Introduction to Relational Databases

All data processing we did so far in this book was file based. That is, our
data was stored in files, and these files were read by our data management
software (e.g., R). Using this software, we processed the data in various
ways, and output the resulting datasets again to files. In this workflow,
files are the basic containers of our data, which we use to store it persis-
tently and to share and disseminate it. Due to its simplicity, flexibility, and
versatility, file-based data storage is used for the vast majority of social
science research projects. In this chapter, we go one step further. Rather
than keeping our data in simple files, we use a kind of software specifically
designed for storing and processing data: a database management system
(DBMS).

There exist many different types of DBMS. Our focus here will be
on what is probably the most common one: a relational DBMS. These
systems are built on the idea that all data should be contained in tables
that are linked to each other. This is an idea that should be straightfor-
ward to us, since we have dealt with tables from the beginning of this
book. The concept of a relational database goes back several decades. In
computing, this is a long time. Still, these databases continue to be around,
in different forms and flavors, which attests to the power and flexibility
of the concept. So, how can these database systems improve upon the
standard file-based data management workflow?

e Organizing your data in a single file is simple, but quickly becomes
difficult if your data is spread out across different files. If you follow
the advice on a “good” table design in Chapter 3, you will probably
require several tables to store data without redundancies; for example,

103

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

104 8 Introduction to Relational Databases

if you use data with annual estimates of the GDP for different coun-
tries, you will use one table for the variables at the country level that
remain constant over time (such as the year of independence), and one
table for those variables that change annually (the GDP estimates).
Using a single table is not a good idea, since you would have to repeat
the constant country-level variables for every annual observation. This
would mean that part of your data is redundant, and it is something
we should avoid. With file-based data processing, however, each table
requires a new file, so your entire “database” consists of many files and
becomes difficult to maintain. Relational database systems, in contrast,
are designed to manage many different tables simultaneously. Each
database contains all tables for a project, keeping them together in
one place.

o Not only are data spread out across many files difficult to handle, but
they can also become internally inconsistent. Imagine in your table
with GDP estimates, you have an entry that refers to a particular coun-
try in the country table, for example, Switzerland. You would like to
join the two tables to create a dataset for analysis. However, what if
Switzerland is somehow missing from the countries table? With file-
based data storage, there is no mechanism to ensure that tables that
refer to each other are consistent — that is, that links from one table to
another are indeed valid and point to actual data. Relational databases
have different mechanisms to maintain this relational integrity, that is,
the consistency of data across different tables as you add, delete, or
update data.

e When your tables become large, the performance of data operations
becomes an issue when relying on file-based data storage. Loading a
small file and filtering particular observations from it is easy and fast,
but takes more and more time the larger your table becomes. Relational
databases are designed for fast and efficient processing of your data.
Operations such as searching and updating your data are tuned for
optimal performance, even if your data is so big that it cannot all be
kept in the computer’s memory at the same time. All this complexity
is safely hidden from you as the user of a DBMS - you tell the system
what you want to do with your data, and the system internally uses
whatever machinery is necessary to carry out these tasks.

o Finally, collaboration between different researchers is difficult in
a file-based workflow. Different people would have to exchange
different versions of files, while making sure that the content of these
files remains consistent (see the second point above). Imagine two

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

8.1 Database Servers and Clients 105

researchers trying to update data in different columns of the same
table: This is almost impossible in a file-based workflow, since both
would have to work on a single copy of the same file (and possibly
destroy the other’s changes when saving it). Database management
systems are centralized in a way so that many users can access the data
at the same time. The different tables in a database can be modified
by different users, according to the permissions they have. Each table
exists only once in a database, rather than in different copies of a file.

While these advantages of relational DBMS will become clearer in this
and the next chapters, using such a system in lieu of simple data files
entails a technical overhead. Ultimately, it is up to you to decide what
system or workflow you use for your project. If your project is small and
narrow in scope, it will be perfectly fine to keep your data in files only.
However, if your project involves several interlinked tables, some of which
are large, or if more than one researcher works on the data, then you
should consider using a database management system. In the following
section, we introduce the general setup of such a system.

8.1 DATABASE SERVERS AND CLIENTS

Many database management systems are set up in client-server architec-
ture. That is, the DBMS runs on a computer somewhere on the Internet
(which is called the “server”), and so-called “clients” connect via the
network to this server, send data processing instructions, and fetch data.
Figure 8.1 illustrates this graphically.

The big circle represents the database management system. In the
figure, this DBMS manages just one database, but in reality, there can

Database Client

Database
management
system

Client

FIGURE 8.1. Interacting with a database management system.

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

106 8 Introduction to Relational Databases

be many of them. The clients, depicted as rectangles, interact with the
DBMS: They connect to a particular database, can upload and retrieve
data from it, or send instructions for data processing. When you connect
to a database server from R (as we will do in this and the following
chapters), your R instance is one of those clients. R, however, is not the
only client software that can communicate with a database — there are
many others. For example, most DBMS come with simple text-based
clients, which you can run on your local machine to send commands
to the server. Also, all the major programming languages and most
statistical software packages have extensions that allow you to connect
to a database server.

In many cases, these clients are based on computers other than the
database server, and the communication between clients and the server is
done over the network. While it may seem unnecessarily complicated, this
separation is actually very useful. For once, it allows the database server
to be operating on powerful hardware, which is necessary in particular if
you deal with large datasets and/or complex calculations. Running these
operations on your local workstation or laptop would be much slower
and, in many cases, even impossible. Also, the shared client-server setup
is well designed for multiple users accessing a single database, which is
very useful for collaborative projects.

The communication with a (relational) database server is done with
a language designed for this purpose, the Structured Query Language
(SQL). Some pronounce it as “Sequel,” others prefer “Ess-Queue-Ell.”
SQL, as the idea of a “relational” database in general, has a long history,
and there are many different dialects of the language. In this book,
we rely on the PostgreSQL database system as well as the SQL dialect
it uses. PostgreSQL is free and open source, well-known, and many
other programming languages and tools can interface to it. While other
relational databases such as MySQL, Oracle or Microsoft SQL Server
differ in the features they offer (and therefore also the SQL dialect
they understand), this book introduces some general concepts of the
relational approach and SQL that apply regardless of what system you
work with.

To set up a client-server structure for the purpose of this book, we
have installed the PostgreSQL server on your system in Chapter 2. This
server should now be running. If not, you need to go back to Chapter 2
and the online installation instructions on the book’s companion website.
Now is also a good time to follow the instructions in Chapter 2 to create a
new database specifically for this chapter, if you have not done so already.

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

8.1 Database Servers and Clients 107

We use the name dbintro for this database, but you are of course free to
choose any name you prefer.

R has a generic interface to communicate with relational databases
called DBI, the “R Database Interface.” The RPostgres package we use is
built on this interface. There are many different types of database servers,
and using this standardized interface means that you connect to any of
them in the same way. For these connections, you typically need to specify
at least the type of server (PostgreSQL, MySQL, etc), the name of the
database, and your username and password (remember again to change
the username and password to match your setup). Here is how to do this
for our server and the dbintro database:

library(RPostgres)

db <- dbConnect(Postgres(),
dbname = "dbintro",
user = "postgres",
password = "pgpasswd")

If you get an error that says something like “could not connect to
server,” the PostgreSQL server may not have been installed properly, or
that you forgot to start it. In this case, I recommend that you go back to
Chapter 2 and complete again the steps described there and in the online
instructions.

Let us take a closer look at the database connection. The function to
connect to the database server is dbConnect(). It returns a connection
object, which we call db. We will use this object later to send all sorts
of commands to the server. When we are done, we should close the con-
nection properly (see the end of this chapter). To connect, we need to
provide a few connection parameters to the function. First, this is the
name of database we want to connect to, the dbname. Since a given server
can host many different databases with different users and for different
purposes, we need to specify which one we want to work with. In this
chapter, this is the dbintro database, but we will use other databases
in the following chapters. Second, you need to provide your username
and password, so that the server knows who it is communicating with.
This user-based authentication also allows you to later define different
permissions for different users, for example, by giving some users read-
only access to the database, while allowing others to modify the data.
This is something we return to in Chapter 1o0. Note that in the above
example, we omit several other connection parameters, for example, the
name of the computer running the server. This is because you are running

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

108 8 Introduction to Relational Databases

PostgreSQL on your local machine, using default settings. It is easy to
extend the above code to connect to servers on other computers, if the
need arises.

8.2 SQL BASICS

Before we use the connection to our database to send commands and
work with actual data, let us cover some basics of the SQL language. As
we will see below, much of it is actually close to human (English) language,
so it is not too difficult to understand. Unlike many other programming
languages, SQL is case-insensitive, so it does not matter if you write SELECT
* from myTable, or select * FrOM MYTABLE. However, I strongly recom-
mend that you follow the convention to spell SQL keywords in upper
case, and names of tables, columns, and functions in lower case. The
above statement then becomes SELECT * FROM mytable. I will follow this
convention throughout the book.

In a relational database, all data is contained in tables, and the SQL
language is designed around these tables. As social scientists, we refer to
the data in our tables as observations or cases, each of which consists of
different variables. In the database world, we prefer the terms rows (or
records) and columns (or fields) of a table. Tables in relational databases
have typed columns. This means that we need to define whether we want
to stick text or numbers (or something else) into a given column, and the
database system then ensures that only allowed data of the given type
is stored in that column. This is similar to R’s data frames (although
R adjusts types dynamically, while a database does not), but very dif-
ferent from the non-standardized tables you can find, for example, in
spreadsheets. Different database systems (and therefore, the different SQL
dialects they use) vary in the column types they offer. In our discussion,
we will not go into the details regarding these differences, but rather try
to introduce SQL that also works beyond the PostgreSQL system we use
for our exercises.

Relational databases employ a strict separation of data structure and
the data itself. This is why in SQL, there are several dedicated commands
to define and modify the structure of your tables: You can introduce new
tables, define which columns they should consist of and what the types
of these columns should be, and you can also delete columns or entire
tables. This category of statements is called data definition. The second
category of commands is for the updating of the data contained in the
tables of a database: You can insert new rows or delete existing ones, or

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

8.3 Application: Electoral Disproportionality by Country 109

update the information contained in particular fields of a table. These are
examples of data manipulation statements. Finally, we ultimately want to
extract data from the tables in our database, which is why we need data
extraction commands.

In our example below, we use R as a client to connect to the database
and to send SQL statements to it. While the R code and the functions we
use for this are of course specific to R, the SQL code is not — you could
send the same statements via a different client, and the database would
do exactly the same. However, we will also be using some convenience
functions for R that facilitate, for example, the loading of data into the
database. These are features offered by R (or rather, its database interface
DBI) and not by SQL.

8.3 APPLICATION: ELECTORAL DISPROPORTIONALITY
BY COUNTRY

In democracies, the main way by which institutions aggregate the pref-
erences of citizens is through elections. In an election, citizens cast their
votes, and the result of election — for example, the composition of the
national parliament — is supposed to reflect the distribution of voters.
However, electoral systems vary tremendously in the way they translate
the votes cast in an election into a particular distribution of seats, which
has long been the focus of much research in comparative politics (see e.g.
Grofman and Lijphart, 1986). One outcome that is associated with the
voting system is the “disproportionality” of an electoral result. Dispropor-
tionality refers to the difference between the share of votes that a party
achieves in an election, and the share of seats it ultimately gets in par-
liament. In a majoritarian system with its winner-takes-all logic (as in the
UK, for example), disproportionality between vote and seat shares will be
highest, since the votes cast for candidates that do #ot¢ win a precinct ulti-
mately do not count. Disproportionality is typically measured using Gal-
lagher’s least squares index, which is defined as the square root of half the
sum of squared differences between seat shares (S;) and vote shares (V;):

I n
=Y (Vi-S)?
* =1

What is the disproportionality in actual elections? To find out, we
use data from the ParlGov database, a comprehensive resource with

LSq =

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

110 8 Introduction to Relational Databases

information on election results, political parties, and the composition of
governments in EU and OECD countries (Doring and Manow, 2018).
Importantly for our purpose, ParlGov consists of a set of different tables,
since it is already structured internally as a relational database. In this
chapter, we are going to use only one of these tables, which is the one
with data on elections; in the next chapter, we will extend our work
with ParlGov and add another table from the database. These tables
we use are not the original ones. They have been revised slightly for the
purpose of our exercises: I dropped variables we do not need and elections
with missing data, kept only parliamentary elections, and retained only
European countries.

8.4 CREATING A TABLE WITH NATIONAL ELECTIONS

We have a PostgreSQL database and can connect to it, but so far we do
not have any tables. As we have seen above, relational databases require
us to specify the structure of the data (i.e., the tables) first, before we can
add data. This sounds more difficult than it actually is — all we need to
do is tell PostgreSQL what the name of the new table should be, what
columns it should contain, and what the types of these columns are. First,
let us take a look at the election data we have from ParlGov. If you open
the file elections.csv in a text editor, this is what you should see:
election_id,country_name,election_date,party_id,vote_share,seats,seats_total
402, Austria, 1945-11-25,1013,49.8,85, 165

402,Austria,1945-11-25,973,44.6,76,165
402,Austria,1945-11-25,769,5.4,4,165

The structure of the table is not difficult to understand. Each line
contains an election result for a political party. Each election has its
election_id and is linked to a country. The data also contain the
election_date. The next three columns store the party-specific infor-
mation about the election result: the party (identified by the party_id),
the vote_share it achieved, and the number of seats it obtained. Finally,
the last column contains the total number of seats that were filled in the
respective election.

Let us now create a table structure in SQL, so that we can import the
ParlGov election data. There are a few things we need for this. First, recall
that we created our database connection above, and can access it via the
db connection object. We tell R to use this connection whenever we send
an SQL command to the database. The dbExecute() function is what we
need for this. It has two parameters: First, the connection (this is our db

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

8.4 Creating a Table with National Elections 111

object); second, a string with the SQL command we want to send to the
database. Creating a new table in SQL is done using the CREATE TABLE
statement:

dbExecute(db,

"CREATE TABLE elections (
election_id integer,
country_name varchar,
election_date date,
party_id integer,
vote_share real,
seats integer,
seats_total integer)")

As mentioned above, we write the SQL keywords in upper case. What
exactly happens in this statement? We provide the name of the new table
(elections), followed by the list of columns and their types. The set of
columns and types needs to be enclosed in parentheses and separated by
commas. In the example, we use four different types of columns:

Integer numbers, given as integer.

2. Text, given as varchar (a set of characters with variable length).
Date values, given as date, which will later help us order elections
by calendar date as well as conduct other date-based calculations.

4. Decimal values. Here, we use real numbers, which is one of Post-
greSQL’s decimal number types.

If you need more information about the column types PostgreSQL can
handle, take a quick look at the documentation at https://www.postgresql
.org/docs/current/datatype.html. To reiterate our point from above: The
code we present here mixes SQL code (the long text starting with CREATE
TABLE) with R code (dbExecute()) to send it to the database. If you were to
use a client other than R to connect to the database, you would need the
SQL part, but not the R function calls. To check whether the table was
successfully created, R’s DBI interface has a useful function that prints
out a list of all tables in a database:

dbListTables (db)

[1] "elections"

As the output shows, we currently have one table in the database,
which is the elections table we created. Now, we have completed the
definition of our table structure and can fill it with data. This is done

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://www.postgresql.org/docs/current/datatype.html
https://doi.org/10.1017/9781108990424.012

112 8 Introduction to Relational Databases

using the SQL INSERT INTO command. To insert some data for the 1919
elections in Austria, you use the following statement:

dbExecute(db,
"INSERT INTO elections
VALUES (1030, 'Austria', '1919-02-16', 97, 40.75, 72, 170)")

Here we specify which table we want to add our data to, and provide
in parentheses the values the respective columns should have. Note that
we have to surround string values such as Austria with single quotation
marks ('). The same holds for date values, which will automatically be
recognized as a date if they are formatted in a standard way. The above
example inserts data for all columns in the table, and the new values have
to be provided in the exact same order in which the columns appear in
the table (which is what we defined above). If we want to insert data for
only specific columns, and possibly in a different order, we have to specify
the columns we want to insert into — let us take an election from Belgium
as an example:

dbExecute(db,
"INSERT INTO elections
(election_id, country_name, election_date, vote_share, party_id)
VALUES (872, 'Belgium', '1908-05-24', 22.6, 2422)")

This omits the two fields with the party’s seats and the total number
of seats, and uses the party id as the last value. To check whether this
worked, let us move from data manipulation to data extraction. We use
another very important SQL command: SELECT. In the simplest form,
SELECT can be used to retrieve all data from a table, without any filtering
or transformations. Let us do this for all data we have in elections, which
at this point are only two elections from Austria and Belgium:

dbGetQuery(db, "SELECT * FROM elections")

election_id country_name election_date party_id vote_share seats seats_total
1 1030 Austria 1919-02-16 97 40.75 72 170
2 872 Belgium 1908-05-24 2422 22.60 NA NA

Since this is an SQL statement, which, unlike dbExecute() above,
returns data rather than just manipulating it, we need to use a different R
function that fetches data from the database: dbGetQuery (). For simplicity,
we simply output the result of this function —a data frame — to the console,
but in a regular script, you would store it in a new R object for later use.
The asterisk * in the SQL code stands for “all columns,” and we need

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

8.4 Creating a Table with National Elections 113

to provide the name of the table we want to extract from. You can see
that the seats and seats_total values for Belgium are correctly stored
as NA, since we chose not to provide them when we inserted the data
for Belgium. Here, NA is R’s convention to represent missing data. In
relational databases, missing values are usually encoded as NULL (this is
not a string, therefore no quotes), and the DBI functions take care of
mapping R’s NAs to NULL values in the database.

SELECT is probably the most powerful command in SQL, and we can
cover only some variations of the above statement. Let us assume we want
to see only a subset of the columns in a table. This is possible by specifying
the columns names explicitly, rather than using the wildcard character *:

dbGetQuery(db, "SELECT country_name, election_date FROM elections")

country_name election_date
1 Austria 1919-02-16
2 Belgium 1908-05-24

We can also extract just a subset of all data with the WHERE keyword:

dbGetQuery(db,
"SELECT country_name, vote_share
FROM elections
WHERE vote_share > 40")

country_name vote_share
1 Austria 40.75

It is also possible to dynamically compute new columns in a SELECT
statement, for example, to output the vote share as a proportion rather
than a percentage:

dbGetQuery(db,
"SELECT country_name, vote_share / 100 AS vote_share_prop
FROM elections")

country_name vote_share_prop
1 Austria 0.4075
2 Belgium 0.2260

In this statement, we transform the vote share by dividing it by 100,
and output the result in a new column called vote_share_prop. This new
column appears only in the result — it does not change the original table
in any way. There is much more we can do with SELECT statements, some
of which is shown below after importing the entire ParlGov table into our
database. But before we do so, we first need to remove the data we have
added to our table with a DELETE statement:

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

114 8 Introduction to Relational Databases

dbExecute(db, "DELETE FROM elections')

As with any operation that removes data, you need to be very careful:
This statement deletes all your data in the table but keeps the table struc-
ture. Now that we have an empty table, we can insert all of the data from
our election data frame into the table. Writing separate INSERT statements
for each row would be very cumbersome. Luckily, there are several ways
in which you can easily load data into a PostgreSQL table. In the example
below, we use a function from R’s DBI interface, which takes an R data
frame and sends it to a database. The file elections.csv in the data
repository contains the elections data. We load the data into R and then
use dbAppendTable() to append it to the empty elections table that we
created above:

elections <- read.csv(file.path("ch08", "elections.csv"))
dbAppendTable(db, "elections", elections)

As all database functions, dbAppendTable() first takes the database con-
nection to be used. Second is the name of the database table that the
records should be appended to. Last, we specify the data frame that should
be appended to the given table. If the import is successful, you can again
use the SELECT command to browse some of the data (the LIMIT key-
word restricts the output to a certain number of rows). Note that in
a database table, the data has no fixed ordering; the following SELECT
statement returns two rows, but on your system, these may be different
from the ones you see in the example:

dbGetQuery(db, "SELECT * FROM elections LIMIT 2")

election_id country_name election_date party_id vote_share seats seats_total
1 402 Austria 1945-11-25 1013 49.8 85 165
2 402 Austria 1945-11-25 973 44.6 76 165

The second, and slightly more convenient way to load data is through
the DBI’s dbWriteTable() function. This function takes a data frame and
a table name, and sticks the data into a given database table. If the table
does not exist, it can even generate a new table structure before inserting
the data. To try this, we first delete the entire table:

dbExecute(db, "DROP TABLE elections")

Now, we want to add the entire elections table to the database in a
single step. Before we can do this, we need to make sure that all the
columns in the data frame have the correct type. This is not the case for

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

8.5 Computing Electoral Disproportionality 115

the election date, which is still a string variable. Therefore, we first convert
it to a date, and then upload the entire table in one step:

elections$election_date <- as.Date(elections$election_date)
dbWriteTable(db, "elections", elections)

Again, the dbWriteTable() function is convenient, since it creates the
new table in the database according to the structure of the data frame, and
then uploads the data contained in the data frame to it. You can check
again with a SELECT statement that the import was done successfully.

After the successful import of the election table, we create a new field
for the year of an election with ALTER TABLE, to make future operations
with yearly aggregations easier. In PostgreSQL, you can extract some part
of a date (e.g., the year, the day, or the month) with the extract () function:

dbExecute(db, "ALTER TABLE elections ADD year integer")
dbExecute(db,

"UPDATE elections

SET year = extract(year from election_date)")

8.5 COMPUTING ELECTORAL DISPROPORTIONALITY

With our table successfully imported into our relational database, we
can now proceed to compute the Gallagher index of disproportionality
in SQL. We do so for each election, using data on vote shares and seat
shares. Our elections table from ParlGov already contains information
about each party’s vote share (in the vote_share variable, in percent). We
need a separate field for the seat share, which we can simply compute as
the fraction of the actual seats for the respective party (seats) and the total
number of seats in parliament (seats_total). Following the convention of
separating data definition from data manipulation, we first need to create
an (empty) new field for the seat share:

dbExecute(db, "ALTER TABLE elections ADD seat_share real")

We again use a real type for this variable, since it will contain decimal
numbers. The ALTER TABLE command can not only be used for adding
new columns, it can also delete (DROP COLUMN) them or change their type
(SET DATA TYPE). Now, we can fill the new column by computing the per-
centage of the total seats that the party received. If we were to do so by
simply dividing seats by seats_total and multiply it by 100 (to obtain
a percentage), we would get the wrong result: The result of dividing two

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

116 8 Introduction to Relational Databases

integer numbers in PostgreSQL is again an integer, which is why the result
would have the decimal places removed. To fix this, we multiply it with
a decimal number (100.0) and not an integer number (100) — as a result,
PostgreSQL will carry out the computation with decimal numbers, which
is what we want:

dbExecute(db,
"UPDATE elections SET seat_share = 100.0 * seats / seats_total")

The next step is to calculate the difference between the vote share and
seat share for each party in each election, square it, and then compute the
sum over all these squared differences for a given election. Let us start
with the first part, the squared differences between vote shares and the
seat shares. We can simply include it as an additional field in a SELECT
statement, something we have already introduced above. When perform-
ing this operation, we need to make sure to convert the ParlGov vote
share from a percentage to a proportion, to make it comparable to the
seat share. The power() function in SQL performs the exponentiation;
alternatively, you could use the " operator for this:

dbGetQuery(db,
"SELECT power(vote_share - seat_share, 2) AS squared_diffs
FROM elections LIMIT 2")

squared_diffs
1 2.941746
2 2.133375

Note that we are computing these squared differences only for illus-
tration purposes; they are simply displayed, but not stored for later use.
Next, we amend our SQL statement to compute the sum of these squared
differences across all parties in an election. You recognize that what we
need is simply an aggregation operation with grouping, similar to what
we have done in previous chapters: We combine all squared differences
with the same election_id and aggregate them by summing them up. In
SQL, aggregation is yet another thing you can do with a SELECT statement:
All you need to do is specify (one or more) aggregation functions, as well
as the grouping levels with the GROUP BY keyword. We also divide the sum
of squared differences by two, and take the square root:

dbGetQuery(db,
"SELECT
election_id,
sqrt (0.5 * sum(power(vote_share - seat_share, 2))) AS lsg_index
FROM elections

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

8.6 Results: Electoral Disproportionality by Country 117

GROUP BY election_id LIMIT 2")

election_id lsq_index
1 828 2.621663
2 938 2.389561

In the first part of the SELECT statement, we define what we would
like to get out: First, this is the grouping variable election_id itself, so
that we know which election a result refers to. Second, this is our above
computation of the squared differences, but wrapped in the sum() func-
tion. This is the aggregation function that the database applies to each
group as defined by the grouping variable. This sum is then multiplied
with o.5, and the square root function is applied to it. As above, we
use the FROM keyword to tell the database which table to use for this
calculation. Finally, we need to define the grouping variable using the
GROUP BY keyword (the LIMIT keyword again limits the output to two
rows, which is simply for presentation purposes).

8.6 RESULTS: ELECTORAL DISPROPORTIONALITY BY COUNTRY

We are almost ready to create a graph with the index values by country. To
do this, we make two adjustments to our previous SQL statement. First,
we include the country name in the grouping, so that we know which
country an election occurred in. This does not change our result, since
a particular election is always linked to exactly one country. Second, we
use only those elections from our table that were held after World War II.
This is done by specifying a filter condition with the WHERE keyword we
have used above:

dbGetQuery(db,
"SELECT
election_id, country_name,
sqrt (0.5 * sum(power(vote_share - seat_share, 2))) AS lsg_index
FROM elections
WHERE year >= 1946
GROUP BY election_id, country_name LIMIT 2")

election_id country_name lsqg_index
1 429 Norway 4.062591
2 466 Greece 6.958688

This is the data that we need to generate our plot. For each country

and each election, Figure 8.2 shows the disproportionality scores that
were computed above. You can clearly see considerable differences

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

118 8 Introduction to Relational Databases

.
.
.
° $.
‘>]<) 20 H
° ° ° ° [
£ o °
5 ° ¢ e ° [}
° ® 0 °
S . s 3 . . : b
o ° ¢ ° ° ° ° o
T 10 L] o [] L] 3 ° Fy . ° : .
° []
© DO T Pedgscs IR s,
LAY ® [| [}]
Ly 8 2 b ! (4 *
° ® o s ' [] ! o
° ° ' [} st '
L}
‘ i ! $ 0 8, o
0- T
@ IR GRS @ @ SO Q@ G O > 02 @ S
06\'\\\(-)\0%&\ & \\Q@\@\\ @'Z’&\o‘\\&’bﬁ\@& &fb*%e‘:@'b‘ Ry \\’?}* ,2}4\0,2,0‘ o\\‘\,bob @%@“@Qz,b&\‘ Q'Z\S\\e}\\% Qflr\(;bé:\rf\;:@;bo@
SN SN IENPE AN ASENTON P& Va® O 0) NG N A
YoPe® © Oqgaoe, PK QOQ, C’)Q\\\ 7N \;\&_\9@\‘\@ 3 QQOQ_Q P %s.\(], ®0
N STag 2 >
o) X)
© v S
(¢} X
Country

FIGURE 8.2. Gallagher index values for elections in different countries.

between countries when it comes to the disproportionality in the different
elections. For example, some countries such as Sweden consistently have
highly proportional outcomes, which means that the composition of the
national parliament matches the distribution of votes across the different
parties very well. This is not the case for other countries, however. The
United Kingdom, for example, has several elections with high values of
the Gallagher index. This is not surprising, given the electoral system in
the UK: The country has a majority voting system, where in each district,
only the candidate who gets most of the votes in that district wins. As a
result, the votes for other parties are not reflected in the composition of
the UK parliament.

Finally, once we are done working with our database, we need to close
our database connection with:

dbDisconnect (db)

8.7 SUMMARY AND OUTLOOK

Database systems offer an alternative to standard, file-based data storage
that is predominant in the social sciences. Databases are systems designed
not just for data storage, but also for easy and efficient data manipulation
and retrieval, possibly by several users in collaboration. They are often
set up in a client-server fashion, where a central server keeps the data that

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

8.7 Summary and Outlook 119

can be accessed from different clients over the network. In this chapter, we
introduced a relational database system, which is the most frequently used
type of database. At the core of a relational database is the table as the
main structure to store data. The interaction with a relational database
happens via the Structured Query Language, SQL.

We covered three different types of SQL commands. Data definition
statements such as CREATE TABLE help us set up the structure of our
database by defining the tables and their columns. Data manipulation
statements allow us to populate our tables with data, and to change and
delete it, and data extraction commands retrieve data from our database
for further use (e.g., in R). In this chapter, we started our exploration
into the world of database using a single table only. This is obviously too
limited, which is why we will add more tables in the next chapter.

Besides the focus on SQL, there are several lessons you can take away
from this chapter.

o Client-server setups are useful for many applications: As explained in
the chapter, the client-server setup we use with PostgreSQL allows you
to outsource particular tasks to other machines, and R simply interacts
with these servers as a client. This is useful for many other applications
beyond PostgreSQL, for example, other types of database servers, or
servers executing large computing tasks. It is now possible to obtain
access to these servers, for example, through universities, which means
that you do not have to manage such a system yourself.

o Recognize the difference between SQL and R: Obviously, R and SQL
are designed for different tasks, but there is an important difference in
the philosophy underlying these languages. In R, you give the R engine
a precise set of instructions on what it should do. This is called proce-
dural programming. In SQL, you say what you want as a result, but not
how to get there. This is called declarative programming. Declarative
programming is convenient for us, since we do not have to worry about
handling large amounts of data on a disk — the database system does
this for us.

o Distinguish between R’s built-in database functions and SQL: We have
seen that R offers a number of convenient database functions that make
your work easier, such as dbWriteTable(). These functions internally
generate SQL code, which is then executed by the server. Of course,
while this may be convenient for you, it also gives you less control
over these operations. For example, you can bypass the explicit step
of creating a table, and let dbWriteTable() do all the work. For this, it

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

120 8 Introduction to Relational Databases

is important to check the result in the database, for example, whether
your automatically created table has the correct structure.

o Different functions for sending commands and getting data: It is impor-
tant to remember the difference between data extraction (with SELECT)
and the other operations that can be performed on the server. A SELECT
statement returns data, the other statements do not. This is why there
are two different functions in R for these different types of statements.
dbGetQuery() is used only for data extraction, and requires an SQL
statement that returns data (typically, SELECT). All other kinds of oper-
ation are done with dbExecute().

https://doi.org/10.1017/9781108990424.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.012

