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The debate over adequate analyses of data has a long his-
tory that has evolved into a confrontation between the 
use of frequentist methods with new strategies that alleg-
edly avoid abuses and misuses of the past (e.g., Cumming 
2014; García-Pérez, 2017; Haig, 2017; Miller, 2017; 
Sakaluk, 2016; Trafimow, 2019; see also The American 
Statistician’s 2019 Supplement 1 titled Statistical Inference 
in the 21st Century: A World Beyond p < .05) and the switch 
toward Bayesian methods that allegedly offer the 
type of inference that researchers seek (e.g., Etz & 
Vandekerckhove, 2018; Kruschke & Liddell, 2018a, 
2018b). Broadly speaking, the aim of all research is to 
arrive at some conclusion that follows from the study 
that was conducted. The validity of research rests heavily 
on appropriate statistical analyses of the data and a cor-
rect interpretation of their outcomes, which thus provide 
a study with the crucial statistical conclusion validity 
(García-Pérez, 2012) that should also accompany the 
required internal and external validity provided by a 
proper planning, design, and implementation (Leek & 

Peng, 2015). Research is valid if all of this goes well, but 
the aim of this paper is not to discuss whether validity is 
more likely achieved via frequentist or Bayesian methods.

Also in recent years, concern has grown for the avoid-
ance (or detection) of questionable research practices that 
represent scientific misconduct and, thus, a breach of 
research integrity (see Gross, 2016). These practices take 
several forms but some involve data manipulation 
ranging from straight fabrication, through falsification 
(i.e., removal of “inconvenient” data), to selective 
choice of statistical methods that ensure agreement 
with researchers’ expectations (see, e.g., Hartgerink, 
Wicherts, & van Assen, 2016; Nelson, Simmons, & 
Simonsohn, 2018; Simmons, Nelson, & Simonsohn, 2011; 
Simonsohn, 2013). Concern over this issue shows in a 
number of retractions of published papers. Ribeiro and 
Vasconcelos (2018) reported that about 47% of the 1,623 
eligible retraction notices tracked by Retraction Watch1 in 
the period 2013–2015 were motivated by scientific mis-
conduct, often involving data fabrication or falsification. 
When retraction notices were separated by research field, 
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the percentage of them due to misconduct among 186 
retractions in the humanities and social sciences reached 
58%. For a comprehensive summary of studies on this 
issue, see Wang, Xing, Wang, & Chen (2019).

With research validity and research integrity in mind, 
this paper discusses that the use of informative priors in 
Bayesian analyses -whereby not all parameter values or 
hypotheses have the same a priori probability- is for-
mally equivalent to data falsification. Specifically, it will 
be shown that Bayesian analysis with an informative 
prior involves the implicit aggregation of a set of fabri-
cated data whose size and statistical characteristics are 
determined by the parameters of the prior. On the other 
hand, with a non-informative, uniform prior, Bayesian 
analysis is strictly based only on observed data but then 
it reduces computationally to frequentist analysis. The 
focus of this paper is on Bayesian estimation of distribu-
tional parameters as it typically arises in psychological 
research (e.g., estimation of population means, Bernoulli 
parameters, correlations, etc). The ubiquity of informa-
tive priors and their effects implies that the problem of 
implicit data falsification carries over to other aspects of 
Bayesian analysis such as hypothesis testing or model 
comparisons, but this will only be addressed in the 
Discussion section. It should also be understood that 
this paper does not attempt to derogate Bayesian 
analyses or to question their distinct epistemological 
status, nor does it try to convey the notion that Bayesian 
analyses are intrinsically flawed. Instead, the very fact 
that using informative priors in Bayesian analyses is 
demonstrably equivalent to fabricating data in frequen-
tist analyses only highlights a fundamental difference 
between both types of analysis: Frequentism focuses on 
what the data (and only them) say about the question 
under investigation whereas Bayesianism focuses on 
how the data change our beliefs. This distinction is 
rarely (if ever) mentioned in papers which criticize fre-
quentism and advocate Bayesianism, but it is certainly 
one that should be carefully considered by researchers 
who contemplate switching to Bayesianism.

The paper is organized as follows. First, the principles 
of Bayesian estimation are laid out and differences 
with frequentist estimation are discussed. Next, three 
sample cases are presented to demonstrate the formal 
link between informative priors and the fabrication of 
data with identifiable characteristics, and worked-out 
numerical illustrations are provided. Finally, similarities 
between frequentist estimation and Bayesian estimation 
with uniform priors are presented, followed by a dis-
cussion of permissible interpretations of the outcomes 
in either case.

Bayesian estimation versus frequentist estimation

The goal of Bayesian estimation of distributional  
parameters is to obtain a posterior distribution fn  

describing the probability density of the parameter of 
concern given n observations. In the one-dimensional 
case, with a single parameter θ of interest, fn is obtained 
via Bayes theorem as

 

0

0

( ) ( )
( )

( ) ( )d
Θ

θ θ
θ =

θ θ θ∫
n

f ff
f f
xx
x  

(1)

where x = [xi] with 1 ≤ i ≤ n is the sample of obser-
vations, f is the likelihood function (i.e., the likelihood 
of x conditioned on the assumed value of parameter θ), 
f0 is the assumed prior distribution of θ, and Θ is the 
parameter space. The denominator is simply a constant 
ensuring that fn is a proper probability density function 
with unit area.

The posterior is regarded as the estimate in itself 
although point or interval estimates are usually obtained 
from it. Bayes point estimators are obtained by defining 
a loss function describing the cost of estimation error 
as a function of its magnitude so that the point esti-
mate associated with a given loss function is the value 
of θ minimizing the expected loss. The most common 
Bayes estimates are the maximum a posteriori (MAP) 
estimate (which is the value of θ at which fn attains a 
maximum or, equivalently, the mode of θ when 
regarded as a random variable with density fn) and 
the expected a posteriori (EAP) estimate (which is the 
expected value of θ when regarded as a random var-
iable with density fn). If fn is unimodal and symmetric, 
MAP and EAP estimates coincide.

An interval estimate, referred to as a Bayesian credible 
interval, is the continuous range from θinf to θsup obtained 
by chopping off the tails of fn with some criterion.  
By analogy with frequentist statistics, an equal-tailed 
100(1 – α)% credible interval is obtained by finding cut 
points θinf and θsup such that Prob(θ < θinf) = Prob(θ > 
θsup) = α/2 under fn. More frequently, a highest-density 
credible interval (HDI) is defined to ensure that fn(θin) ≥ 
fn(θout), where θin and θout respectively stand for each and 
all points inside and outside the interval. The cut points 
θinf and θsup are then obtained as the simultaneous solu-
tion of fn(θinf) = fn(θsup) and Prob(θinf < θ < θsup) = 1 − α. 
Again, if fn is unimodal and symmetric, equal-tailed and 
highest-density credible intervals coincide.

The key element of Bayesian estimation is the use 
of a prior distribution f0 in Equation (Eq.) 1. Interest in 
the unknown value of the parameter may be huge 
and justify resource investments, but this does not 
turn a fixed value (however unknown) into a random 
variable for which f0 could be a probability distribution. 
Nevertheless, the choice of a prior roughly determines 
which ‘branch’ of Bayesian statistics one embraces 
(see, e.g., Berger, 2006): Under the objective Bayes  
approach, the prior reflects complete ignorance and does 
not favor any set of parameter values over others; under 
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the subjective Bayes approach, the prior expresses 
subjective beliefs that the researcher entertains about the 
relative plausibility of different ranges of parameter 
values. Leaving the discussion of this apparent sub-
tlety for later, it is immediately obvious that use of the 
uniform, non-informative prior f0(θ) = 1, renders a pos-
terior fn in Eq. 1 that is only the likelihood function of 
the data, harmlessly scaled to unit area. Then, the 
frequentist maximum-likelihood (ML) estimate of 
the parameter becomes the MAP Bayes estimate with 
a uniform prior, and the frequentist confidence interval 
(CI) also becomes the equal-tailed Bayesian credible 
interval with a uniform prior. Admittedly, even with 
a uniform prior Bayesian estimation appears to be 
more diverse than frequentist estimation because of 
the broader range of estimators that arise from alter-
native loss functions and also from some extra flexi-
bility in the definition of criteria for interval 
estimation. In contrast, and to a first approximation, 
frequentist estimation appears rigidly stuck to the 
maximum-likelihood criterion for point estimation 
and to the equal-tails CI for interval estimation. 
Commentary on the inadequate rigidity of this concep-
tion of frequentism will be deferred to a later section.

Frequentist and Bayesian approaches both assume 
independent and identically distributed observations 
so that the likelihood of the data x is given by

 
1
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=

θ = θ∏n
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where g is the distribution from which each observa-
tion was drawn. Frequentist and Bayesian approaches 
both need some assumption about the unknown form 
of g. Also under both approaches, the likelihood of the 
data is regarded in practice as a function of the param-
eter and serves as a measure of the “adequacy” of 
different parameter values as estimates. Different esti-
mation problems imply different forms for g and, in 
turn, different parameters. The next three sections dis-
cuss sample cases illustrating the link between non-
uniform priors and data fabrication. Identical links 
can be analogously established for other distributional 
parameters in their context.

Sample Case 1: Estimating the binomial parameter

With binary data, each observation xi ∈ {0, 1} is the out-
come of an independent Bernoulli trial whose proba-
bility function is

 
1
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where θ (often denoted π in this context) is the prob-
ability of success in each trial and, thus, the distribu-
tional parameter of interest. The likelihood function is, 
then,
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X x∑  is the observed count of successes 
across the n trials. The well-known ML estimate of θ is 

ML
θ̂ =X n, a magnitude entirely determined by the data 
and that also coincides with the MAP Bayes estimate 
when the assumed prior is uniform. But even with a 
uniform prior, the EAP Bayes estimate will generally 
differ because the posterior (which comes down to the 
likelihood function in Eq. 4 in these conditions) is 
asymmetric if X ≠ n/2.

Alternatively, a non-uniform prior could be used 
for informed Bayesian estimation. The conventional 
conjugate prior used in this situation is the beta 
distribution
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where Γ is the gamma function and the hyperpa-
rameters2 v and w capture the researcher’s beliefs 
about plausible values for θ. Thus, an unprejudiced 
researcher might set v = w = 1, which renders the uni-
form prior discussed earlier and perhaps to be used 
when no information is available to narrow down the 
plausible range of θ. At the other extreme, existing 
information may suggest the choice of a sharp prior 
that peaks at a certain value θ0, as would be the case 
when studying the fairness of a given circulating coin 
that looks entirely unsuspicious. This context seems to 
call for hyperparameters that make 

0
( 1) ( 2)θ = − + −v v w  

and with large v and w, given that the variance of a 
beta-distributed random variable decreases as v and w 
increase.

With a beta prior, the posterior is
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where the factor involving values of the gamma 
function is an inconsequential constant for all  
practical purposes. The MAP Bayes estimate is thus 

MAP

ˆ ( 1) ( 2)θ = + − + + −X v n v w . But this result is not  
innocuous. In fact, the posterior in Eq. 6 is the (scaled) 
likelihood function that frequentists would have 
written out had they collected n + v + w – 2 observa-
tions of which X + v – 1 had turned up as successes. 
The resultant ML estimate of θ would have then been 
identical to 

MAP
θ̂  as just computed. Then, these three 

scenarios are indistinguishable: (i) Bayesian estimation 

2The term “hyperparameter” denotes any parameter of the prior 
and is used to avoid confusion with the distributional parameters to be 
estimated in the current context, or with model parameters in a context 
to be discussed later.
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with the informative prior in Eq. 5, (ii) Bayesian esti-
mation with a uniform prior but adding fabricated 
data consisting of v + w – 2 observations of which v – 1 
are successes, and (iii) frequentist estimation after add-
ing the same fabricated data.

Observing X successes across n observations and 
intentionally adding v + w – 2 fabricated observations 
broken down as v – 1 fake successes and w – 1 fake 
failures before computing estimates is first-degree data 
falsification. Using an informative prior in Bayesian 
estimation is equivalent and comes down to second-
degree (unintentional) data falsification. Note that 
choosing non-integer values for v or w does not invali-
date the argument. Clearly, the only case in which 
using a beta prior does not equate data fabrication is if 
v = w = 1; in such a case, v + w – 2 = 0 and no fake 
observations are actually added. Another way to look 
at it is that v = w = 1 implies a uniform prior or, put 
another way, empirically-grounded estimation based 
exclusively on the data that were collected. The use of 
informative priors also has consequences on credible 
intervals (which are also computed after the addition 
of fabricated data) and Bayesian hypothesis testing, 
but these consequences will not be discussed now. It is 
also evident that replacing beta priors with other 
distributions that will not render posteriors of the form 
in Eq. 6 does not eliminate the problem: It only pre-
cludes determining how many fake data (and with 
what characteristics) were implicitly fabricated to esti-
mate the parameter. Interestingly, Vanpaemel (2011, 
p. 109) already discussed that the hyperparameters 
of a beta prior in this particular application act as “vir-
tual” or “imaginary” (instead of “fake”) observations. 
The emphasis, though, was on the strength of a frame-
work that allows combining multiple “sources of infor-
mation” (i.e., prior beliefs and data) in a way that the 
prior (a) becomes uninfluential if overwhelmed by the 
size of the data set but (b) it helps “guide more intui-
tive inferences” if the data are scarce. It will be shown 
later that both statements are oversimplifications that 
do not always materialize.

Sample Case 2: Estimating the Poisson parameter

In some situations, the outcome measure is the number 
of events of a certain type that occur over a relatively 
long period of time, under binomial-like conditions 
except that the number of individual occasions in 
which the event may occur is uncountable and the 
probability of success is very small. The observed 
count of successes xi ∈ ℕ is a Poisson variable with 
probability function

 
( ; ) exp( ),
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where θ (usually denoted λ instead) is the Poisson 
parameter of interest. For a sample of n counts, the 
likelihood function is
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where 
1=

=∑n
ii

X x  is the total number of counts across 
n observations. The ML estimate of θ is 

ML
θ̂ =X n and 

coincides with the MAP Bayes estimate when the  
assumed prior is uniform. Alternatively, the conven-
tional conjugate prior used in this situation is the 
gamma distribution
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where b and c again capture the researcher’s beliefs 
about plausible values for θ. The gamma distribution 
does not degenerate to the uniform for any values of 
b or c but it becomes increasingly closer to uniform 
as b tends to zero with c = 1. The posterior is easily 
found to be
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The MAP Bayes estimate is thus 
MAP

ˆ ( 1) ( )θ = + − +X c n b ,  
which is the ML estimate that frequentists would 
have computed if they had mixed up their actual n 
observations whose sum is X with b fabricated obser-
vations whose sum is c – 1, and note that non-integer 
values for b and c also do not invalidate the argument. 
Then, three scenarios are again indistinguishable:  
(i) Bayesian estimation with the informative prior in 
Eq. 9, (ii) Bayesian estimation with a uniform prior 
but adding fabricated data consisting of b observa-
tions whose sum is c – 1, and (iii) frequentist estima-
tion after adding the same fabricated data. The only 
condition in which Bayesian estimation does not 
imply fabricated data is when b = 0 and c = 1 or, to 
avoid mathematical difficulties in Eq. 9, when a uni-
form prior is used.

Sample Case 3: Estimating the mean of a normally-
distributed variable

Normally-distributed data are drawn independently 
from the distribution
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where parameters μ and σ2 are the population mean 
and variance. Researchers are often interested in esti-
mating both parameters but, for simplicity and with-
out loss of generality, we will assume here that the only 
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parameter of concern is μ. Using μ instead of θ, the like-
lihood function is
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where X  and 2

xs  are the sample mean and variance, 
respectively. Because parameter μ is only present in the 
last term of Eq. 12, it is immediately apparent that the 
ML estimate of μ is 

ML
µ̂ = X . For the record, the ML esti-

mate of σ2 is 2 2

ML
σ̂ = xs . When regarded as a function of μ, 

the likelihood function in Eq. 12 is a scaled Gaussian 
peaking at µ = X  and with standard deviation σ n , 
indicating that the data are most likely coming from a 
distribution (assumed to be normal) with μ in the 
vicinity of the sample mean within a narrow region 
determined by the population variance and the size of 
the sample. This outcome is identical (but not identi-
cally worded) under frequentist estimation and under 
MAP Bayesian estimation with a uniform prior.

The conjugate prior in this case is also a normal 
distribution expressing the researcher’s belief about 
the plausible range for μ via the mean a and the vari-
ance b2 of the prior. The prior is, then,
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Multiplication of this prior with the likelihood func-
tion in Eq. 12 renders the posterior
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and note the proportionality sign to indicate that a 
scale term also including factors coming out of the 
product has been inconsequentially omitted for sim-
plicity. Then, the posterior is a scaled Gaussian just 
like the likelihood function is in Eq. 12, but its parame-
ters mix up characteristics of the data with character-
istics of the prior. This mix-up can also be understood 
as the addition of fabricated data, by only deter-
mining the characteristics that added fake data 
should have for Eq. 14 to be the likelihood function 
(of observed plus fabricated data) that a frequentist 
would have used.

To address this issue, first note that the Gaussian 
term at the end of the right-hand side of Eq. 12 captures 
the overall information contributed by n empirical 
observations with their own mean and variance and 
that this contribution comes via an n-term product, 

one term per observation. Now, multiplication with a 
prior such as that in Eq. 13 simply represents the incor-
poration of additional terms to the product. To express 
the prior in Eq. 13 as the likelihood function for nf fab-
ricated observations drawn from a population with 
variance σ2 too, b in Eq. 13 must be equated to fσ n  
by analogy with Eq. 12. Then, the number of fabricated 
observations embedded in the prior is 2 2

f = σn b , and 
note that the potential for a non-integer result also 
does not invalidate the argument here. On the other 
hand, the mean of the nf fabricated observations 
implied in the prior of Eq. 13 is clearly a, also by 
analogy with Eq. 12. Replacing b2 with σ2/nf allows 
expressing Eq. 14 as
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The subtrahend of μ in Eq. 15 is the MAP Bayes esti-
mate and it is immediately seen to be the mean of the 
aggregate of n actual observations with mean X  and 
nf fabricated observations with mean a; similarly, the 
divisor of the difference is the standard error of the 
overall mean, arising also from the total number of 
actual plus fabricated observations. Equation 15 is 
thus identically implied in three indistinguishable 
scenarios: (i) Bayesian estimation with the informa-
tive prior in Eq. 13, (ii) Bayesian estimation with a 
uniform prior after adding nf fabricated observations 
with mean a, and (iii) frequentist estimation using the 
same fabricated data.

When the conjugate prior is a normal distribution 
there are no hyperparameter values that can turn it 
into a uniform distribution. However, the prior 
becomes increasingly broader as b increases and, 
hence, the putative number nf of fabricated observa-
tions approaches zero as b2 grows increasingly larger 
than σ2. Use of a uniform prior also eludes data fabri-
cation. On the other hand, if one assumed b = σ (in 
practice, b = sx), then the prior would amount to add-
ing the single fake observation xn+1 = a but the magni-
tude of the consequences would still depend on how 
large n is and how different a and X  are.

Worked-out numerical examples

It is instructive to look at published illustrations of 
Bayesian estimation and to compare frequentist and 
Bayesian outcomes in those examples. Advocates of 
Bayesian statistics praise the capability of the approach 
to take advantage of previous information. For instance, 
Etz and Vandekerckhove (2018, p. 19) emphasized 
that “in studies for which obtaining a large sample is 

https://doi.org/10.1017/sjp.2019.41 Published online by Cambridge University Press

https://doi.org/10.1017/sjp.2019.41


6  M. A. García-Pérez.

difficult, the ability to inject outside information into 
the problem to come to more informed conclusions can 
be a valuable asset”. Analogously, Kruschke and 
Liddell (2018a, p. 168) stated that “if previous data 
have established strong prior knowledge that can 
inform the prior distribution for new data, then that 
prior knowledge should be expressed in the prior 
distribution, and it could be a serious blunder not to 
use it”, subsequently emphasizing that “informed 
priors can also be useful when trying to make strong 
inferences from small amounts of data”. The virtue of 
Bayesian analysis is thus presented as the capability of 
incorporating external information for strong infer-
ence. In terms of the present discussion, a formally 
equivalent counterpart in frequentist analyses is the 
addition of fabricated observations.

Yet, this emphasis on the utility of informative 
priors contrasts with the actual priors used in dem-
onstrations of the presumed advantages of Bayesian 
estimation, even with small amounts of actual data. 
For instance, on illustrating Bayesian estimation of 
the binomial parameter with n = 18 and X = 14, 
Kruschke and Liddell (2018b) used a uniform prior 
by which fabricated data were excluded from a point 
estimate that thus equaled the ML estimate. In a sec-
ond illustration with n = 156 and X = 98, negligible 
effects of the prior were shown by comparing results 
for a uniform prior (i.e., no fabricated data) and for a 
beta prior with v = 3 and w = 2 (i.e., adding three 
fabricated observations, two of which are successes). 
Given that the actual data included 156 observa-
tions, it is understandable that fabrication of a mea-
sly three additional observations in which the 
putative proportion of successes (2/3 = 0.667) is so 
close to that in the actual data (98/156 = 0.628) does 
not change the outcome by any meaningful amount: 
The MAP Bayes estimate becomes 100/159 = 0.629 
instead. One may wonder in what sense is this min-
imally different estimate more accurate or more desir-
able than the conventional ML estimate based only on 
actual data, but one will definitely wonder why tamper 
with the data in the first place.

Prior knowledge tells us very loudly that the proba-
bility of heads in a circulating coin is 0.5, but would 
one thus place a beta prior with, say, v = w = 500 when 
estimating the probability of heads for a coin that was 
tossed just a dozen times? One cannot possibly obtain 
an estimate that differs meaningfully from 0.5 in these 
conditions: Even if the coin turned up tails in each and 
all of the 12 tosses, the MAP Bayes estimate of the 
probability of heads would be 0.496 with such a prior. 
In other words, informative priors (even those that 
result from prior-to-posterior transitions as data pile 
up) prevent any small sample of new data from coun-
tering what an informative prior is built to say.

Despite emphasis on the use of informative  
priors, recourse to uniform or nearly uniform priors 
is also found in other illustrations. To discuss Bayesian 
estimation of the Poisson parameter, Etz and 
Vandekerckhove (2018) considered the data x = [7, 8, 19] 
so that n = 3 observations with X = 34. The ML esti-
mate of the Poisson parameter is then 

ML

ˆ 34/3 11.33θ = = , 
as is the MAP Bayes estimate with a uniform prior. 
In this illustration, use of a gamma prior with c = 2 
and b = 0.2 rendered 

MAP

ˆ 35/3.2 10.94θ = = . The differ-
ence with the plain ML estimate is a little larger than 
in the preceding example and this is easily under-
standable. Using this prior comes down to adding  
b = 0.2 fabricated observations that sum c – 1 = 1; the 
number of fabricated observations seems minimal, 
even keeping in mind that n = 3 only. Yet, the average 
per-observation contribution of fabricated data is 
1/0.2 = 5 whereas the larger average contribution of 
actual data is 34/3 = 11.33 per observation. Small 
wonder that fabricated data with such a disparately 
smaller contribution pull the estimate down, but one 
still wonders what is gained by doing this.

The same holds for Etz and Vandekerckhove’s (2018) 
illustration of Bayesian estimation of the mean of a 
normally-distributed variable. In their illustration,  
n = 30 observations had a sample mean of 43—which 
is already the ML estimate of μ—and a sample vari-
ance of 4. A normal prior was used with a = 42 (note 
the similarity with the sample mean) and b2 = 36 
(note the large variance compared to that of the 
data). The number of fabricated observations 
implied by the prior is nf = 4/36 = 0.111 and the ratio 
of actual to fabricated observations is thus huge 
(30/0.111 = 270). In addition, the means of actual 
and fabricated observations are very similar. Then, 
unsurprisingly, the MAP Bayes estimate with this 

prior, 
MAP

30 43 0.111 42ˆ 42.996
30 0.111

× + ×
θ = =

+
, is identical to 

the ML estimate for all practical purposes.
In sum, the advocacy of informative priors con-

trasts with illustrations that use instead scarcely  
informative priors implying small sets of fabricated 
observations whose statistical characteristics do not 
differ much from those of the actual data on hand. 
This selection of priors for illustration is often made 
with the explicit goal of showing that priors do not 
change point estimates meaningfully (see, e.g., Etz & 
Vandekerckhove 2018; Kruschke & Liddell, 2018b), 
but such presentations are accompanied neither by 
an argument to the effect that changes (however 
small) are necessary for more accurate estimation 
nor by a demonstration that the changes occur in the 
correct direction.

Moreover, it is hardly ever acknowledged that the 
effect of the prior on estimates is determined by the 
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size and characteristics that the implied fabricated 
data have in comparison with those of actual data, 
regardless of subjective judgments of how informa-
tive the prior may be or how large the sample of actual 
data is. This is clearly appreciated in an analysis of 
sex ratios at birth in the period between 1629 and 1710 
in London. The data were compiled by Arbuthnott 
(1710) for argumentative purposes and, understand-
ably, he did not analyze them in any way: Thomas 
Bayes was only about nine years old at the time of 
publication and statistical decision theory was still 
about two centuries away. In any case, a strong be-
liever that the probability of both sexes is 0.5 at birth 
might use a beta prior with, say, v = w = 800. This 
symmetric prior peaks at θ0 = 0.5 and has the central 
95% of its area within the interval (0.4755, 0.5245). At 
first sight, this prior is extremely informative. Now 
take Arbuthnott’s data for 1633, the year in which 
the Roman Catholic Inquisition sentenced Galileo 
for stubbornly insisting that beliefs should not over-
ride empirical evidence. In this year, 5,158 boys and 
4,839 girls were born (n = 9,997). The ML estimate of the 
probability of male birth and the MAP Bayes esti-
mate with a uniform prior are both 5158/9997 0.516= , 
slightly but suspiciously higher than 0.5 on consid-
eration of sample size. (Incidentally, a similar pro-
portion was found on each year.) The informative 
prior amounts to adding 799 fabricated boys and 799 
fabricated girls, yielding a MAP Bayes estimate  
of (5158 800 1)/(9997 800 800 2) 0.514+ − + + − = . Despite 
the strongly informative prior, the estimate differs 
negligibly from the ML estimate because the propor-
tion of male births in actual and fabricated data are 
very close (0.516 versus 0.5). In contrast, a much less 
informative prior can have a larger effect on the final 
estimate if it implies fake data that differ more fun-
damentally from the actual data. For instance, con-
sider an asymmetric beta prior with v = 200 and w = 10, 
which peaks at θ0 = 0.957 and with the central 95% of 
its area within the interval (0.9198, 0.9768). This ren-
ders a MAP Bayes estimate of 0.525, much more dif-
ferent from the simple ML estimate than the MAP 
estimate with a more informative prior was.

In general, and regardless of the ratio n/nf of actual 
to fabricated data, Bayes point estimates obtained 
with informative priors will not differ meaningfully 
from those obtained with uniform priors (or via ML 
estimation) if the relevant statistical characteristics 
of the implied fabricated data match those of the actual 
data. Yet, interval estimates will be meaningfully 
narrower with non-uniform priors. Figure 1 illus-
trates these points for alternative priors in the pre-
ceding sample estimation of the binomial parameter 
with n = 18 and X = 14 so that, using only observed 
data, 

ML

ˆ 14/18 0.778θ = =  (thick blue horizontal line 

along each panel) and the 95% score CI ranges from 
0.548 to 0.910 (light blue stripe along each panel). 
Along with these frequentist estimates, the left panel 
shows Bayesian results when the informative beta 
prior implies nf = 10 fabricated observations with a 
putative number of successes that varies between 0 
and 10. This reflects a family of priors for which v + 
w = 12 with v ranging from 1 to 11, and results for 
each member of this family are plotted along the 
horizontal axis indexed by the putative number v − 1 
of successes. The continuous red line shows how 

MAP

ˆ ( 1) ( 2)θ = + − + + −X v n v w  varies across priors and 
note that 

MAP ML

ˆ ˆθ = θ  only when the number of fake 
successes is v – 1 = 7.78 or, in other words, when the 
proportion of successes in fabricated data equals the 
proportion of successes in actual data. The flanking 
dashed red lines show the boundaries of the poste-
rior 95% HDI for the prior implied at each abscissa. 
Note that the 95% HDI never matches the 95% CI, 
understandably because of the different sample 
sizes involved and also because the former is based 
on an asymmetric beta distribution whereas the 
latter is based on a normal approximation that is 
symmetric.

The right panel of Fig. 1 shows results as a func-
tion of the number nf of fabricated observations 
(ranging from 0 to 20) with prior parameters such 
that the proportion of successes in fabricated data 
always equals that in observed data. This implies a 
family of beta priors for which v = 1 + 0.778nf and  
w = nf – v + 2. By construction of the family, 

MAP ML

ˆ ˆθ = θ  
always and, hence, fabricated data do not alter the 
point estimate although the breadth of the 95% HDI 
decreases as the number of fabricated observations 
increases. Note also that nf = 0 (at the left edge of the 
panel) implies a uniform prior and, in these condi-
tions, the 95% score CI and the 95% HDI still differ 
slightly because of the different distributions used in 
computations.

The families of priors used in this illustration are ad-
mittedly arbitrary but their members are realistic in the 
sense that the “strong prior knowledge” expected to be 
carried by the prior may imply a relatively large set of 
fabricated data with characteristics that do not match 
those of the actual data later collected. Discrepancies 
will change point estimates away from the characteris-
tics of actual data and toward those of fabricated data, 
and they will also reduce the breadth of interval esti-
mates compared to what the data alone allow. In sum, 
the effect of priors on point and interval estimates 
depends greatly on the characteristics of the implied 
fabricated data as a result of prior hyperparameters. 
This remains true even when the number nf of fabri-
cated observations is small compared to the size n of 
the sample.

https://doi.org/10.1017/sjp.2019.41 Published online by Cambridge University Press

https://doi.org/10.1017/sjp.2019.41


8  M. A. García-Pérez.

Bayesian estimation with uniform priors is 
equivalent to frequentist estimation

If the use of informative priors is equivalent to data 
falsification, the question arises as to whether there 
is any difference between frequentist estimation and 
Bayesian estimation with uniform priors. As shown 
next, the answer is that there is not any quantitative 
difference beyond negligible variations arising from 
reliance on some convenient approximations in the fre-
quentist approach and provision of some extra flexi-
bility in the definition of criteria for estimation in the 
Bayesian approach. Qualitative differences in the inter-
pretation of frequentist and Bayesian outcomes will be 
discussed in the next section.

Point estimators can be arbitrarily defined according 
to suitable criteria and the adequacy of alternative esti-
mators is subsequently judged on the basis of their 
properties (e.g., unbiasedness, consistency, efficiency, 
etc). Frequentists define point estimators relative to the 
likelihood function, which expresses the plausibility of 
the observed data under each of the possible values 
that the unknown parameter may have. Bayesians, on 
the other hand, define point estimators relative to a 
posterior distribution expressing the plausibility of 
each possible parameter value given the data. With 
uniform priors, computation of point estimators uses 
the exact same source and ends up with the exact same 
numerical result under both approaches, although the 
outcome may be worded differently. For instance, a 
frequentist will say that the ML estimate is the value of 

the parameter for which the observed data are most 
likely to have occurred; a Bayesian will say that the 
(identically valued) MAP estimate is the most likely 
value of the parameter given the observed data. The 
posterior distribution and the likelihood function are 
one and the same function when the prior is uniform 
(i.e., without fabricated data) and, hence, both descrip-
tions are equally tenable whether the point estimate 
was computed by Bayesians or by frequentists.

As for interval estimates, frequentist CIs were 
defined to be dual with significance tests, in the sense 
that the null hypothesis that θ = θ0 is not rejected in a 
two-tailed size-α test only for the parameter values 
included in the 100(1 – α)% CI. The duality condition 
and the way in which two-tailed tests are conducted 
necessarily imply that the CI is constructed with the 
equal-tails criterion on the sampling distribution of the 
test statistic, which may on occasion be minimally dif-
ferent from the likelihood function of the data. However, 
nothing prevents frequentism from defining CIs that are 
not dual with significance tests or that use non-central 
criteria (see García-Pérez & Alcalá-Quintana, 2016). But, 
even without such allowance, the quantitative difference 
between frequentist CIs and Bayesian credible intervals is 
often negligible. A few examples will illustrate, all of 
them based on sample cases presented earlier in the con-
text of point estimation.

Consider first interval estimation of the binomial 
parameter. Several significance tests exist for the bino-
mial parameter each of which has its own dual equal-tails 
CI (see, e.g., García-Pérez, 2005; Newcombe, 1998). 

Figure 1. Effect of informative beta priors on point and interval estimates of the binomial parameter with n = 18 actual 
observations in which the number of successes is X = 14, so that the frequentist ML estimate is 0.778. The horizontal axis in 
each panel denotes prior characteristics along one of two orthogonal dimensions: The number (or proportion) of successes in a 
fixed number of fabricated observations (left panel) and the number of fabricated observations with a fixed proportion of 
successes (right panel). In the left panel, the priors are such that v + w = 12 (implying nf = 10 fabricated observations) and the 
abscissa represents the number v – 1 of successes in them; in the right panel, the priors are such that (v − 1)/(v + w − 2) = 0.778 
(implying that the proportion of successes in fabricated data equals that in actual data) and the abscissa represents the number 
of fabricated observations (nf = v + w − 2). In both panels the blue horizontal line is the frequentist ML point estimate and the 
light blue horizontal stripe indicates the frequentist 95% score CI, neither of which varies across priors. The vertical line in each 
panel denotes the condition in which results in both panels meet along the two orthogonal dimensions. The continuous red line 
in each panel indicates the MAP Bayes estimate for each prior, and note that it sits on the blue horizontal line in the right panel; 
the dashed red lines in each panel indicate the lower and upper limits of the 95% HDI for each prior.
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Maximally accurate coverage is provided by the score 
CI, which comes down to the range [0.548, 0.910] when 
n = 18, X = 14, and α = 0.05 (i.e., the 95% CI). This CI 
uses the convenient normal approximation to the bino-
mial distribution also embedded in the score test, 
which can be replaced without undermining the fre-
quentist approach. One alternative is to use the skew-
normal approximation instead (Chang, Lin, Pal, & 
Chiang, 2008; García-Pérez, 2009, 2010); another one is 
to use the CI that is dual with an exact beta test, also 
known as the Clopper–Pearson or exact CI. The latter 
95% CI renders the interval [0.524, 0.936] for these 
data. As discussed above, CIs that are dual with a sig-
nificance test conform to the equal-tails criterion but 
application of the highest-density (more precisely, 
highest-likelihood) principle does not oppose fre-
quentism. This does not change the resultant score CI 
because it is based on a symmetric distribution, but the 
highest-likelihood Clopper–Pearson CI is the range 
[0.564, 0.922], which is the exact same range spanned 
by the HDI that a Bayesian would have computed 
using a uniform prior. On the other hand, the Bayesian 
equal-tailed credible interval is (0.544, 0.909), which 
is nearly identical to the equal-tails score CI reported 
earlier despite the fact that the latter uses a normal 
approximation to the true asymmetric distribution. 
Numerically, then, frequentist CIs and Bayesian cred-
ible intervals with uniform priors differ only if dif-
ferent criteria are used to define the intervals or if one 
of the computations uses exact distributions and the 
other uses approximations. Some of these sources of 
diversity may disappear in certain cases, as discussed 
next.

Consider now interval estimation of the mean of a 
normally-distributed variable. One never knows the 
true variance of the population and, hence, the only 
available option for significance testing is the one-sam-
ple t test. For the data discussed earlier (i.e., n = 30, 

43=X , and 2
4=xs ) the equal-tails CI spans the range 

[42.24, 43.76]. Identity of Bayesian equal-tailed and 
highest-density credible intervals holds in this case 
because the posterior distribution is normal (see  
Eq. 15). Furthermore, with a uniform prior (i.e., with 
nf = 0), the posterior mean is X and the posterior stan-
dard deviation is σ n , rendering the exact same 
distribution that a frequentist with knowledge of σ2 
would have used to compute a CI. The same knowl-
edge of σ2 is necessary in Bayesian calculations, even 
with a uniform prior, but the conventional approach is 
to replace it with the sample variance. Then, Bayesian 
credible intervals are computed as CIs are by frequen-
tists except that the referent is a normal distribution 
instead of a t distribution. In the preceding example, the 
95% HDI spans the range (42.28, 43.72), almost identical 
to the 95% CI computed earlier. The minimally broader 

CI is easily understood because the t distribution used 
in its computation has heavier tails than the normal 
distribution with which the HDI is computed; it is not 
a consequence of the Bayesian approach providing 
more precision in any sense. Nevertheless, one could 
easily define frequentist CIs relative to the (scaled) 
likelihood function of the data which, with a uniform 
prior, would be identical to Bayesian credible intervals 
defined on the posterior.

In sum, the essence of frequentist CIs is not that they 
are dual with some significance test but that they are 
computed using only the observed data, obviously 
along with distributional assumptions also necessary 
for Bayesian computations. Then, minor quantitative 
differences between the limits and ranges of CIs versus 
credible intervals are comparable to those arising from 
the use of alternative criteria in either framework. Be 
they similar or not to CIs, it is not at all clear in what 
sense do Bayesian credible intervals provide better 
estimates. Another issue is whether both types of inter-
val admit the same interpretation, something that is 
addressed in the next section.

Interpretation of frequentist and Bayesian outcomes

A bone of contention between frequentists and 
Bayesians is the interpretability of outcomes, particu-
larly as regards frequentist CIs versus Bayesian HDIs. 
The Bayesian defense of credible intervals is that they 
express the probability that the parameter lies within 
the stated range whereas frequentist CIs are only 
ranges that have certain probability of containing the 
true parameter value. In other words, a Bayesian cred-
ible interval entails a probabilistic statement about the 
parameter whereas the frequentist CI entails a probabi-
listic statement about the interval itself. The core of the 
distinction lies in the Bayesian derivation of a posterior 
distribution for the parameter via Bayes theorem. 
However, as discussed earlier, the use of a uniform 
prior to avoid implicit data fabrication makes the pos-
terior identical to the likelihood function, except for an 
inconsequential scale factor. Thus, the outcome of any 
frequentist computation based on the likelihood func-
tion admits the exact same interpretation as the out-
come of the corresponding Bayesian computation, 
insofar as the former can be described as the result of 
Bayesian computations with a uniform prior. It is true 
that (dual) frequentist CIs were defined with criteria 
that prompt the use of sampling distributions rather 
than likelihood functions, but the essence of frequent-
ism would not be undermined by defining CIs with 
other criteria such as, for instance, highest likelihood. 
For an unknown reason, frequentism is sometimes 
claimed to have to follow either the spirit of Fisher or 
that of Neymann and Pearson, on the surmise that an 
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amalgam of both approaches is intrinsically flawed or 
that further development of the framework is for-
bidden (see, e.g., Haig, 2017; Ivarsson, Andersen, 
Stenling, Johnson, & Lindwall, 2015; Schneider, 2015). 
In contrast, and perhaps due to the posthumous publi-
cation of Bayes’ (1763) essay, the Bayesian framework 
had to be developed later and neglecting whether 
Bayes himself would have approved such develop-
ments or, at least, if he would have agreed that they 
bear his name (see Stigler, 1982). If frequentism is iden-
tically allowed development and departure from rigid 
adherence to its origins, there is no reason to disregard 
highest-likelihood CIs computed from the scaled like-
lihood function.

However, it is also important to unveil the underpin-
nings of the very notion of posterior (or prior, for that 
matter) distributions for the parameter of concern. It is 
obvious that a distributional parameter has some 
unknown but fixed value and, hence, that there is no 
such thing as a probability distribution describing the 
parameter in terms that are applicable only to random 
variables. Thus, the prior distribution only captures a 
researcher’s beliefs about the parameter given pre-
data uncertainty about the fixed value that it may 
have. Naturally, the posterior is only a post-data 
update of such beliefs. Although this fact is not men-
tioned explicitly in presentations of the Bayesian  
approach (for an exception, see Rouder, 2014), it is 
important to realize that neither the prior nor the pos-
terior are describing anything about the parameter of 
concern: They are only describing a researcher’s beliefs 
about plausible parameter values. Thus, a 95% HDI 
spanning the range, say, (0.6, 0.7) for the binomial 
parameter does not indicate that the parameter has 
probability 0.95 of being in that range (the conven-
tional Bayesian interpretation) but, rather, that the prior 
and the observed data jointly prompt the researcher to 
believe that the parameter is in that range with proba-
bility 0.95. This is the case whether the HDI was com-
puted with a uniform prior or with an informative 
prior. For a frequentist, the transgression lies in the 
notion that a fixed, unknown parameter value is 
treated as if it were a random variable with some 
distribution. Needless to say, everyone is free to hold 
beliefs and quantify them as seen fit; what is not to 
be expected is that researchers present beliefs and 
quantifications thereof as scientific evidence or results. 
Yet, Bayesian results that only reflect beliefs are usu-
ally presented as providing “better estimates” and 
“stronger inference” than would be possible under a 
frequentist approach. It should also be clear that the 
frequentist highest-likelihood CIs discussed earlier 
are subject to the same considerations.

Because the parameter has an unknown but fixed 
value, one can only aim at bracketing it within an 

interval computed via a procedure that can be shown 
to accomplish that goal with prescribed probability, 
and this is what frequentist CIs assure. Numerous sim-
ulation studies have shown this to hold reasonably 
accurately even in small-sample conditions. In con-
trast, aiming at statements describing the probability 
that the parameter lies within a certain range requires 
that the parameter be the random variable that it is 
not and, hence, such statements only represent  
the researcher’s beliefs about parameter values. 
Unsurprisingly, whether or not Bayesian HDIs ac-
complish their stated goal is impossible to evaluate 
because there is no empirical referent for “proba-
bility that the parameter is in a given range”. In 
these conditions, accepting a researcher’s statement 
that “the parameter has probability 0.95 of being in 
the 95% HDI” is an act of faith for everyone else.

In sum, neither frequentist nor Bayesian approaches 
can say anything about the probability of a parameter 
being within a certain range. The frequentist CI was 
never designed with that goal, surely due to awareness 
that the unknown parameter is not a random variable. 
The Bayesian HDI is purported to say so but the inter-
val does not carry information on the parameter itself 
but on the researcher’s beliefs about it.

Discussion

The main practical difference between frequentist and 
Bayesian estimation is that the latter places a prior 
probability distribution over the parameter right 
before proceeding. This paper has shown that the use 
of informative priors in Bayesian analysis is formally 
equivalent to data falsification in frequentist analysis. 
This was shown here for conjugate priors but the same 
is true for non-conjugate priors although in such case 
the characteristics of the fabricated data cannot be 
directly derived. Three scenarios are thus indistin-
guishable: Bayesian estimation with informative priors, 
Bayesian estimation with uniform priors after the 
addition of fabricated data, and frequentist estimation 
after the addition of the same fabricated data. This 
equivalence has ramifications that should be consid-
ered both by researchers and by policy makers.

The most important implication is that the equiva-
lence opens the door to disguising data falsification as 
informed Bayesian estimation. Be it deliberate, unin-
tentional, or a byproduct of alleged Bayesian obser-
vance, data falsification is data falsification. The 
relevant aspect here is that the message carried by the 
empirical sample of observations is manipulated via 
addition of fake data. Strictly speaking, only the use of 
uniform priors can be recommended to avoid implicit 
data fabrication, although vague priors whose param-
eters make nf ridiculously small compared to n and 
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imply fabricated data with characteristics (i.e., propor-
tion of successes, means, etc) analogous to those of 
observed data are harmless in practice. Yet, a choice of 
such type of prior seems inconsistent with the defining 
goal of incorporating extant knowledge into the prior, 
a knowledge that may indeed be discrepant with the 
characteristics of data still to be collected.

This problem reaches beyond Bayesian estimation of 
distributional parameters and applies to all analyses in 
which informative priors are used (e.g., hypothesis 
testing, model comparisons, etc). It is worth comment-
ing on the use of informative priors in Bayesian esti-
mation of non-distributional parameters such as those 
often found in item response theory, psychophysical 
analysis, or structural equation modeling. In all of these 
cases, the parameters of concern are those describing 
relations among latent and observable variables and 
the interest lies in estimating the parameters of such 
relations rather than any distributional parameter of 
the variables themselves. The estimation problem 
takes a different dimension because data are only indi-
rect indicators of the relations, which need to be 
inferred by fitting suitable functional models with 
appropriate parameters. In these conditions, data are 
rarely equally informative about each of the parame-
ters in the fitted model, which hampers the estimation 
of some of them even when sample sizes are relatively 
large (for some illustrations of these problems in sev-
eral areas, see García-Pérez, 2018; García-Pérez & 
Alcalá-Quintana, 2005, 2017; Pickles & Croudace, 2010; 
Raykov & Marcoulides, 2019). In the end, use of data 
that are uninformative about some of the parameters 
results in wild or boundary estimates that either look 
unrealistic or depart greatly from their actual values in 
simulation studies. There is a vast literature on this 
problem and one way to tackle it is to place priors on 
model parameters to keep the final Bayesian estimates 
within reasonable bounds. This strategy may or may 
not give acceptable results (see, e.g., Alcalá-Quintana 
& García-Pérez, 2004; Depaoli, 2014; Finch & Miller, 
2019; Liu, Zhang, & Grimm, 2016; Marcoulides, 2018; 
Smid, McNeish, Miočević, & van de Schoot, 2019) but 
it essentially implies injecting information through the 
prior to make up for the lack of it in the data. Not doing 
something of this sort may seem unsatisfactory in the 
sense that some parameter estimates will otherwise 
not look reasonable, but it may be more judicious to ac-
cept that the data were not informative about those pa-
rameters and to consider collecting informative data.

It should also be realized that using a prior of  
any type implies embracing the notion that the 
unknown parameter is a random variable: A proba-
bility distribution over the parameter is interpret-
able only in such conditions. Then, the prior (even a 
uniform prior) can only express a researcher’s beliefs 

on the plausibility of alternative values for the param-
eter, a subjective notion rarely mentioned in presenta-
tions of Bayesian statistics (but see Rouder, 2014). The 
immediate consequence is that Bayesian outcomes 
(and, particularly, Bayesian HDIs) do not indicate 
the range within which a parameter lies with certain 
probability but, rather, the range within which the 
researcher believes the parameter to be in under some 
subjective and ill-defined concept of probability. 
Ignoring this crucial aspect seems to justify presenting 
Bayesian outcomes as if they provided researchers 
with what they care for (namely, the probability of the 
parameter or hypothesis given the data) and ridded 
them of what the frequentist approach offers (i.e., the 
uninteresting probability of the data given the param-
eter or hypothesis). It seems perfectly acceptable for 
researchers to present a Bayesian quantification of 
their own subjective beliefs, provided that they explic-
itly state that this is all that they are doing; misrepre-
senting such quantification as if it captured some 
empirical reality is a breach of research integrity for 
which there should not be any room in the scientific 
literature. It is nonetheless understandable that a dis-
dain for connections with the empirical world would 
reduce the perceived severity of data falsification (see 
Resnik, 2014). To avoid confusions and the miscon-
struction of any results that are reported with Bayesian 
methods, it would be desirable that such results are 
clearly described as portraying only the researcher’s 
updated beliefs given the data and the initial beliefs, 
which lie at an epistemological level that differs from 
that occupied by frequentist results that merely sum-
marize observed data.

Criticisms of continued misinterpretation of frequen-
tist outcomes are well-taken, particularly as regards the 
misconstruction of results as if they indicated the prob-
ability that a hypothesis is true or the range within 
which a parameter lies with some probability. Such mis-
constructions are often attributed to researchers’ interest 
in arriving at such probabilistic statements coupled 
with their lack of awareness that frequentism cannot 
provide them and with a little help from unreliable 
knowledge sources (see Cassidy, Dimova, Giguère, 
Spence, & Stanley, 2019). One might hope that statistical 
education would step in and clarify that ill-posed ques-
tions regarding the probability of hypotheses or param-
eter values are devoid of meaning when hypotheses 
and parameters are only unknowns, not random vari-
ables. Presentation of Bayesian analysis as a tool that 
can provide researchers with answers to such questions 
only contributes to statistical illiteracy.
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