
or the associated mixed Hodge structure.
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2 Preliminaries

2.1 The Setting

Let p, l be distinct prime numbers and a, b, c be integers with 0 < a, b, c < p (we
shall soon assume that b + c = p). We deûne a ûbration of curves f ∶X → P1 as
follows. Let g∶Y → P1 be a proper �at morphism over Q whose ûber Yt at t ∈ P1 is
the normalization of the curve deûned by yp = xa(1− x)b(t − x)c . _en g is smooth
outside {0, 1,∞} and, by the Riemann–Hurwitz formula, the genus of the generic
ûber is p − 1. _e ûber Y1 is a union of P1 intersecting transversally with each other.
We have an automorphism σ of order p of Y over P1 deûned by σ(x , y) = (x , ζ−1

p y).
Let g(l)∶Y(l) → P1 be the base change of g by the morphism P1 → P1; t ↦ t l . _e

action of σ extends naturally toY(l). On the other hand, the automorphism τ(t) = ζ l t
of P1 induces an automorphism τ of Y(l) over Y . _ere is a desingularization X of
Y(l) such that σ and τ extend to automorphisms of X respectively over P1 and Y (for
example, if one takes a sequence of blow-ups only at the singular points, then σ and
τ extend automatically). As a result, we obtain a ûbration f ∶X → P1 of curves in the
commutative diagram

X //

f   

Y(l) //

g(l)

��
◻

Y

g
��

P1 // P1

and for t /∈ {0,∞}∪ µ l , the ûber Xt is isomorphic to Yt l .

2.2 CM Hodge–de Rham structures

A Hodge–de Rham structure is a quadruple H = (HdR ,HB , ι, F●) consisting of
● a ûnite-dimensional Q-vector space HdR,
● a ûnite-dimensional Q-vector space HB ,
● an isomorphism

ι∶HdR ⊗Q C→ HB ⊗Q C,
and

● a descending ûltration F●HdR that induces a Hodge structure on HB via ι.
For a proper smooth variety X overQ, its n-th deRhamandBetti cohomology groups,
the comparison isomorphism, and the Hodge ûltration deûne a Hodge–de Rham
structure Hn(X).

Let K be a ûnite extension of Q. We say that H admits a K-multiplication if we
are given K-actions on HdR and HB that are compatible with ι and F●. Moreover, we
say that H has CM by K if dimK HB = 1. For each embedding χ∶K ↪ C, let H χ

dR,
H χ
B ∶= (HB ⊗Q Q)χ denote the subspace on which K acts as the multiplication via χ.

If dimK HB = 1, then these subspaces are 1-dimensional over Q. Choosing any bases
ωdR ∈ H χ

dR andωB ∈ H χ
B , we deûne the periodPer(H

χ) ∈ C× by ι(ωdR) = Per(H χ)ωB .
By the ambiguity of the choices, Per(H χ) is only well deûned up to Q

×
. If (HdR , F●)

is already deûned over K, the period is well deûned up to K×.
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Let X be as in Section 2.1 and let Z = X×P1({0,∞}∪µ l) be the union of the singular
ûbers. Note that Z is stable under the actions of σ and τ. Put R = Q[σ , τ], K = Q(µ l p)
and regard K as an R-algebra by σ ↦ ζp , τ ↦ ζ l . _e Hodge–de Rham structure we
consider in this paper is H ∶= Coker(H2

Z(X) → H2(X)) ⊗R K . It admits a K-mul-
tiplication, and we shall show that rankK HB = 1 (_eorem 4.12). An embedding
χ∶K ↪ C is identiûed with an element h ∈ (Z/l pZ)× such that χ(ζ l p) = ζh

l p . If

Coker(H2
Z(X) → H2(X)) = ⊕

m∈Z/lZ,
n∈Z/pZ

H(m ,n)

denotes the decomposition into the eigenspaces on which τ (resp. σ) acts by ζm
l (resp.

ζn
p ), we have H = ⊕m/=0,n/=0 H(m ,n).

2.3 Periods of the Fiber

For n = 1, . . . , p − 1 and integers i, j, k, put a rational 1-form on Yt by

ω i jk
n =

x i(1 − x) j(t − x)k

yn dx .

_en we have

(2.1) σ∗ω i jk
n = ζn

pω
i jk
n .

Let 0 < t < 1 and δ0 be a path on Yt from (0, 0) to (t, 0) deûned by

x = ts, y = p
√
xa(1 − x)b(t − x)c .

Let δ1 be a path on Yt from (t, 0) to (1, 0) deûned by

x = t + (1 − t)s, y = εc p
√
xa(1 − x)b(x − t)c ,

where we put

ε =
⎧⎪⎪
⎨
⎪⎪⎩

i if p = 2,
−1 if p is odd.

If we put κm = (1 − σ)∗δm , (m = 0, 1), these deûne 1-cycles on Yt , and we have

(2.2) ∫
κm

ω i jk
n = ∫

δm
(1 − σ)∗ω i jk

n = (1 − ζn
p)∫

δm
ω i jk

n .

Lemma 2.1 Fix integers i , j, k ≥ 0. For n = 1, . . . , p − 1, put

α = na
p
− i , β = nb

p
− j, γ = nc

p
− k.

_en we have

∫
δ0

ω i jk
n = B(1 − α, 1 − γ) ⋅ t1−α−γF (

1 − α, β
2 − α − γ

; t) ,

∫
δ1

ω i jk
n = εpγB(1 − β, 1 − γ) ⋅ (1 − t)1−β−γF (

α, 1 − β
2 − β − γ

; 1 − t) .
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Proof _e ûrst equality follows directly from Euler’s integral representation of the
Gauss hypergeometric function 2F1:

B(b, c − b) ⋅ F (
a, b
c

; t) = ∫
1

0
(1 − tx)−axb−1(1 − x)c−b−1 dx

(let a = β, b = 1 − α, c = 2 − α − γ). _e second one follows from the same formula
and the transformation formula

F (
a, c − b
c

; 1 −
1
t
) = ta ⋅ F (

a, b
c

; 1 − t) .

2.4 Cohomology of the Fiber

We have decompositions

H1(Yt ,C) =
p−1
⊕
n=1

H1(Yt ,C)(n) , H1(Yt ,Q(µp)) =
p−1
⊕
n=1

H1(Yt ,Q(µp))
(n) ,

where (n) denotes the subspace on which σ∗ (resp. σ∗) acts as the multiplication by
ζn
p . Note that H1(Yt ,C)(0) = 0 since Yt/µp is a rational curve. _e natural paring

induces a non-degenerate pairing H1(Yt ,C)(n) ⊗ H1(Yt ,Q(ζp))(n) → C. We shall
give bases of these spaces under a certain assumption.

Lemma 2.2 Let n = 1, . . . , p − 1 and i , j, k ≥ 0 be integers.
(i) If p ∤ a + b + c, then ω i jk

n is a diòerential form of the second kind.
(ii) Moreover, ω i jk

n is holomorphic if and only if

i ≥ na + 1
p

− 1, j ≥ nb + 1
p

− 1, k ≥ nc + 1
p

− 1,

i + j + k ≤ n(a + b + c) − 1
p

− 1.

Proof See [2, (18)] (but see [2, (13)] for the correct sign in the fourth inequality).

Henceforth, we assume b+ c = p. _en the condition p ∤ a+b+ c is automatically
satisûed. By Lemma 2.2, ω i jk

n is holomorphic if and only if

i = ⌈
na + 1

p
⌉ − 1, j = ⌈

nb + 1
p

⌉ − 1, k = ⌈
nc + 1

p
⌉ − 1,

and we write this ω i jk
n simply as ωn . _e α, β, γ in Lemma 2.1 become

α = {
na
p

} , β = {
nb
p

} , γ = {
nc
p
} = 1 − β.

In particular, 0 < α, β, γ < 1. Although these depend on n, we shall suppress n from
the notation. By Lemma 2.1, we have

(2.3)
∫
δ0

ωn = B(1 − α, β) ⋅ tβ−αF (
1 − α, β
1 − α + β

; t) ,

∫
δ1

ωn = −εpβB(1 − β, β) ⋅ F (
α, 1 − β

1
; 1 − t) .
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For each n, let i , j, k be as above and put ηn = ω i , j+1,k
n . _en β is replaced by β − 1

in Lemma 2.1 and we obtain

(2.4)
∫
δ0
ηn = B(1 − α, β) ⋅ tβ−αF (

1 − α, β − 1
1 − α + β

; t) ,

∫
δ1
ηn = −εpβB(1 − β, β) ⋅ (1 − β)(1 − t)F (

α, 2 − β
2

; 1 − t) .

Here we used B(2 − β, β) = (1 − β)B(1 − β, β).

Proposition 2.3 Let n = 1, . . . , p − 1 and 0 < t < 1. _en {ωn , ηn} is a basis of
H1(Yt ,C)(n).

Proof By (2.1), (2.2), (2.3), and (2.4),ωn , ηn are non-trivial elements ofH1(Yt ,C)(n).
Since ωn is holomorphic and ηn is not, they are linearly independent. Since

dimH1(Yt ,C) = 2(p − 1),

the proposition follows.

Proposition 2.4 Let n = 1, . . . , p − 1 and 0 < t < 1.
(i) _e projections of κ0 , κ1 form a basis of H1(Yt ,Q(µp))

(n).
(ii) As aQ[σ]-module, H1(Yt ,Q) is generated by κ0 and κ1.

Proof _e period matrix is

Mn(t) = (∫κ0
ωn ∫κ0

ηn

∫κ1
ωn ∫κ1

ηn
) .

It suõces to show that detMn(t) /= 0. Since∏p−1
n=1 detMn(t) is constant, it coincides

with its limit as t → 1. Hence the proposition follows from the lemma below.

Lemma 2.5 We have

lim
t→1

detMn(t) = εpβ(1 − ζn
p)

2 ⋅
B(β, 1 − β)

1 − α
.

Proof By (2.2), (2.3), (2.4), we have

detMn(t) = − εpβ(1 − ζn
p)

2B(1 − α, β)B(1 − β, β)tβ−α

× det
⎛

⎝

F ( 1−α ,β
1−α+β ; t) F ( 1−α ,β−1

1−α+β ; t)

F ( α ,1−β1 ; 1 − t) (1 − β)(1 − t)F ( α ,2−β2 ; 1 − t)
⎞

⎠
.

First, we have

lim
t→1

(1 − t)F (
1 − α, β
1 − α + β

; t) = 0.

_is follows from the transformation formula (cf. [11, p. 74 (2)])

F (
1 − α, β
1 − α + β

; t) =
1

B(1 − α, β)

∞

∑
n=0

(1 − α)n(β)n

(n!)2 (kn − log(1 − t))(1 − t)n ,

kn ∶= 2ψ(n + 1) − ψ(1 − α + n) − ψ(β + n)
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where ψ(t) = Γ′(t)/Γ(t) is the digamma function. On the other hand, by Euler’s
formula, we have

F (
1 − α, β − 1
1 − α + β

; 1) = Γ (
1 − α + β
2 − α, β

;) =
1

(1 − α)B(1 − α, β)
.

Hence the lemma follows.

2.5 Periods of X

Now we consider the ûbration f ∶X → P1. Recall that Xt ≃ Yt l . By abuse of notation,
for each s = 0, 1, let δs (resp. κs) be the path (resp. loop) on Xt which corresponds to
the one onYt l deûned in §2.3. For each s, let ∆s be the 2-simplex obtained by sweeping
δs along 0 ≤ t ≤ 1. Since δs is vanishing as t → s, the Lefschetz thimble (1− σ)∗∆s has
boundary on the ûber X1−s . We shall use (1 − σ)∗∆1 (resp. (1 − σ)∗∆0) to compute
the periods (resp. regulators). Again by abuse of notation, let ωn denote the pullback
to X of the rational 1-form ωn on Y deûned in §2.4. For n = 1, . . . , p− 1 and an integer
m, deûne rational 2-forms on X by

ωm ,n = tm dt
t
∧ ωn , ηm ,n = tm dt

t
∧ ηn .

We have evidently, (τ iσ j)∗ωm ,n = ζmi
l ζn j

p ωm ,n and (τ iσ j)∗ηm ,n = ζmi
l ζn j

p ηm ,n .

Proposition 2.6 Let n = 1, . . . , p − 1 and α = { na
p }, β = { nb

p } as before. For an
integer m, put µ = m/l .

(i) If µ > α − β, then we have

∫
∆1

ωm ,n = −
εpβ

l
⋅ B(β, µ)B(1 − β, β − α + µ),

∫
∆1
ηm ,n = −

εpβ(1 − β)
l(1 − α + µ)

⋅ B(β, µ)B(1 − β, β − α + µ).

(ii) We have

∫
∆0

ωm ,n =
B(1 − α, β)
l(β − α + µ)

⋅ F (
1 − α, β, β − α + µ

1 − α + β, β − α + µ + 1
; 1) ,

∫
∆0
ηm ,n =

B(1 − α, β)
l(β − α + µ)

⋅ F (
1 − α, β − 1, β − α + µ
1 − α + β, β − α + µ + 1

; 1) .

Proof Recall the integral representation of 3F2 (cf. [24, (4.1.2)]):

Γ (
c, e − c
e

) F (
a, b, c
d , e

; t) = ∫
1

0
F (
a, b
d

; tx) x c−1(1 − x)e−c−1 dx .
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By (2.3), we have

∫
∆1

ωm ,n = −εpβB(β, 1 − β)∫
1

0
F (
α, 1 − β

1
; 1 − t l) tm−1 dt

= −εpβ B(β, 1 − β)
l ∫

1

0
F (
α, 1 − β

1
; 1 − t) tµ−1 dt

= −εpβ B(β, 1 − β)
l ∫

1

0
F (
α, 1 − β

1
; t) (1 − t)µ−1 dt

= −εpβ B(β, 1 − β)
l µ

F (
α, 1 − β, 1
1, µ + 1

; 1)

= −εpβ B(β, 1 − β)
l µ

F (
α, 1 − β
µ + 1

; 1) ,

which converges by the assumption. Using Euler’s formula

F (
a, b
c

; 1) = Γ (
c, c − a − b
c − a, c − b

) (Re(c − a − b) > 0)

and the functional equations

Γ(x + 1) = xΓ(x), B(x , y) = Γ (
x , y
x + y

) ,

we obtain the ûrst equality of (i). _e others follow similarly, using (2.4) for ηm ,n .

3 Canonical Extension

In this section, we compute the Gauss–Manin connection of the ûbration and deter-
mine its canonical extension to P1.

3.1 Gauss–Manin Connection

Let us start with the ûbration g∶Y → P1; for a while, t denotes the coordinate of the
base scheme of g. Put T = P1∖{0, 1,∞}, YT = Y×P1 T . _en the restriction g∶YT → T
is smooth. Put

H = R1g∗Ω●
YT/T , Ω1

T = Ω1
T/Q ,

and let ∇∶H → Ω1
T ⊗H be the Gauss–Manin connection. For each n = 1, . . . , p −

1, let H (n) ⊂ H be the subbundle on which σ∗ acts as the multiplication by ζn
p .

_en H (n) is locally generated by ωn , ηn as deûned in §2.4, and the Hodge ûltration
F 1H (n) is generated by ωn .

Proposition 3.1 For n = 1, . . . , p − 1, the Gauss–Manin connection

∇∶H (n) → Ω1
T ⊗H (n)

is given by

(∇ωn ,∇ηn) =
dt
t
⊗ (ωn , ηn)(

1 − β 0
0 1 − α)(

−1 −1
(1 − t)−1 1 ) ,

where we put α = { na
p }, β = { nb

p } as before.
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Proof We use the following standard derivation relations among Gauss hypergeo-
metric functions [24, (1.4.1.1), (1.4.1.6)]:

d
dt
F (
a, b
c

; t) = ab
c
F (
a + 1, b + 1
c + 1

; t) ,(3.1)

d
dt

(tc−1F (
a, b
c

; t)) = (c − 1)tc−2F (
a, b
c − 1

; t) .(3.2)

We also use the following contiguous relations (see [24, (1.4.1), (1.4.3), (1.4.5), (1.4.9),
(1.4.13)]):

(c − 2a + (a − b)t)F + a(1 − t)F[a + 1] = (c − a)F[a − 1],(3.3)
(c − a − b)F + a(1 − t)F[a + 1] = (c − b)F[b − 1],(3.4)

(c − a − 1)F + aF[a + 1] = (c − 1)F[c − 1],(3.5)
(a − 1 + (1 + b − c)t)F + (c − a)F[a − 1] = (c − 1)(1 − t)F[c − 1],(3.6)

c(1 − t)F + (c − a)tF[c + 1] = cF[b − 1].(3.7)

Here, F = F ( a ,bc ; t) and the notation F[a + 1], for example, means F ( a+1,b
c ; t).

We are reduced to show

(3.8) t d
dt

Mn(t) = Mn(t)(
1 − β 0
0 1 − α)(

−1 −1
(1 − t)−1 1 ) .

We prove this for each row vector. For the ûrst row vector, put

( f (t), g(t)) = (tβ−αF (
1 − α, β
1 − α + β

; t) , tβ−αF (
1 − α, β − 1
1 − α + β

; t)) .

First, consider the case α /= β. By (3.2), we have

t d
dt

( f (t), g(t)) = ((β − α)tβ−αF (
1 − α, β
−α + β

; t) , (β − α)tβ−αF (
1 − α, β − 1
−α + β

; t)) .

Applying (3.6) to F ( β ,1−α
1−α+β ; t), we obtain

t d
dt
f (t) = −(1 − β) f (t) + (1 − α)(1 − t)−1g(t).

Applying (3.5) to F ( β−1,1−α
1−α+β ; t), we obtain t ddt g(t) = −(1 − β) f (t) + (1 − α)g(t).

Hence we are done. Now consider the case α = β. _en

( f (t), g(t)) = (F (
1 − α, α

1
; t) , F (

1 − α, α − 1
1

; t)) .

By (3.1), we have

d
dt

( f (t), g(t)) = ((1 − α)αF (
2 − α, 1 + α

2
; t) ,−(1 − α)2F (

2 − α, α
2

; t)) .

Applying (3.7) to F ( 2−α ,1+α
1 ; t), we have

(3.9) t d
dt
f (t) = α(1 − t)F (

2 − α, 1 + α
1

; t) − αF (
2 − α, α

1
; t) .
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Applying (3.4) to F ( 1−α ,1+α
1 ; t), we have

(3.10) (1 − α)(1 − t)F (
2 − α, 1 + α

1
; t) = F (

1 − α, 1 + α
1

; t) − α f (t).

Applying (3.3) to F ( α ,1−α1 ; t), we have

(3.11) α(1 − t)F (
1 − α, 1 + α

1
; t) = (2α − 1)(1 − t) f (t) + (1 − α)g(t).

Applying (3.4) to F ( 1−α ,α
1 ; t), we have

(3.12) (1 − t)F (
2 − α, α

1
; t) = g(t).

Combining (3.9)–(3.12), we obtain t ddt f (t) = (1−α) (− f (t) + (1 − t)−1g(t)). Apply-
ing (3.7) to F ( α ,2−α1 ; t), we have

t d
dt

g(t) = (1 − α) (−F (
1 − α, α

1
; t) + (1 − t)F (

2 − α, α
1

; t))

(3.12)
= (1 − α)(− f (t) + g(t)).

In both cases α /= β and α = β, we have proved (3.8) for the ûrst row vector. For the
second row vector, put

(u(t), v(t)) = (F (
α, 1 − β

1
; 1 − t) , (1 − β)(1 − t)F (

α, 2 − β
2

; 1 − t)) .

_en by (3.1) and (3.2) we have

d
dt

(u(t), v(t)) = −(1 − β) (αF (
α + 1, 2 − β

2
; 1 − t) , F (

α, 2 − β
1

; 1 − t)) .

Applying (3.7) to F ( α ,2−β1 ; 1 − t), we obtain

(3.13) t d
dt

v(t) = −(1 − β)u(t) + (1 − α)v(t).

Applying (3.4) to F ( α ,2−β2 ; 1 − t), we have

(3.14) t d
dt

u(t) = (β − α)(1 − t)−1v(t) − (1 − β)β ⋅ F (
α, 1 − β

2
; 1 − t) .

Applying (3.6) to F ( 2−β ,α
2 ; 1 − t), we have

(1 − β)β ⋅ F (
α, 1 − β

2
; 1 − t) = (−(1 − β)(1 − t)−1 + 1 − α) v(t) − t d

dt
v(t)

(3.13)
= (1 − β) (u(t) − (1 − t)−1v(t)) .(3.15)

Combining (3.14) and (3.15), we obtain

t d
dt

u(t) = −(1 − β)u(t) + (1 − α)(1 − t)−1v(t).

Hence we have proved (3.8) for the second row vector.
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3.2 Canonical Extension

Now we return to the ûbration f ∶X → P1, and from now on t denotes the coordinate
of the base scheme of f . Put D = {0,∞} ∪ µ l , T = P1 ∖ D, U = X ×P1 T , H =
R1 f∗Ω●

U/T , and let∇∶H → Ω1
T⊗H be the Gauss–Manin connection. _e following

is immediate from Proposition 3.1.

Proposition 3.2 For n = 1, . . . , p − 1, the Gauss–Manin connection ∇∶H (n) →

Ω1
T ⊗H (n) is given by

(∇ωn ,∇ηn) = l dt
t
⊗ (ωn , ηn)(

1 − β 0
0 1 − α)(

−1 −1
1

1−t l 1 )

= l ds
s
⊗ (ωn , ηn)(

1 − β 0
0 1 − α)(

1 1
s l

1−s l −1
) , s = 1/t.

Let j∶T → P1 denote the embedding. Let Ω1
P1(logD) be the sheaf of diòerentials

on P1 with logarithmic poles along D. _en Deligne’s canonical extension ([9, 5.1])
∇∶He → Ω1

P1(logD)⊗He is deûned to be the unique sub-bundle of j∗H satisfying
the following properties:
● ∇(He) ⊂ Ω1

P1(logD) ⊗He ,
● for each t ∈ D, all the eigenvalues of Rest(∇) lie in the interval [0, 1), whereRest(∇)
denotes the residue at t of the connection matrix.

In fact, we have He = R1 f∗Ω●
X/P1(log Z) (recall Z = X ×P1 ({0,∞} ∪ µ l)) by Steen-

brink [25, (2.18), (2.20)]. _is is determined as follows.

Proposition 3.3 For n = 1, . . . , p−1, local bases ofH (n)
e at t ∈ D are given as follows.

H (n)
e ∣0 =

⎧⎪⎪
⎨
⎪⎪⎩

⟨ωn − ηn , t⌈(α−β)l⌉((1 − β)ωn − (1 − α)ηn)⟩ if α /= β,
⟨ωn , ηn⟩ if α = β,

H (n)
e ∣∞ =

⎧⎪⎪
⎨
⎪⎪⎩

⟨t⌊(1−β)l⌋((1 − α − β)ωn + (1 − α)t−lηn), t⌊αl⌋−lηn)⟩ if α + β /= 1,
⟨t⌊αl⌋ωn , t⌊αl⌋−lηn⟩ if α + β = 1,

H (n)
e ∣ζ = ⟨ωn , ηn⟩ (ζ ∈ µ l).

_e residue matrices with respect to these bases are

Res0(∇) =

⎧⎪⎪
⎨
⎪⎪⎩

( 0 0
0 {(β−α)l} ) if α /= β,

l(1 − α)( −1 −1
1 1 ) if α = β,

Res∞(∇) =

⎧⎪⎪
⎨
⎪⎪⎩

( {(1−β)l} 0
0 {αl} ) if α + β /= 1,

( {αl} 0
(α−1)l {αl} ) if α + β = 1,

Resζ(∇) = −(1 − α)( 0 0
1 0 ) .

Proof Let A be the matrix of the connection from Proposition 3.2. For each t ∈ D,
we shall ûnd amatrix P with coeõcients in local sections of j∗OU such that (ωn , ηn)P
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is a local basis ofHe at t. _e connection matrix with respect to this basis is given by
the gauge transformation AP ∶= P−1AP + P−1P′, where P′ = d

dt P. For t = 0, we let

P = (
1 1 − β
−1 −(1 − α))(

1 0
0 t⌈(α−β)l⌉)

if α /= β, and P = I (the unit matrix) if α = β. For t = ζ ∈ µ l , we let P = I. Finally for
t = ∞, we let

P = (
1 0
0 t−l)(

1 − α − β 0
1 − α 1)(

t⌊(1−β)l⌋ 0
0 t⌊αl⌋)

if α + β /= 1, and

P = (
t⌊αl⌋ 0
0 t⌊αl⌋−l)

if α + β = 1. _en one veriûes that AP satisûes the desired properties and its residue
is given as stated.

To see the Hodge ûltration, we rewrite the above bases as follows.

Corollary 3.4 Let n = 1, . . . , p − 1.

H (n)
e ∣t=0 =

⎧⎪⎪
⎨
⎪⎪⎩

⟨ωn , t−⌊(β−α)l⌋((1 − β)ωn − (1 − α)ηn)⟩ if α ≤ β,
⟨t⌈(α−β)l⌉ωn ,ωn − ηn⟩ if α > β.

H (n)
e ∣t=∞ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⟨t⌊(1−β)l⌋ωn , t⌊αl⌋−lηn)⟩ if ⌊αl⌋ ≥ ⌊(1 − β)l⌋,
⟨t⌊αl⌋ωn , t⌊(1−β)l⌋((1 − α − β)ωn + (1 − α)t−lηn)⟩

if ⌊αl⌋ < ⌊(1 − β)l⌋.

H (n)
e ∣t=ζ = ⟨ωn , ηn⟩ (ζ ∈ µ l).

WriteO = OP1 and deûne F 1He = He ∩ j∗(F 1H ). _en we immediately have the
following corollary.

Corollary 3.5 Let n = 1, . . . , p − 1.
(i) We have F 1H

(n)
e = O(i)t jωn with

(i , j) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(⌊(1 − β)l⌋, 0) if ⌊αl⌋ ≥ ⌊(1 − β)l⌋, α ≤ β,
(⌊(1 − β)l⌋ − ⌈(α − β)l⌉, ⌈(α − β)l⌉) if ⌊αl⌋ ≥ ⌊(1 − β)l⌋, α > β,
(⌊αl⌋, 0) if ⌊αl⌋ < ⌊(1 − β)l⌋, α ≤ β,
(⌊αl⌋ − ⌈(α − β)l⌉, ⌈(α − β)l⌉) if ⌊αl⌋ < ⌊(1 − β)l⌋, α > β.

(ii) According to the four cases as above, we have

Gr0F H (n)
e =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(−⌈(1 − α)l⌉ + ⌊(β − α)l⌋)t−⌊(β−α)l⌋((1 − β)ωn − (1 − α)ηn),
O(−⌈(1 − α)l⌉)(ωn − ηn),
O(⌊(β − α)l⌋ − ⌈βl⌉)t−⌊(β−α)l⌋

×((1 − α − β)t lωn − (1 − β)ωn + (1 − α)ηn) ,
O(−⌈βl⌉) ((1 − α − β)t lωn − (1 − α)(ωn − ηn)) .
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Here, by abuse of notation, the images of ωn , ηn in Gr1F H
(n)
e are denoted by the

same letters.

Corollary 3.6 For each ζ ∈ µ l , Xζ is a normal crossing divisor in X with rational
irreducible components.

Proof By Proposition 3.3, the local monodromy of H1(Xt ,Q) at t = ζ is unipotent,
hence Xζ is normal crossing [21,_eorem 1]. By the Clemens–Schmid exact sequence
[17, §4 (a)], H1(Xζ ,Q) is the kernel of the log local monodromy N ∶H1(Xt ,Q) →

H1(Xt ,Q). _e cohomology group H1(Xt ,Q) carries a limiting mixed Hodge struc-
ture and N is a morphism of mixed Hodge structures of type (−1,−1). Since rankN =
1
2 dimH1(Xt ,Q)byProposition 3.3, we haveGrW1 H1(Xt ,Q) = 0 andW0H1(Xt ,Q) =

Ker(N). Hence H1(Xζ) is of pure weight 0, and all the irreducible components of Xζ
are rational.

4 Hodge Numbers

In this section, we determine the Hodge numbers of the eigencomponents of our H
and prove that it has CM by K, i.e., dimK HB = 1.

4.1 Localization Sequence

Let the notations be as in Section 3.2 and put Z = X ∖ U . We have the localization
sequence H2

Z(X) → H2(X) → H2(U) → H3
Z(X) → H3(X) both for the de Rham

and Betti cohomologies. Let ⟨Z⟩ denote the image of the ûrst map. Recall that we
deûned (§2.2) the Hodge–de Rham structure H = H2(X)/⟨Z⟩ ⊗R K.

Proposition 4.1 H1(X) = H3(X) = 0.

Proof By Poincaré duality, it suõces to show H1(X ,Q) = 0. Since H1(X ,Q) ↪
W1H1(U ,Q), whereW● denotes the weight ûltration, it suõces to show the vanishing
of the latter. Using the Leray spectral sequence, we have an exact sequence

0Ð→ H1(T ,Q) Ð→ H1(U ,Q) Ð→ H0(T , R1 f∗Q) Ð→ 0.

By the computation of Res∞(∇) in Proposition 3.3, for n = 1, . . . , p − 1, the local
monodromy around t = ∞ of H1(Xt ,C)(n) does not have 1 as an eigenvalue. Hence
we have H0(T , R1 f∗Q) = 0 (recall that H1(Xt ,C)(0) = 0). Since H1(T ,Q) is of
weight 2, we haveW1H1(U ,Q) = 0.

As a result, we have an exact sequence on the de Rham side [14, Chapter II, _eo-
rem (3.3), Proposition (3.4)]

0Ð→ H2
dR(X)/⟨Z⟩ Ð→ H2

dR(U)
∂
Ð→ HdR

1 (Z) Ð→ 0.

_emiddle term is described by the canonical extension as follows. _eLeray spectral
sequence yields an exact sequence

0Ð→ H1(T ,H ) Ð→ H2
dR(U) Ð→ H0(T , R2 f∗Ω●

U/T) Ð→ 0.
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Since σ∗ acts on R2 f∗Ω●
U/T trivially, we have H1(T ,H (n)) ≃ H2

dR(U)(n) for n =

1, . . . , p − 1. Put a complex of sheaves on P1 as E = [He
∇
→ Ω1

P1(logD) ⊗He]. _en
the map of complexes

He //

��

Ω1
P1(logD) ⊗He

��
j∗H // j∗(Ω1

T ⊗H )

induces an isomorphism H1(P1 ,E ) ≃ H1(T ,H ), and the ûrst group carries a mixed
Hodge structure [26, _eorem (4.1)] and its Hodge ûltration is given as follows [26,
(4.10)]:

F0H1(P1 ,E ) = H1(P1 ,E ),

F 1H1(P1 ,E ) = H1(P1 , F 1He → Ω1
P1(logD) ⊗He),

F2H1(P1 ,E ) = H0(P1 , Ω1
P1(logD) ⊗ F 1He).

(4.1)

It follows that
Gr0F H1(P1 ,E ) = H1(P1 , Gr0F He),

Gr1F H1(P1 ,E ) = Coker(H0(P1 , F 1He)
∇
→ H0(P1 , Ω1

P1(logD) ⊗Gr0F He)) ,

(4.2)

where ∇ is the map induced from the composition of ∇ and the projection He →
Gr0F He .

4.2 Residues

For each t ∈ D, let ∂t ∶H2
dR(U) → HdR

1 (Xt) be the t-component of the coboundary
map ∂. Let Nt ⊂ He ,t be the image of the composite

Γ(Ut ,He)
∇
Ð→ Γ(Ut , Ω1

P1(log t) ⊗He)
Rest
Ð→He ,t ,

where Ut is a small open neighborhood of t. _en it is not diõcult to show that the
diagram

H1(P1 ,E )
⊂ //

Rest
��

H2
dR(U)

∂ t

��
He ,t/Nt

≃ // HdR
1 (Xt)

commutes, where the lowermap is an isomorphism. _e following is immediate from
Proposition 3.3.

Proposition 4.2 For n = 1, . . . , p − 1, we have

N(n)
0 = ⟨ t⌈(α−β)l⌉((1 − β)ωn − (1 − α)ηn)⟩ ,

N(n)
∞ = He ,∞ ,

N(n)
ζ = ⟨ηn⟩ for ζ ∈ µ l .
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_erefore, we have

dimHdR
1 (Xt)

(n) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if t = 0 or t ∈ µ l ,
0 if t = ∞.

Later, we shall use the following.

Lemma 4.3 Let n = 1, . . . , p − 1.

(i) If α ≤ β, then tmωn ∣t=0 ∈ N(n)
0 if m > 0, and /∈ N(n)

0 if m = 0.
(ii) If α > β, then tmωn ∣t=0 ∈ N(n)

0 if m ≥ ⌈(α − β)l⌉.

Proof By Corollary 3.4 and Proposition 4.2, this is trivial except when α > β and
m = ⌈(α − β)l⌉. In this case, we have

tmωn ∣t=0 = tmωn ∣0+
1 − α
α − β

tm(ωn−ηn)∣t=0 =
tm((1 − β)ωn − (1 − α)ηn)∣t=0

α − β
∈ N(n)

0 .

4.3 Hodge Numbers

For each n = 1, . . . , p − 1, we obtained an exact sequence

(4.3) 0Ð→ (H2
dR(X)/⟨Z⟩)(n) Ð→ H1(P1 ,E (n))

Res
Ð→H

(n)
e ,0 /N(n)

0 ⊕ ⊕
ζ∈µ l

H
(n)
e ,ζ /N(n)

ζ Ð→ 0.

First, we give a basis of F2. By (4.1), we have an embedding

ι∶ F2(H2
dR(X)/⟨Z⟩)(n) ↪ Γ(P1 , Ω1

P1(logD) ⊗ F 1H (n)
e ).

By this, we identify F2(H2
dR(X)/⟨Z⟩)(n) with the elements of the right-hand side

having trivial residues. Recall the rational 2-forms ωm ,n = tm dt
t ⊗ ωn .

Proposition 4.4 For each n = 1, . . . , p− 1, a basis of F2(H2
dR(X)/⟨Z⟩)(n) is given by

{ωm ,n ∣ m ∈ I2n}, where

I2n ∶= {m ∣ max{1, ⌈(α − β)l⌉} ≤ m ≤ min{⌊αl⌋, ⌊(1 − β)l⌋}} .

In particular, dim F2(H2
dR(X)/⟨Z⟩)(n) = min{⌊αl⌋, ⌊(1−β)l⌋}−max{0, ⌊(α−β)l⌋}.

Proof Let F 1H
(n)
e = O(i)t jωn be as in Corollary 3.5 (i). One easily sees that a basis

of H0(P1 , Ω1
P1(logD) ⊗ F 1H

(n)
e ) is given by

ωm ,n ( j ≤ m ≤ i + j), t j dt
t − ζ

⊗ ωn (ζ ∈ µ l).

For the ûrst type, the residues at ζ ∈ µ l are trivial. By Lemma 4.3, Res0(ωm ,n) = tmωn
is trivial for m ≥ j unless α ≤ β and m = 0. For the second type, it has trivial residues

https://doi.org/10.4153/CJM-2017-008-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-008-6


CM periods, CM Regulators, and Hypergeometric Functions, I 497

except at ζ and

Resζ( t j dt
t − ζ

⊗ ωn) = t jωn ,

which is non-trivial by Proposition 4.2. _ese show that a basis of

F2(H2
dR(X)/⟨Z⟩)(n)

is given by ωm ,n with j ≤ m ≤ i + j and m /= j = 0 if α ≤ β. Hence the proposition
follows from Corollary 3.5 (i).

Since (He ,0/N0)
(n) and (He ,ζ/Nζ)

(n) are all 1-dimensional, the above proof im-
plies the following.

Corollary 4.5 For n = 1, . . . , p − 1, we have

Res(F2H1(P1 ,E (n))) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(He ,0/N0)
(n) ⊕ ⊕

ζ∈µ l

(He ,ζ/Nζ)
(n) if α ≤ β,

⊕
ζ∈µ l

(He ,ζ/Nζ)
(n) if α > β.

Corollary 4.6 Suppose that p < l . _en we have F2(H2
dR(X)/⟨Z⟩)(n) /= 0 for any

n = 1, . . . , p − 1.

Proof Since α, 1 − β ≥ 1/p, we have lα, l(1 − β) > 1. Since β ≥ 1/p and α ≤ 1 − 1/p,
we have (α − β)l < αl − 1, (1 − β)l − 1. Hence we have I2n /= ∅.

Now we determine the other Hodge numbers.

Lemma 4.7 Let n = 1, . . . , p − 1.
(i) If α ≤ β, then we have Gr1F(H2

dR(X)/⟨Z⟩)(n) = Gr1F H1(P1 ,E (n)).
(ii) If α > β, then we have an exact sequence

0Ð→ Gr1F(H2
dR(X)/⟨Z⟩)(n) Ð→ Gr1F H1(P1 ,E (n))

Res0
Ð→ (He ,0/N0)

(n) Ð→ 0.

Proof By (4.3) and Corollary 4.5, we are le� to show the non-triviality of Res0 in the
case (ii). If ⌊αl⌋ ≥ ⌊(1 − β)l⌋, consider

dt
t(1 − t l)

⊗ (ωn − ηn).

By Corollary 3.5 (ii), this is an element ofH0(P1 , Ω1
P1(logD)⊗Gr0F H

(n)
e ). Its residue

at 0 is ωn − ηn /≡ 0 (mod N0) by Proposition 4.2. If ⌊αl⌋ < ⌊(1 − β)l⌋, consider
similarly

dt
t(1 − t l)

⊗ ((1 − α − β)t lωn − (1 − α)(ω − ηn)),

whose residue at 0 is −(1 − α)(ωn − ηn) /≡ 0 (mod N0).

Proposition 4.8 For each n = 1, . . . , p − 1, we have

dimGr1F(H2
dR(X)/⟨Z⟩)(n) = ∣ ⌊αl⌋ − ⌊(1 − β)l⌋∣ + ⌊∣α − β∣l⌋.
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Proof First we show that the map

∇∶H0(P1 , F 1H (n)
e ) → H0(P1 , Ω1

P1(logD) ⊗Gr0F H (n)
e )

is injective. Let F 1H
(n)
e = O(i)t jωn as in Corollary 3.5 (i). _en H0(P1 , F 1H

(n)
e )

has a basis {ωm ,n ∣ j ≤ m ≤ i + j}, and

∇ωm ,n =
dt
t
tm{(m − l(1 − β))ωn +

l(1 − α)
1 − t l

ηn} ≡ l(1 − α) dt
t(1 − t l)

tmηn /≡ 0

modulo H0(P1 , Ω1
P1(logD)⊗ F 1H

(n)
e ). Since 0 ≤ i < l in every case, ωm ,n belong to

diòerent eigenspaces with respect to the τ-action. Hence the non-vanishing implies
the injectivity.
By Corollary 3.5 (ii), we have Gr0F H

(n)
e ≃ O(k), where

k ∶=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−⌈(1 − α)l⌉ + ⌊(β − α)l⌋ if ⌊αl⌋ ≥ ⌊(1 − β)l⌋, α ≤ β,
−⌈(1 − α)l⌉ if ⌊αl⌋ ≥ ⌊(1 − β)l⌋, α > β,
⌊(β − α)l⌋ − ⌈βl⌉ if ⌊αl⌋ < ⌊(1 − β)l⌋, α ≤ β,
−⌈βl⌉ if ⌊αl⌋ < ⌊(1 − β)l⌋, α > β.

Note that k < 0 in any case. One sees that H0(P1 , Ω1
P1(logD) ⊗O(k)) has a basis

tm

1 − t l
dt
t
⊗ ωn (0 ≤ m ≤ l + k).

By (4.2) and the above injectivity, we have

dimGr1F H1(P1 ,E (n)) = dimH0(P1 , Ω1
P1(logD) ⊗O(k)) − dimH0(P1 ,O(i))

= (l + k + 1) − (i + 1) = l + k − i .

By Corollary 3.5 (i) and Lemma 4.7, we obtain the desired formula.

Corollary 4.9 Assume that p < l and p > 2 when a = b. _en we have

Gr1F(H2
dR(X)/⟨Z⟩)(n) /= 0

for any n = 1, . . . , p − 1.

Proof If a /= b, then ⌊∣α − β∣l⌋ ≥ ⌊ l
p ⌋ ≥ 1. If a = b, then α /= 1 − α since p > 2, and

hence ∣ ⌊αl⌋ − ⌊(1 − α)l⌋∣ ≥ 1.

Proposition 4.10 For each n = 1, . . . , p − 1, we have

dimGr0F(H2
dR(X)/⟨Z⟩)(n) = min{⌊(1 − α)l⌋, ⌊βl⌋} −max{0, ⌊(β − α)l⌋}.

Proof By (4.2), Corollary 4.5, and Lemma 4.7, we have

Gr0F(H2
dR(X)/⟨Z⟩)(n) = H1(P1 , Gr0F H (n)

e ) = H1(P1 ,O(k)),

where k is as in the proof of Proposition 4.8. Since k < 0, we have

dimH1(P1 ,O(k)) = dimH0(P1 ,O(−k − 2)) = −k − 1.

Hence the proposition follows.
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Remark 4.11 In fact, Proposition 4.10 is equivalent to the dimension formula in
Proposition 4.4. Note that the complex conjugation switches n (resp. α, β) and p − n
(resp. 1 − α, 1 − β).

_eorem 4.12 _e Hodge–de Rham structure H = (H2(X)/⟨Z⟩) ⊗R K has CM by
K, i.e., dimK HB = 1.

Proof Combining Propositions 4.4, 4.8, and 4.10, one veriûes that

dim(H2
dR(X)/⟨Z⟩)(n) = l − 1

for each n = 1, . . . , p − 1. It follows that dimQ HB ≤ (l − 1)(p − 1) = [K ∶Q]. It
remains to show that H /= 0, for which it suõces to show that τ is not the identity
on H2

dR(X)/⟨Z⟩. If p < l , this follows from Proposition 4.4 and Corollary 4.6. _e
general case follows from Proposition 5.2 below.

5 Periods

We compute the periods of our H and verify the Gross–Deligne conjecture, for which
it will suõce to consider F 1HdR.

5.1 Basis of F 1HdR

Recall that, by (4.3), we can identify F 1(H2
dR(X)/⟨Z⟩)(n) with the elements of

F 1H1(P1 ,E (n))

having trivial residues. Furthermore, they are identiûed with rational 2-forms by the
following lemma. Put T1 = P1 ∖ {0,∞}.

Lemma 5.1 For each n = 1, . . . , p − 1, there is a natural injection

ι∶ F 1(H2
dR(X)/⟨Z⟩)(n) ↪ Γ(T1 , Ω1

P1(logD) ⊗ F 1H (n)
e ).

Proof By (4.1) and (4.3), it suõces to show the existence of an injection

H1(P1 , F 1E (n)) ↪ Γ(T1 , Ω1
P1(logD) ⊗ F 1H (n)

e ),

wherewe put F 1E = [F 1He → Ω1
P1(logD)⊗He]. Consider the commutative diagram

in Figure 1, where the right vertical sequence is exact. By Proposition 3.3, ∇ is an
isomorphism on T1. _erefore, we have an isomorphism

Γ(T1 , Ω1
P1(logD) ⊗ F 1H (n)

e )
≃
Ð→ H1(T1 , F 1E (n)).

It remains to show the injectivity of H1(P1 , F 1E (n)) → H1(T1 , F 1E (n)). _is follows
from the fact that H1(P1 , F 1E ) → H1(P1 ,E ) is injective and H1(P1 ,E ) → H1(T1 ,E )
is an isomorphism.
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0

��
Ω1

P1(logD) ⊗ F 1H
(n)
e

��
F 1H

(n)
e

=

��

∇ // Ω1
P1(logD) ⊗H

(n)
e

��
F 1H

(n)
e

∇ // Ω1
P1(logD) ⊗Gr0F H

(n)
e

��
0

Figure 1

Under the identiûcation via ι, we have the following.

Proposition 5.2 For each n = 1, . . . , p− 1, a basis of F 1(H2
dR(X)/⟨Z⟩)(n) is given by

{ωm ,n ∣ m ∈ I1n}, where

I1n ∶=
⎧⎪⎪
⎨
⎪⎪⎩

{−⌊(β − α)l⌋, . . . ,−1} ∪ { 1, . . . , max{⌊αl⌋, ⌊(1 − β)l⌋}} if α < β,
{ 1, . . . , max{⌊αl⌋, ⌊(1 − β)l⌋}} if α ≥ β.

Recall that α = { na
p }, β = { nb

p }.

Proof It is routine to verify that ∣I1n ∣ = dim F 1(H2
dR(X)/⟨Z⟩)(n) using Propositions

4.4 and 4.8. _erefore, it suõces to show that

ωm ,n ∈ F 1(H2
dR(X)/⟨Z⟩)(n)

ifm ∈ I1n . We construct Čech cocycles representing elements of H1(P1 , F 1E (n)) with
trivial residues which correspond to ωm ,n . Take a covering P1 = U0 ∪ U∞, where
U0 ∶= P1 ∖{∞},U∞ ∶= P1 ∖{0}; note that T1 = U0 ∩U∞. A Čech cocycle in this case
is a triple

(ψ, φ0 , φ∞) ∈ Γ(T1 , F 1H (n)
e ) ⊕ ⊕

t=0,∞
Γ(Ut , Ω1

P1(logD) ⊗H (n)
e )
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satisfying ∇ψ = φ0∣T1 − φ∞∣T1 . We construct such cocycles in four ways. By Proposi-
tion 3.2, we have

l−1∇(tmωn)

= (µ − 1 + β)ωm ,n +
1 − α
1 − t l

ηm ,n(5.1)

= ( µ − α − 1 − α − β
1 − t l

)ωm ,n +
t l

1 − t l
((1 − α − β)ωm ,n +

1 − α
t l

ηm ,n)(5.2)

= ( µ + (1 − β) t l

1 − t l
)ωm ,n −

1
1 − t l

((1 − β)ωm ,n − (1 − α)ηm ,n)(5.3)

=( µ − α + β + (1 − α) 1 − t l

1 − t l
)ωm ,n −

1 − α
1 − t l

(ωm ,n − ηm ,n).(5.4)

Put j = max{0, ⌈(α − β)l⌉}, k = min{⌊αl⌋, ⌊(1 − β)l⌋}.
(i) Suppose that ⌊αl⌋ ≥ ⌊(1 − β)l⌋. Let ψ = l−1 tmωn ,

φ0 = (µ − 1 + β)ωm ,n , φ∞ = −
1 − α
1 − t l

ηm ,n .

By (5.1) and Corollary 3.4, these deûne a cocycle if j ≤ m ≤ ⌊αl⌋. By Proposition 4.2,
it has no residues unless m = 0, and hence deûnes an element of F 1(H2

dR(X)/⟨Z⟩)(n)
if

j ≤ m ≤ ⌊αl⌋, m /= 0.
(ii) Suppose that ⌊αl⌋ < ⌊(1 − β)l⌋. _en by (5.2) and Corollary 3.4, ψ = l−1 tmωn ,

φ0 = ( µ − α − 1 − α − β
1 − t l

)ωm ,n ,

φ∞ = −
t l

1 − t l
((1 − α − β)ωm ,n + (1 − α)t−lηm ,n)

deûne a cocycle if j ≤ m ≤ ⌊(1 − β)l⌋. To kill the residues, we use Lemma 5.3 below.
_en by letting

φ0 = (µ − α)ωm ,n , φ∞ = (1 − α − β)ωm ,n −
1 − α
1 − t l

ηm ,n ,

we obtain an element of F 1(H2
dR(X)/⟨Z⟩)(n) for j ≤ m ≤ ⌊(1 − β)l⌋, m /= 0.

(iii) Suppose that α ≤ β. _en by (5.3) and Corollary 3.4, ψ = −l−1 tmωn ,

φ0 =
1

1 − t l
((1 − β)ωm ,n − (1 − α)ηm ,n), φ∞ = ( µ + (1 − β) t l

1 − t l
)ωm ,n

deûne a cocycle if −⌊(β − α)l⌋ ≤ m ≤ k. If m < 0, we can kill the residues using
Lemma 5.3, and φ0 = (1 − β)ωm ,n −

1−α
1−t l ηm ,n , and φ∞ = µωm ,n deûne an element of

F 1(H2
dR(X)/⟨Z⟩)(n) for −⌊(β − α)l⌋ ≤ m < 0.

(iv) Finally suppose that α > β. _en, by (5.4) and Corollary 3.4, −l−1 tmωn ,

φ0 =
1 − α
1 − t l

(ωm ,n − ηm ,n), φ∞ = ( µ − α + β + (1 − α) t l

1 − t l
)ωm ,n

deûne a cocycle if 0 ≤ m ≤ k. If m /= 0, we can use Lemma 5.3 to kill the residues and

φ0 = (1 − α)ωm ,n −
1 − α
1 − t l

ηm ,n , φ∞ = (µ − 1 + β)ωm ,n
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deûne an element of F 1(H2
dR(X)/⟨Z⟩)(n) for 0 < m ≤ k. Combining (iii) and (i) (or

(ii)), we obtain the ûrst case of the proposition. For the second case, combine (iv) and
(i) (or (ii)), just noting that k ≥ j − 1 = ⌊(α − β)l⌋.

Lemma 5.3 If j ≤ m < l , m /= 0, then
1

1 − t l
⊗ ωm ,n ∈ Γ(P1 , Ω1

P1(logD) ⊗H (n)
e ),

and it has trivial residues at t = 0,∞.

Proof _is is immediate from Corollary 3.4 and Lemma 4.3.

5.2 Period Formula

We prove the period formula which veriûes the conjecture of Gross–Deligne [13, §4]
(but see Remark 5.6 below). We identify an embedding χ∶K ↪ C with the element
h ∈ (Z/l pZ)× such that χ(ζ l p) = ζh

l p , and write H(h) instead of H χ . For each h ∈

(Z/l pZ)×, let (p(h), 2− p(h)) be the Hodge type ofH(h). Put K′ = Q(µ2 l p) (K = K′

if l p is odd).

_eorem 5.4 Deûne a function ε∶Z/l pZ→ Z by

ε(i) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if i ≡ lb, p, l(p − b), l(b − a) + p (mod l p),
−1 if i ≡ lb + p, l(p − a) + p (mod l p),
0 otherwise.

_en, for any h ∈ (Z/l pZ)×, we have

p(h) = ∑
i∈Z/l pZ

ε(i){− hi
l p

} and Per(H(h)) ∼K′× ∏
i∈Z/l pZ

Γ({
hi
l p

})
ε(i)

.

Proof For real numbers x, y with 0 < x , y < 1, x + y /= 1, put

δ(x , y) ∶= {−x} + {−y} − {−(x + y)} =
⎧⎪⎪
⎨
⎪⎪⎩

1 if x + y < 1,
0 if x + y > 1.

_en we have φ(h) ∶= ∑i ε(i){− hi
l p} = δ(β, µ)+ δ(1− β, {β− α + µ}), where we put

α = {ha/p}, β = {hb/p}, µ = {h/l}. First, we have φ(h) = 2 if and only if

β + µ < 1, 1 − β + {β − α + µ} < 1.

Lettingm = l µ, the ûrst condition becomesm < (1−β)l , i.e.,m ≤ ⌊(1−β)l⌋. Similarly,
the second condition is equivalent to

(α ≤ β,m < αl) or (α > β, (α − β)l < m < αl) .
Comparing with Proposition 4.4, we have p(h) = 2 if and only if φ(h) = 2. Secondly,
since p(h) + p(−h) = φ(h) + φ(−h) = 2, we have p(h) = 0 if and only of φ(h) = 0.
Since p(h), φ(h) ∈ {0, 1, 2}, we have p(h) = φ(h) for any h.
For the second statement, we compute the periods over the 2-cycle

(1 − τ)∗(1 − σ)∗∆1 .
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Since (1 − ζ l)(1 − ζp) is invertible in K, it reduces to the periods over ∆1 (Proposi-
tion 2.6 (i)). First consider the two cases:
(i) α ≤ β and p(h) ≥ 1,
(ii) α > β and p(h) = 2.
By Propositions 4.4 and 5.2, H(h) is generated by ωm ,n satisfying ⌈(α − β)l⌉ ≤ m
in both cases, which is equivalent to α − β < µ ∶= m/l . _is is the assumption of
Proposition 2.6 (i) and we obtain the desired formula.

_e other cases are reduced to the ones above. If we replace χ with χ−1, then h
(resp. α, β, p(h)) is replaced with −h (resp. 1− α, 1− β, 2− p(h)). By Lemma 5.5, the
cup-product H2(X) ⊗H2(X) → Q(−2) induces an auto-duality on H, under which
H χ is dual to H χ−1

. Hence we have Per(H(h)) ⋅Per(H(−h)) ∼K× (2πi)2. On the other
hand, recall the re�ection formula

Γ(x)Γ(1 − x) = π
sin πx

∼K′× 2πi ,

for any x ∈ 1
l pZ ∖ Z. _erefore, the case where α ≤ β and p(h) = 0 (resp. α > β and

p(h) ≥ 1) is equivalent to case (ii) (resp. (i)).

Lemma 5.5 Put H2(X)Z = Ker(H2(X) → H2(Z)). _en the composition

H2(X)Z ↪ H2(X) ↠ H2(X)/⟨Z⟩

induces an isomorphism of Hodge–de Rham structures H2(X)Z ⊗R K ≃ H.

Proof _is follows from the fact that the kernel of the composite

H2
Z(X ,C) → H2(X ,C) → H2(Z ,C)

is one-dimensional by Zariski’s lemma [6, III, (8.2)].

Remark 5.6 Our deûnition of ε is slightly diòerent from [13]; ε(i) here is ε(−i),
where Gross looks at the values Γ(1− {hi/l p})ε(i). _e former conforms to the deû-
nition of the Stickelberger element as

∑
h∈(Z/NZ)×

{−
h
N

}σ−1
h ,

where σh ∈ Gal(Q(µN)/Q) sends an N-th root of unity to its h-th power.

6 Regulators

A�er explaining the regulator map we are considering, we prove _eorem 1.2 from
the introduction and its consequences on the non-vanishing.

6.1 Formulation

_e Deligne cohomology of XC ∶= X ×SpecQ SpecC with coeõcients in Q(2) is de-
ûned to be the hypercohomology of the complex Q(2) → OXC → Ω1

XC/C, where
Q(2) ∶= (2πi)2Q is placed in degree 0. Consider the Beilinson regulator map [7]
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from themotivic cohomology rD ∶H3
M (X ,Q(2)) → H3

D(XC ,Q(2)). We have a natu-
ral isomorphism H3

D(XC ,Q(2)) ≃ H2(X ,C)/(F2+H2(X ,Q(2))) , and the Carlson
isomorphism

H2(X ,C)/(F2 +H2(X ,Q(2))) ≃ Ext1MHS(Q,H2(X ,Q(2))).

Here MHS denotes the abelian category of Q-mixed Hodge structures. By Poincaré
duality H2(X ,Q(2)) ≃ H2(X ,Q), we obtain an identiûcation

H3
D(XC ,Q(2)) ≃ Ext1MHS(Q,H2(X ,Q)).

Let Z ⊂ X be as before and consider the regulator map

rD ,Z ∶H3
M ,Z(X ,Q(2)) → H3

D ,Z(X ,Q(2)) ≃ H1(Z ,Q)

from themotivic cohomology supported on Z. SinceH1(X ,Q) = 0 byProposition 4.1,
we have an exact sequence of mixed Hodge structures

H2(Z ,Q) Ð→ H2(X ,Q) Ð→ H2(X , Z;Q)
∂
Ð→ H1(Z ,Q) Ð→ 0.

If we denote the image of the ûrst map by ⟨Z⟩, we have the connecting homomor-
phism ρ∶H1(Z ,Q) ∩ H0,0 → Ext1MHS(Q,H2(X ,Q)/⟨Z⟩), where H0,0 denotes the
Hodge (0, 0)-component of H1(Z ,C). By the lemma and Remark 6.2, ρ describes
the restriction of rD to the image of H3

M ,Z(X ,Q(2)).

Lemma 6.1 _e diagram below is commutative up to sign.

H3
M ,Z(X ,Q(2))

rD ,Z //

��

H1(Z ,Q) ∩H0,0 ρ // Ext1MHS(Q,H2(X ,Q)/⟨Z⟩)

H3
M (X ,Q(2))

rD // H3
D(XC ,Q(2)) ≃ // Ext1MHS(Q,H2(X ,Q))

OO

where the vertical maps are the natural ones.

Proof See [5, _eorem 11.2].

Remark 6.2 _e right vertical arrow is surjective since Ext2MHS = 0. Its kernel is
topologically generated by decomposable elements, i.e., the image of

(CH1(Z) ⊗Q
×
) ⊗Z Q→ H3

M ,Z(X ,Q(2)).

Also, it is not diõcult to show that rD ,Z is surjective.

6.2 Regulator Formula

Now we regard the extension classes as functionals (up to period functionals). Let
H2(X)Z = Ker(H2(X) → H2(Z)) as before. Since H2(X ,Q)Z ≃ (H2(X ,Q)/⟨Z⟩)∗,
we have

Ext1MHS(Q,H2(X ,Q)/⟨Z⟩) ≃ (F 1H2(X ,C)Z)
∗/ ImageH2(X ,Q),

where ∗ denotes the C-linear dual. By Lemma 5.5, ρ induces a map

ρ∶ (H1(Z ,Q) ∩H0,0) ⊗R K → (F 1HC)
∗/H∨

B ,
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where HC ∶= HB ⊗Q C and H∨ denotes the dual Hodge–de Rham structure of H.
Put Z1 = ⊔ζ∈µ l Xζ . We shall describe the restriction of ρ to H1(Z1 ,Q)⊗R K. Recall

that H1(Z1 ,Q) ⊂ H0,0 (Corollary 3.6). We have, in fact, the following.

Lemma 6.3 We have an isomorphism H1(Z1 ,Q) ⊗R K ≃
→ H1(Z ,Q) ⊗R K.

Proof By Proposition 4.2, τ acts trivially on H1(X0 ,Q) and H1(X∞ ,Q) = 0.

Let (1 − σ)∗∆0 ∈ H2(X , Z1 ; Q) be the Lefschetz thimble deûned in Section 2.5,
and let H2(X , Z1 ; Q)Lef ⊂ H2(X , Z1 ; Q) denote the R-submodule generated by this
element.

Lemma 6.4 _e restriction of the boundary map

∂∶H2(X , Z1;Q)Lef ⊗R K Ð→ H1(Z1 ,Q) ⊗R K

is surjective and H1(Z1 ,Q) ⊗R K is one-dimensional over K.

Proof By Proposition 4.2, dimQ H1(Xζ ,Q) = p − 1 for ζ ∈ µ l . Since τ permutes the
components of Z1, H1(Z1 ,Q) ⊗R K is one-dimensional over K. Whereas κ0 and κ1
generate H1(Xt ,Q) (Proposition 2.4 (ii)), κ1 vanishes as t → 1 by deûnition. _ere-
fore κ0 does not vanish, i.e., ∂((1 − σ)∗∆0) is non-trivial in H1(X1 ,Q), hence is in
H1(Z1 ,Q) ⊗R K.

Now we state our main theorem. For x ∈ K, let x∗ (resp. x∗) denote its action on
homology (resp. cohomology). Since 1 − ζp is invertible in K, we write

((1 − ζp)−1)∗(1 − σ)∗∆0 ∈ H1(X , Z1 ; Q) ⊗R K

simply as ∆0. For each m and n, deûne an embedding χm ,n ∶K ↪ C by

χm ,n(ζ l) = ζm
l , χm ,n(ζp) = ζn

p .

_eorem 6.5 Let γ ∈ H1(Z1 ,Q) ⊗R K and take x ∈ K such that γ = x∗∂∆0. Let
{ωm ,n ∣ n = 1, . . . , p − 1,m ∈ I1n} be the basis of F 1HdR given in Proposition 5.2. _en
we have

ρ(γ)(ωm ,n) = χm ,n(x)
B(1 − α, β)
l(β − α + µ)

⋅ F (
1 − α, β, β − α + µ

1 − α + β, β − α + µ + 1
; 1) ,

where α = { na
p }, β = { nb

p }, µ = m
l .

Proof We apply _eorem A.3 of the appendix to our situation, where D = Z1 and
X○ = X ∖ (X0 ∪ X∞) (see the proof of Lemma 5.1). Note that HC ≃ H2

dR(XC)0 ⊗R K
by Lemma 5.5 since τ acts trivially on H2

dR(e(P1
C)) (see §A.2 for the notations).

Put Γ = (1 − τ)∗(1 − σ)∗∆0. Since Γ ∈ H2(X , Z1 ; Q) does not necessarily come
from H2(X○ , Z1 ; Q), we take a detour. Let Γ′ be the Lefschetz thimble given by
sweeping (1 − σ)∗δ0 along the path κ1 + κ2 + κ3 in T ∖ {0,∞}, where κ1 is the line
segment from ζ to εζ (ε > 0), κ2 is the arc from εζ to ε, and κ3 is the line segment
from ε to 1. _en Γ′ ∈ H2(X○ , Z1 ; Q) and γ ∶= ∂(Γ) = ∂(Γ′). _eorem A.3 yields
ρ(γ)(ωm ,n) = ∫Γ′ ωm ,n . _e right integral is computed similarly as Proposition 2.6
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(ii), and letting ε → 0, we obtain the theorem for x = (1− ζ l)(1− ζp). _e general case
follows by the cyclicity of H1(Z1 ,Q) ⊗R K.

6.3 Non-vanishing

We prove the non-vanishing of ρ under a mild assumption. _e situation is diòerent
depending on whether a + b = p or not.

If a + b /= p, the regulator does not vanish even in the Deligne cohomology with
R-coeõcients, or equivalently, the extension group of R-mixed Hodge structures

Ext1RMHS(R,HR) ≃ (F 1HC)
∗/H∨

R ,

whereHR = HB⊗QR,HC = HB⊗QC. Note that dimR(F 1HC)
∗/H∨

R = dimQ Gr1F HdR.
Let ρR∶H1(Z1 ,Q) ⊗R K → (F 1HC)

∗/H∨
R be the composition of ρ and the natural

surjection.

_eorem 6.6 Suppose that p < l and a + b /= p (so p > 2). _en ρR is non-trivial. In
particular, dimQ ρR(H1(Z1 ,Q) ⊗R K) = (l − 1)(p − 1).

Proof By restricting the functionals to F 1HR ∶= F 1HC∩HR and taking the imaginary
part, we obtain a K∩R-linear map ρ′R∶H1(Z1 ,Q)⊗R K → Hom(F 1HR , iR). For each
n = 1, . . . , p − 1, we have α /= 1 − β by the assumption. Hence ∣α − (1 − β)∣ ≥ 1/p > 1/l
and there exists an m satisfying

min{⌊αl⌋, ⌊(1 − β)l⌋} < m ≤ max{⌊αl⌋, ⌊(1 − β)l⌋}.(6.1)

_en we have ωm ,n ∈ Gr1F HdR by Propositions 4.4 and 5.2. Since m > ⌊(α − β)l⌋, we
have µ ∶= m/l > α − β, hence we can apply Proposition 2.6 (i) to compute the period

Ωm ,n ∶= ∫
∆1

ωm ,n = −
(−1)pβ

l
B(β, µ)B(1 − β, β − α + µ).

Put a normalization as ω̃m ,n = Ω−1
m ,nωm ,n . _en we have

∫
x∗∆1

ω̃m ,n = ∫
∆1
x∗ω̃m ,n = χm ,n(x),

for any x ∈ K. If we let n′ = p − n, α′ = {n′a/p} = 1 − α, β′ = {n′b/p} = 1 − β,
m′ = l −m, and µ′ = {m′/l} = 1 − µ, then these satisfy the assumption (6.1). Hence,
ω̃m′ ,n′ is deûned and we have ∫x∗∆1

ω̃m′ ,n′ = χm ,n(x), for any x ∈ K. Since H∨
B is

generated as a K-module by ((1− ζ l)−1(1− ζp)−1)∗(1− τ)∗(1− σ)∗∆1, that we simply
denote ∆1 as before, we have ω̃m ,n = ω̃m′ ,n′ and hence

ω̃m ,n + ω̃m′ ,n′ ∈ F 1HR .

Deûne the regulator as

Rm ,n ∶= ∫
∆0

ωm ,n =
B(1 − α, β)
l(β − α + µ)

⋅ F (
1 − α, β, β − α + µ

1 − α + β, β − α + µ + 1
; 1) .
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By _eorem 6.5, for any γ ∈ H1(Z1 ,Q) corresponding to x ∈ K as in _eorem 6.5 we
have

ρ′R(γ)(ω̃m ,n + ω̃m′ ,n′) = Im (χm ,n(x)Ω−1
m ,nRm ,n + χm ,n(x)Ω−1

m′ ,n′Rm′ ,n′)

= Im(χm ,n(x)) (Ω−1
m ,nRm ,n −Ω−1

m′ ,n′Rm′ ,n′) .

Since Ωm ,nΩm′ ,n′ < 0 and Rm ,n , Rm′ ,n′ > 0, the above does not vanish for x ∈ K ∖R.
Hence ρR is non-trivial. Since ρR is K-linear, the second assertion follows.

_e non-vanishing of ρ is a more subtle problem. For the case a + b = p, we have
the following criterion.

Proposition 6.7 Let p, l be distinct prime numbers and suppose that a + b = p. If
ρ is trivial, then there exists an x ∈ K such that Rm ,n = χm ,n(x)Ωm ,n , for any n =

1, . . . , p − 1, and m ∈ I1n such that m
l > { na

p } − { nb
p }.

Proof Let γ = ∂∆0 and suppose that ρ(γ) = 0. Since H∨
B is generated by ∆1 over K,

there exists an x ∈ K such that ρ(γ) is represented by the functional ∫x∗∆1
. Ifm, n are

as in the statement, then ∫x∗∆1
ωm ,n = ∫∆1

x∗ωm ,n = χm ,n(x)Ωm ,n by the deûnition.
Hence the proposition follows.

Example 6.8 If p = 2, then α = β = 1/2 and Y is nothing but the Legendre family of
elliptic curves. By Proposition 4.8, we have Gr1F HdR = 0 and the Deligne cohomology
withR-coeõcients is trivial. Since the condition m

l > { na
p } − { nb

p } (= 0) is automati-
cally satisûed, Proposition 6.7 is, in fact, an equivalence. If, for example, l = 3, then ρ
is trivial if and only if

√
3(

Γ( 56 )
Γ( 1

3 )
)

2

⋅ F
⎛

⎝

1
2 ,

1
2 ,

1
3

1, 4
3

; 1
⎞

⎠
∈ Q.

Here we usedQ(ζ3) ∩ iR =
√

3iQ.

A Appendix: (M. Asakura) Fibration of Curves and Extension of Mo-
tives

In this appendix, we develop a technique that was used in the proof of the regulator
formula (_eorem 6.5) to compute regulators for a ûbration of curves and motivic
elements constructed from degenerating ûbers [3].

A.1 Relative Cohomology

Let V be a quasi-projective smooth surface over C. Let D ⊂ V be a chain of curves.
Let π∶ D̃ → D be the normalization and Σ ⊂ D be the set of singular points. Let
s∶ Σ̃ ∶= π−1(Σ) ↪ D̃ be the inclusion. _ere is an exact sequence

0Ð→ OD
π∗
Ð→ OD̃

s∗
Ð→ CΣ̃/CΣ Ð→ 0,
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whereCΣ̃ = Maps(Σ̃,C) = Hom(ZΣ̃,C) and π∗, s∗ are the pull-backs. For a smooth
manifold M, let A q(M) denote the space of smooth diòerential q-forms on M with
coeõcients inC. We deûneA ●(D) to be the mapping ûber of s∗∶A ●(D̃) → CΣ̃/CΣ :

A 0(D̃)
s∗⊕d
ÐÐ→ CΣ̃/CΣ ⊕A 1(D̃)

0⊕d
ÐÐ→ A 2(D̃),

where the ûrst term is placed in degree 0. _en Hq
dR(D) = Hq(A ●(D)) is the

de Rham cohomology of D, which ûts into the exact sequence

⋅ ⋅ ⋅ Ð→ H0
dR(D̃) Ð→ CΣ̃/CΣ Ð→ H1

dR(D) Ð→ H1
dR(D̃) Ð→ ⋅ ⋅ ⋅ .

We have the natural pairing

⟨ ⋅ , ⋅ ⟩D ∶H1(D,Z) ⊗H1
dR(D) Ð→ C, γ ⊗ z z→ ∫

γ
η − c(∂(π−1γ)),

where z is represented by (c, η) ∈ CΣ̃/CΣ ⊕A 1(D̃) with dη = 0 and ∂ denotes the
boundary of homology cycles.

We deûne A ●(V ,D) to be the mapping ûber of ĩ∗∶A ●(V) → A ●(D̃), the pull-
back by ĩ∶ D̃ → V :

A 0(V)
D0
Ð→ A 0(D̃) ⊕A 1(V)

D1
Ð→ CΣ̃/CΣ ⊕A 1(D̃) ⊕A 2(V)

D2
Ð→ ⋅ ⋅ ⋅ .

_en the relative de Rham cohomology is deûned by Hq
dR(V ,D) = Hq(A ●(V ,D))

and ûts into the exact sequence

(A.1) ⋅ ⋅ ⋅ Ð→ Hq−1
dR (D) Ð→ Hq

dR(V ,D) Ð→ Hq
dR(V) Ð→ Hq

dR(D) Ð→ ⋅ ⋅ ⋅ .

An element of H2
dR(V ,D) is represented by

(A.2) (c, η,ω) ∈ CΣ̃/CΣ ⊕A 1(D̃) ⊕A 2(V)

that satisûes ĩ∗ω = dη and dω = 0. _e natural pairing

⟨ , ⟩V ,D ∶H2(V ,D;Z) ⊗H2
dR(V ,D) Ð→ C

is given by

⟨Γ, z⟩V ,D = ∫
Γ
ω − ⟨∂Γ, (c, η)⟩D = ∫

Γ
ω − ∫

∂Γ
η + c(∂(π−1(∂Γ))).

_e complexes A ●(V) and A ●(D) are canonically equipped with Hodge and
weight ûltrations; then (QV ,A ●(V), F● ,W●) and (QD ,A ●(D), F● ,W●) become co-
homological mixed Hodge complexes in the sense of [10, (8.1.2)]. _e Hodge and
weight ûltrations on A ●(V ,D) are induced from them and the data

(QV ,D ,A ●(V ,D), F● ,W●)

becomes a cohomological mixed Hodge complex as well. Hence we have an exact
sequence

⋅ ⋅ ⋅ Ð→ Hq−1(D,Q) Ð→ Hq(V ,D;Q) Ð→ Hq(V ,Q) Ð→ Hq(D,Q) Ð→ ⋅ ⋅ ⋅

of mixed Hodge structures which is compatible with (A.1). Taking its dual, we obtain
an exact sequence

0Ð→ H2(V ,Q)/H2(D) Ð→ H2(V ,D;Q)
∂
Ð→ H1(D,Q) Ð→ H1(V ,Q).
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Since H1(V ,Q) ∩H0,0 = 0, we obtain the coboundary map

(A.3) ρV ,D ∶H1(D,Q) ∩H0,0 Ð→ Ext1MHS(Q,H2(V ,Q)/H2(D))

to the extension group of mixed Hodge structures. If we put

H2
dR(V)D ∶= Ker[H2

dR(V) Ð→ H2
dR(D)],

then we have the Carlson isomorphism

(A.4) Ext1MHS(Q,H2(V ,Q)/H2(D)) ≃ Coker [H2(V ,Q) Ð→ (F 1H2
dR(V)D)

∗] ,

where ∗ denotes the C-linear dual and the map is the natural pairing. Under this
identiûcation, the map ρV ,D is described as follows. For γ ∈ H1(D,Q) ∩ H0,0, take a
Γ ∈ H2(V ,D ; Q) such that ∂(Γ) = γ. _en we have

(A.5) ρV ,D(γ) = [ω z→ ⟨Γ,ωV ,D⟩V ,D],

where ωV ,D ∈ F 1H2
dR(V ,D) is a li�ing of ω, on which the pairing does not depend.

A.2 Rational Forms

For a given ω, it is usually complicated to compute an analytic li�ing ωV ,D explicitly.
In the following situation, we shall be able to associate a rational 2-form via Deligne’s
canonical extension, which gives a simple expression of ρV ,D .

Let C be a projective smooth curve over C and f ∶X → C be a ûbration of curves
with connected general ûber that admits a section e∶C → X. Henceforth, we use the
algebraic de Rham cohomology groups [14] and identify them with the analytic ones
in the previous paragraph. For a Zariski open set S ⊂ C, let V = f −1(S) and put

H2
dR(V)0 = Ker[H2

dR(V) → ∏
s∈S

H2
dR( f −1(s)) ×H2

dR(e(S))] ,

H2
dR(V ,D)0 = Ker[H2

dR(V ,D) → H2
dR(V)/H2

dR(V)0] .

_en we have an exact sequence of mixed Hodge structures

(A.6) H1
dR(V) Ð→ H1

dR(D) Ð→ H2
dR(V ,D)0 Ð→ H2

dR(V)0 Ð→ 0.

_e arrows are strictly compatible with theHodge andweight ûltrations. In particular,
F 1H2

dR(V ,D)0 → F 1H2
dR(V)0 is surjective. Later, we shall use the following.

Lemma A.1 Let g∶V ′ → V be a birational transformation that is an isomorphism
outside D and put D′ = g−1(D). _en the pull-back g∗ induces isomorphisms

H2
dR(V)0 ≃ H2

dR(V ′)0 and H2
dR(V ,D)0 ≃ H2

dR(V ′ ,D′)0 .

Proof By (A.6) it is enough to show isomorphisms

H1
dR(V) ≃ H1

dR(V ′), H1
dR(D) ≃ H1

dR(D′), H2
dR(V)0 ≃ H2

dR(V ′)0 .
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_e ûrst one is an easy exercise. Let X′ be a smooth compactiûcation of V ′ such that
X′ ∖ D′ ≃ X ∖ D and consider the commutative diagram with exact rows

H2
dR(X′)

g∗
��

a2 // H2
dR(X′ ∖ D′) // HdR

1 (D′)

g∗
��

// H3
dR(X

′)

g∗ ≃

��

a3 // H3
dR(X

′ ∖ D′)

H2
dR(X)

b2 // H2
dR(X ∖ D) // HdR

1 (D) // H3
dR(X)

b3 // H3
dR(X ∖ D).

_e second isomorphism follows from the fact that

Image(an) = Image(bn) =WnHn
dR(X ∖ D).

_e last isomorphism follows from the commutative diagram

0 // H2
dR(V)0 //

g∗

��

H2
dR(V ∖ D)0 // HdR

1 (D)

g∗ ≃

��
0 // H2

dR(V ′)0 // H2
dR(V ′ ∖ D′)0 // HdR

1 (D′)

with exact rows.

Now ûx a Zariski open set S ⊂ C such that U ∶= f −1(S) → S is smooth. Put T =
C∖S and Z = X∖U . Let∇∶He → Ω1

C(logT)⊗He be theDeligne canonical extension
of the Gauss–Manin connection (H = R1 f∗Ω●

U/S ,∇). Put F 1He = j∗F 1H ∩ He ,
where j∶ S ↪ C and Gr0F He = He/F 1He . Let ∇∶ F 1He → Ω1

C(logT) ⊗ Gr0F He be
the OC-linear map induced from ∇. In what follows, we assume the following.

(∗) _e map ∇ is generically bijective.

Let C○ ⊂ C be a Zariski open set on which∇ is bijective and put X○ ∶= f −1(C○). Note
that S /⊂ C○ in general and X○ → C○ is not necessarily smooth. _en the commutative
diagram

0

��
Ω1
C(logT) ⊗ F 1He

��
F 1He

∇ //

=

��

Ω1
C(logT) ⊗He

��
F 1He

∇ // Ω1
C(logT) ⊗Gr0F He

��
0
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induces an isomorphism

Λ○ ∶= Γ(C○ , Ω1
C(logT) ⊗ F 1He)

≃
Ð→ H1(C○ , F 1He Ð→ Ω1

C(logT) ⊗He).

Note that Λ○ ⊂ Γ(X○ , Ω2
X(log Z)).

Lemma A.2 _ere are natural injections F 1H2
dR(X)0 ↪ F 1H2

dR(U)0 ↪ Λ○.

Proof _e ûrst injectivity follows from Zariski’s lemma [6, III, (8.2)]. Since

H2
dR(U)0 ≃ H1(S ,H → Ω1

S ⊗H ) ≃ H1(C ,He → Ω1
C(logT) ⊗He)

and
F 1H1(S ,H → Ω1

S ⊗H ) = H1(C , F 1He → Ω1
C(logT) ⊗He)

[26, §5], the second injectivity follows from that of F 1H2
dR(U)0 → F 1H2

dR(U ∩ X○)0.

Deûne Λ(X) ⊂ Λ(U) ⊂ Λ○ to be the images of F 1H2
dR(X)0, F 1H2

dR(U)0, respec-
tively. By the commutative diagram

F 1H2
dR(X)0

≃

��

// F 1H2
dR(U)0 //

≃

��

// HdR
1 (Z)

��
Λ(X) // Λ(U) // H0(X○ , Ω2

X(log Z)/Ω2
X)

we have Λ(X) ⊂ Γ(X○ , Ω2
X). For any cohomology class ω ∈ F 1H2

dR(X)0, let ω○ ∈
Λ(X) denote the corresponding rational 2-form.

A.3 Main Result

Now let D ⊂ X○ be a ûnite union of ûbers. We give a description of the map

ρX ,D ∶H1(D,Q) ∩H0,0 Ð→ Coker[H2(X ,Q) → (F 1H2
dR(X)0)

∗]

induced from (A.3), (A.4), and the inclusion F 1H2
dR(X)0 ⊂ F 1HdR(X)D . Note that

this factors through ρX○ ,D . We regard an element η ∈ Λ○ as an element of A 2(X○).
For the dimension reasons, we have ĩ∗η = 0 and dη = 0. Hence (0, 0, η) as in (A.2)
deûnes a cohomology class η̂ ∈ H2

dR(X○ ,D). Note that η̂ does not necessarily belong
to F 1. For any ω ∈ F 1H2

dR(X)0, write ω̂ instead of ω̂○.

_eorem A.3

(i) For any ω ∈ F 1H2
dR(X)0, we have ω̂ ∈ F 1H2

dR(X○ ,D)0 and it li�s ω∣X○ .
(ii) For any γ ∈ H1(D,Q) ∩ H0,0, choose Γ ∈ H2(X○ ,D) such that ∂(Γ) = γ. _en

we have ρX ,D(γ) = [ω ↦ ∫Γ ω○].

Proof By (A.5), assertion (ii) follows immediately from (i). By Lemma A.1, we may
assume that Dred and Zred are divisors with normal crossings. It suõces to prove the
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casewhereD = f −1(P), P ∈ C○. For a Zariski sheafF , let (Č●(F ), δ) denote its Čech
complex. First, H2

dR(X) is given by the cohomology in the middle of the complex

Č1(OX) × Č0(Ω1
X)

D1
Ð→ Č2(OX) × Č1(Ω1

X) × Č0(Ω2
X)

D2
Ð→ Č3(OX) × Č2(Ω1

X) × Č1(Ω2
X).

A description ofH2
dR(U) = H2(X , Ω●

X(log Z)) is given similarly. Finally, H2
dR(X ,D)

is given by the complex

Č1(OX) × Č0(OD̃ ⊕Ω1
X)

D3
Ð→ Č2(OX) × Č1(OD̃ ⊕Ω1

X) × Č0(OΣ̃/OΣ ⊕Ω1
D̃ ⊕Ω2

X)

D4
Ð→ Č3(OX) × Č2(OD̃ ⊕Ω1

X) × Č1(OΣ̃/OΣ ⊕Ω1
D̃ ⊕Ω2

X).

Let ω ∈ F 1H2
dR(X)0 and take its representative z = (0) × (α i j) × (β i) ∈ Ker(D2).

Since ω ∈ F 1H2
dR(X)D , there exists (є i) ∈ Č0(Ω1

D̃) such that α i j ∣D̃ = є j − є i . If we
put zX ,D = (0) × (0, α i j) × (0, є i , β i), then zX ,D ∈ Ker(D4). By the deûnition of the
Hodge ûltration, it represents a class ωX ,D ∈ F 1H2

dR(X ,D) that li�s ω. Let ωX ,D ∣X○

be its image in H2
dR(X○ ,D).

Let ω̂ ∈ H2
dR(X○ ,D) be the class of the Čech cocycle ẑ ∶= (0) × (0, 0) × (0, 0,ω○).

_e group H1(C○ , F 1He → Ω1
C(logT) ⊗He) is given by the complex

Č0(F 1He ∣C○)
D5
Ð→ Č1(F 1He ∣C○) × Č0(Ω1

C(logT) ⊗He ∣C○)

D6
Ð→ Č2(F 1He ∣C○) × Č1(Ω1

C(logT) ⊗He ∣C○).

By the deûnition of ω○, there exists y = (ν i) ∈ Č0(F 1He ∣C○) such that D5(y) =
(α i j) × (β i) − (0) × (ω○), i.e., ν j − ν i = α i j , dν i = β i − ω○. Hence we have

zX ,D ∣X○ − ẑ = (0) × (0, ν j − ν i) × (0, ε i , dν i).

It is clear that this vanishes in H2
dR(X○), hence ω̂ li�s ω∣X○ .

We are le� to show that the class of ω̂ lies in F 1. Let V be a suõciently small
neighborhood of D so that we have an exact sequence

0Ð→ Ω1
V Ð→ Ω1

V(logD)
Res
Ð→ ĩ∗OD̃ Ð→ 0.

Since H2
dR(X○ ,D)/F 1 → H2

dR(V ,D)/F 1 is injective, it suõces to show the claim a�er
restricting to V . Since Res(ν j) − Res(ν i) = Res(α i j) = 0, (Res(ν i)) deûnes a class
e ∈ H0(D̃,OD̃). Consider the composite

H0(D̃,OD̃)
δ
→ H1(V , Ω1

V)
ĩ∗
→ H1(D̃, Ω1

D̃) ≃ H2
dR(D̃),

where δ is the connecting map. _en (ĩ∗ ○ δ)(e) is represented by (α i j ∣D̃) ∈ Č
1(ΩD̃).

_erefore, under the above isomorphism, (ĩ∗ ○ δ)(e) corresponds to ĩ∗(ω) = 0. Let
t ∈ OC ,P be a uniformizer at P. By Zariski’s lemma [6, III, (8.2)], Ker(ĩ∗ ○ δ) is one-
dimensional and generated by Res( dtt ). Hence there exists a constant c such that
θ i ∶= ν i − c dtt has no pole along D. By replacing ν i with θ i and taking ε i = θ i ∣D̃ , we
see that ωX ,D ∣V − ω̂∣V is in the image of F 1H1

dR(V) → H2
dR(V ,D). Hence we obtain

ω̂ ∈ F 1 and the proof is complete.
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