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Abstract

Hyperidentities were introduced by Taylor, and their properties have been studied by Taylor,
Bergman, Penner, Graczynska, Schweigert, Wismath, and others. In particular, Penner has
produced bases for the hyperidentities of various types satisfied by the variety of semilattices.

In this paper, we look at bases for the hyperidentities satisfied by some other varieties of
semigroups. We first investigate solid and hyper-associative varieties of semigroups, and use
a result of Graczynska's to form a basis for the hyperidentities of type (2) for varieties with
these properties. We then produce bases for the hyperidentities satisfied by the variety RB of
rectangular bands, and prove that the collection of all hyperidentities satisfied by R B is not finitely
based. Finally, we use the RB results to give hyperidentity bases for some varieties of nilpotent
semigroups.

1991 Mathematics subject classification (Amer. Math. Soc): 20 M 08.

1. Introduction

Let f? be a type of algebras. An identity P = Q of type & is said to be
hypersatisfied by a variety V, not necessarily of the same type, if whenever the
operation symbols of P and Q are replaced by terms of V of the appropriate
arity, the identity which results holds in V. (Here we use "term" to mean any
polynomial expression formed using the operations of V and the variables from
P and Q respectively.) In this case, we refer to P = Q as a hyperidentity
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[2] Hyperidentity bases 271

satisfied by V. For example, the type (2) identity F(x, x) = x is satisfied by
any variety all of whose binary terms are idempotent.

Hyperidentities have been studied by many authors, including Bergman,
Penner, Graczynska, Schweigert, Taylor, and Wismath. In particular, in [6]
Penner has given bases for the hyperidentities of each type satisfied by the
variety SL of semilattices. In this paper we produce bases for the hyperidentities
of some other varieties of semigroups, focusing especially on the variety RB of
rectangular bands.

Section 2 considers some special properties of varieties: solidity, which
was defined by Graczynska and Schweigert in [4], and the new properties of
associativity and basis-solidity. We use a theorem of Graczynska relating solidity
and basis-solidity to produce some new examples of solid semigroup varieties.

In Section 3 we focus on some varieties of bands. Using results from [8]
we first reduce to looking at the countably infinite chain of closed (self-dual,
non-semilattice) varieties of bands. The first non-trivial variety in this chain is
the variety RB of rectangular bands. It is particularly important in the study of
hyperidentities, since any hyperidentity satisfied by any non-trivial variety must
also be satisfied by RB; equivalently, RB is contained in the closure of any
non-trivial variety V. The next variety in the chain is NB, the variety of normal
bands, which is the closure of the variety SL. It is an easy consequence of the
definition of closure that the bases obtained by Penner in [6] for hyperidentities
in 5L are in fact also bases for the hyperidentities of NB. Penner also notes that
a basis for the collection of all hyperidentities satisfied by RB may be formed
by adding one hyperidentity to the union of the «-ary bases for H(SL), n > 1.
In Section 3 we produce directly simpler bases for the hyperidentities of various
types for RB, and prove that H(RB) is not finitely based.

Section 4 deals with hyperidentity bases for the varieties of &-nilpotent semig-
roups, for k > 2. The case k = 2 of zero semigroups is dealt with by straightfor-
ward modifications to results in Section 3; similar techniques can then be used
for k > 3.

We conclude this section with some notation and terminology, and some
preliminary results to be used in the rest of the paper. We use H{V) for
the collection of all hyperidentities (of any type) satisfied by a variety V. A
hyperidentity containing k operation symbols each of arity n is said to have
type (n,n,..., n) and we use H(V){n) and H(V)(n) for the hyperidentities of

* factors

H(V) of type (n) and n = (n, n,n,...) respectively. Hm{V) and Hn{V) will
denote the sets of hyperidentities from H(V) with operation symbols of arity at
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272 Shelly L. Wismath [3]

most m, and with at most n variables respectively.
We will call an expression used on one side of a hyperidentity a hyperterm.

It will sometimes be useful to consider hyperterms in terms of their formation
trees. In particular, if x is a variable of a hyperterm P, we record the sequence of
operation symbols and turnings in the path in the tree from the root to the variable
x, in the string for x. For example, in the hyperterm shown below the string
for the second occurrence of x is recorded as (F2, F3, H\,x). The height of
a variable x is the number of operation symbols (not necessarily distinct) listed
in its string. The

height of a hyperterm P is the maximum of the heights of the variables in P.
For instance, in the previous example, the second occurrence of x has height 3,
as does the hyperterm itself.

If V is a variety and E a set of hyperidentities, we use Vt=E to mean that V
satisfies all the hyperidentities in E. For E and F both sets of hyperidentities,
we use E h y to mean that each hyperidentity in F is a consequence of those in
E.

Most of the varieties considered here will be varieties of semigroups. If a is
a finite set of semigroup identities, we use V(a) for the variety of semigroups
defined by a. In particular, we will refer throughout to the following varieties:

Bx i = V(x(yz) = (xy)z, x2 — x), the variety of bands.

Bn,m = V(x(yz) = (xy)z, xn = xn+m), n,m>\.

A = V(x(yz) — (xy)z, xy = yx), the variety of abelian semigroups.

An,m = V(x(yz) = (xy)z, xy = yx, x" = xn+m), n,m>\.

Tr = V(x = y), the variety of trivial semigroups.

RB = V(x(yz) = (xy)z, xyz = xz), the variety of rectangular bands.

SL = A u = V(x(yz) = (xy)z, xy = yx, x2 = x),

the variety of semilattices.

NB = V(x(yz) = (xy)z, x1 — x, xyzw — xzyw),
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the variety of normal bands.

RegB = V(x(yz) = (xy)z, x2 = x, xyzx = xyxzx),

the variety of regular bands.

Z = V(xy = zw), the variety of zero semigroups.

Nk = V ( x ( y z ) = ( x y ) z , x i - - - x k = y i - - - y k ) ,

the variety of k -nilpotent semigroups, k>2.

For any variety V of semigroups, there is a largest variety V of semigroups
which satisfies exactly the same hyperidentities as V does. We will call V closed
if V = V. This defines a closure opeator on varieties of semigroups; the reader
is referred to [8] and [9] for more information about this operator, and for proofs
of the following results.

THEOREM 1.1. For any non-trivial variety V of semigroups, RB V V^V.

THEOREM 1.2. The closed varieties of bands are precisely the self-dual vari-
eties except SL, and SL — NB. Thus the closed varieties of bands form a
countably infinite chain with supremum B\y.

Tr^RB^NB = 5LiRegfii • • • cfiu.

THEOREM 1.3. For each k > 2, ~N~k = Nk V RB; for k > 3, Nk V RB =
V((xy)z = x(yz),x{ • • • xk = xxy2 • • • yk~\Xk).

The following observation is an immediate consequence of the definition of
closure:

LEMMA 1.4. For any non-trivial variety V, any set of hyperidentities which
forms a basis for H(V) (of whatever type) is a basis for H(V), and vice versa.

2. Solid and hyper-associative varieties

Given any semigroup identity, there is an obvious way to "translate" it into
a hyperidentity of type (2). For example, the identity x(xy) — (xy)y gives
the binary hyperidentity F(x, F(x, y)) = F(F(x,y),y). Graczynska and Sch-
weigert in [4] have called a variety V solid if it satisfies the hyperidentity
translation of each of its identities. They give one example of a solid variety,
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the variety N B. In this section we define the related concepts of associativity
and basis-solidity, and show how a basis for H(V)(2) may be constructed for
such semigroup varieties V.

In looking for examples of solid semigroup varieties, we are led naturally to
the following definitions.

DEFINITION 2.1. A variety V of semigroups is called (1) hyper-associative
if V satisfies the associative hyperidentity F(F{x, v), z) = F(x, F(y, z)), and
(2) basis-solid if there is a basis a of semigroup identities for V, including the
(usual) associative identity, such that V satisfies all the hyperidentity translations
of a.

EXAMPLES AND OBSERVATIONS 2.2. 1. It is easily verified that any variety
V which is hyper-associative must be a subvariety of B2,2 since it must satisfy
x2 — x4. However 62,2 itself is not hyper-associative.

Note also that no abelian variety can be solid, since the hyperidentity trans-
lation of xy = yx is not satisfied by any non-trivial variety.

2. The variety A2^ and its subvarieties are hyper-associative; for n > 2 and
m > 2, Anm is not hyper-associative.

3. The variety Z = N2 of zero semigroups is hyper-associative, but for
k > 3, Nk is not. However, not even Z is solid, since it does not satisfy the
hyperidentity translation of xy = zw for instance. Thus hyper-associativity
does not imply solidity.

4. Within the lattice of varieties of bands, the only hyper-associative variet-
ies are the 13 subvarieties of the variety Regfl of regular bands. Since there are
only 6 possible binary terms to check, it is easy to verify that RegB, and hence
its subvarieties, does satisfy the associative hyperidentity. To see that no other
variety of bands satisfies this hyperidentity, it suffices to show that the variety

V = V(x(yz) = (xy)z, x2 = x, xyzwzyx = xyzxzwzxzyx)

does not. This is the variety labelled as G4G4 = //4//4 by Gerhard and Petrich
in [2], and using the solution they have given there to the word problem for this
variety, we can verify that substitution of the term xyx for F in the associative
hyperidentity leads to an identity not satisfied by this variety. (For more detail
on the structure of the lattice of varieties of bands, the reader is referred to [2].)

5. Any solid variety must be closed, but the converse is not true, since,
for example, Bn is closed (see [8]), but by Example 4 above is not even
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hyperassociative. The join of any hyper-associative (solid) varieties is hyper-
associative (solid). Thus for example, Z v W is hyper-associative, for W any
of the varieties of bands from Example 4.

It is clear that solidity implies basis-solidity, which in turn implies hyper-
associativity. The importance of basis-solidity lies in the following lemma, due
to Graczynska, which shows that in fact basis-solidity is equivalent to solidity.

LEMMA 2.3. (Graczynska [3]) Let V be a variety of type 2?', and let a be a
basis for the identities of V. Let E be the set of hyperidentity translation of a.
If V satisfies E, then V is a solid variety, and moreover E forms a basis for the
hyperidentities of type ^ satisfied by V.

This lemma gives a method for showing a variety to be solid (other than
testing all identity translations), and allows us to produce the first new examples
of solid semigroup varieties.

EXAMPLES 2.4. 1. It was shown in [9] that A2,2 = M,i v RB has as a basis
the set a consisting of (xy)z — x(yz), xyzw = xzyw and x2 = x4, and that
A2,2 satisfies the hyperidentities formed by translating these 3 identities. Thus
A2,2 is solid, and we have a basis of size 3 for //(A22)<2). Similar results from
[9] lead to a basis of size 3 for ^

2. Among the 13 hyper-associative varieties of bands, we need only consider
the 3 non-trivial closed varieties, RB, NB — SL, and RegB. In each case, the
variety has a basis consisting of (xy)z — x(yz), x2 = x, and one further identity
u = v. From Example 2.2.4 and [8], we know that the variety satisfies the
corresponding hyperidentities in each case, so is solid, with a basis of size 3 for
the hyperidentities of type (2). We note that for NB = SL, this gives the basis
obtained by Penner in [6] for H(SL){2).

3. We have seen in Example 2.2.3 that of the nilpotent varieties Nk, k > 2,
only Af2 = Z is hyper-associative. By Lemma 1.4, we may consider instead
hyperidentities for Z = Z v RB, which is also hyper-associative. From [9],
Z v RB is defined by the 4 identities

(xy)z = x(yz), xyx = x2, x2 = xy, xy2 = xy,

and satisfies their hyperidentity translations, which hence form a basis for
H(Z){2).

hi Section 4 we will give another basis, of size 2, for H(Z){2), along with
bases for H(Z)(n) and H(Z). Section 4 also examines H(Nk) for k > 3.
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4. The varieties ZvNB and ZvRegfi are also closed and hyper-associative,
and we may use Lemma 2.3 to give bases for their hyperidentities of type (2).
These consist of translations of

(xy)z = (xy)z, x2 - xA, x2y — (xy)2, xy = (xy)2

for both, plus

F(F(x, y), F(z, w)) = F(F(x, z), F(y, w))

for Z v NB, and

F(F(x, y), F(z, x)) = F(F(x, F(y, x)), F(z, x))

for Z v Regfl. (See [8] for details.)

Bases for H(Z v NB) for other types are discussed in Section 4.

3. Hyperidentity bases for RB

In [6] and [5], Penner has given bases for H(SL)(n), H(SL)(n) and H(SL),
and shown that H(SL) is not finitely based. He also notes that by taking the
union for n > 1 of the bases for H(SL){n), plus one additional hyperidentity in
H{RB) but not in H(SL), one obtains a basis for H(RB). In this section we
produce directly bases for H(RB){n) and H(RB){n), and from them a basis for
H(RB) which has a simpler form. These results will be used later to find bases
for other varieties as well. We also prove that H(RB) is not finitely based.

The key to dealing with hyperidentities for RB is whether or not variables
may be reached using only projection terms. We will say that a variable x is
accessible by projection (abbreviated abp) in a hyperterm P if there is a choice of
projection terms xt{i > 1) for the operation symbols in P, such that evaluating
P with that choice of terms results in x. Otherwise, x is said to be not accessible
by projection, or nabp. Note that x is nabp precisely if in the string for x,
there is at least one operation symbol F repeated twice with different indices.
Penner has said that a hyperidentity P — Q models projections if any choice of
projection terms leads to a trivial identity xt = x,, for some variable x,; that is,
if whenever a variable x is abp in P, the same choice of projection terms leads
to the same variable x in Q, and vice versa.
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LEMMA 3.1. (Penner [6]) The variety RB satisfies a hyperidentity P = Q iff
P = Q models projections.

DEFINITION 3.2. For n > 1, let F(«> consist of the two «-ary hyperidentities

F(x, ..., x) = x

and
\, ..., Xln), . . . , F(xn\, . . . , xnn)) = F(xn, ..., xnn).

LEMMA 3.3. RB\=r{n).

PROOF. It is clear that both hyperidentities model projections.
The first of these hyperidentities is called the («-ary) idempotent hyperiden-

tity. The second essentially says that all variables in a type (n) hyperidentity for
RB which are nabp may be eliminated. This is perhaps more clearly seen in the
equivalent set of n + 1 hyperidentities

F ( x , . . . , x) = x

F(f(xn, ..., x l n ) , x 2 , . . . , x n ) - F ( x n , x 2 , . . . , x n )

F ( x u . . . , x n _ i , F(xnl,...,xnn)) = F ( x u . . . , * „ _ , , * „ „ ) •

which would also give a basis for H(RB){n). This longer formulation will
actually be useful in Section 4 when we look at H(Z){n).

THEOREM 3.4. For n > 1, T{n) is a basis of size 2 for H(RB)(n).

PROOF. Let P = Q be any hyperidentity satisfied by RB. If P and Q both
consist only of a single variable xt, then P — Q must be trivial. Thus we
will assume that at least one of P or Q involves at least one occurrence of the
operation symbol F.

Now there is a unique hyperterm P*(Q*) of height 1, such that F{n) h P =
P*(Q = Q*)- For if P involves no occurrences of F, use the idempotent
hyperidentity from T(n} to introduce one occurrence of F; if P involves more
than one occurrence of F, use the two hyperidentities in Y(n) to eliminate all
but one occurrence of F.

Since RB\=P = Q and RB\=V(n), we have RB$=P* = Q*, and P* = Q*
must model projections. But by definition all variables in P* — Q* are abp, so
P* = Q* must be trivial. Therefore V{n) h P = Q, as required.
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DEFINITION 3.5. 1. The hyperidentity

F(G(xn,..., x l m ) , . . . , G(xnl,..., xnm))

= G ( F ( x u , •••, x n X ) , . . . , F ( x i m , . . . , x n m ) )

will be referred to as M(n,m), the medial hyperidentity of type {n,m). It is
clear that RB satisfies M(n, m) for any m, n > 1.

2. Letr(«) = r(n)U{M(n,n)}.
We will prove that T(n) is a basis for H(RB){n) by means of two lemmas.

The first one deals with the special case of hyperidentities for RB in which
all variables are abp, and the second one shows how any hyperidentity may be
reduced to one of this special kind using F{n).

LEMMA 3.6. IfP = Q is a hyperidentity of type («) which models projections
and has all variables abp, then

{F(x, ...,x)=x, M(n,n)}\- P = Q

PROOF. If P = Q has the form F(—) = x, the condition that all variables are
abp ensures that all variables in F(—) are x's, so that P — Q is a consequence of
idempotence. Hence we may now assume that P — Q has the form F{) = G().
Again by the abp condition, after the first occurrence of F at the root of P, there
can be no further F's in P. Moreover, if F ^ G, we may assume that every
branch in P contains exactly one occurrence of G, since more than one G
would lead to variables nabp, while if a branch has no G's we can always inflate
the final variable on the branch, x say, into G(x,..., x) using the idempotent
hyperidentity.

Using these observations, we proceed by induction on the height of P = Q.
Any hyperidentity of height 1 meeting these conditions must be trivial, so we
begin with height 2. Then P = Q would look like

FiHdxt), ..., Hn{xn)) = GiK.iy,), . . . , Kn{yn)),

where x, and y,, 1 < i < n, represent n -tuples of variables. If F and G are
the same operation symbol, we substitute for F the «-ary projection terms, to
obtain n new hyperidentities //,(T,) = Ki(xt) of height 1, which must then be
trivial. Thus P — Q is trivial in this case. If F ^ G, the observations above
show that we must have //, = G and Kt = F, for all 1 < / < n; that is, P = Q
is actually M(n,n).
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Now consider P — Q of height K > 2. If Q also has the form F(-), we
use the n projection terms to reduce to n hyperidentities of height K — 1 with
the same properties. Then, P = Q is a consequence of these, so by induction,
M(n, n) and F(x,..., x) = x yield P = Q. So we now suppose Q has the
form G(—), where G ^ F. We give a procedure for forming a new hyperterm
P* from P. As above, every branch of P must contain exactly one occurrence
of G. For each such branch, count the number of operation symbols other
than G occurring on the path from F to G. Choose any such G where this
number is maximal, say p. Now go back along the branch of this G to the
previous operation symbol, say H. Each branch coming out of H must contain
an occurrence of G, and by maximality of p these occurrences must also be at
height p. So this part of P looks like H(G(—),..., G(—)), and we can use
the medial identity to change it to G( / / (—), . . . , //(—)). In this new identity,
we repeat this process, first with any remaining G's at height p, then with G's
at lower height. Eventually we reach a new hyperterm P* of the form G(—),
such that M(n,n) (- P — P*. Now the hyperidentity P* = Q still models
projections and has all variables abp, and it has the form G() = G() ,soby the
earlier case it is a consequence of M(n, n) and idempotence. Thus M(n, n) and
idempotence yield P = Q, as required.

LEMMA 3.7. For any hyperterm P, there is a hyperterm P* with no variables
nabp, such that V(n)\- P = P*.

PROOF. Obviously if P has no variables nabp, we may take P* to be P. We
show how the hyperidentities in F (n_) may be used to eliminate any variable x
nabp in P. For any such variable x, there is an operation symbol F and indices
/ ^ j (j < n) such that the path from the root of P to x involves first Ft, then

If the 2 occurrence of F are adjacent, then part of P looks like

where the second F occurs in the i-th place of the first F, R is a hyperterm
involving x which occurs in the j-th place of the second F, and — indicates
other hyperterms in P. We use the idempotent hyperidentity to inflate so that
all n entries in the first F have the form F(—), then use the other hyperidentity
in r{«) to reduce to
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thereby eliminating the nabp variable x.
If the two occurrences of F are separated by one or more other operation

symbols, say Gi,... ,Gk,k > 1, then P has the form

-F(-,... -, d ( . . . G*(-, . . . F ( - , / ? - ) - ) . . . ) . . . ) - .

Here we again use idempotence to inflate so that the last operation symbol before
the second F has all entries of the form F{—); then use M(n,n) to replace the
part Gk(F(-), ..., F(-R-),... F(-)) by F ( G ( - ) , . . . , G( )). This moves
the second occurrence of F one step closer to the first. By repeating this process
we eventually reach a stage where the two occurrences of F are adjacent, when
the method of the previous paragraph may be used to eliminate x.

In this way all nabp variables in P may be eliminated, giving us P* as
required.

THEOREM 3.8. F(n) forms a basis of size 3 for H(RB)(n).

PROOF. Let P — Q be any hyperidentity fTomH(RB)(n). By Lemma 3.7,
there are hyperterms P* and Q*, with no variables nabp, such that T{n) \- P =
P*, Q = Q*- Since RB\=P = Q, and RB\=T{n), we have RB\=P* = Q*.
By Lemma 3.6, this gives T(n) \- P* = Q*. Therefore, T(n) \- P = Q, as
required.

The results of Theorem 3.8 may now be extended to deal with hyperidentities
for RB of arbitrary type. Merely by adding to our basis all the medial hyper-
identities M(n, m), we may carry out the proofs of Lemmas 3.6 and 3.7 in this
more general setting. Thus we obtain the following corollary.

COROLLARY 3.9. Let T = \Jn>1 F(n) U {M(n, m)n,m > 1}. Then T is a
countably infinite basis for H(RB).

THEOREM 3.10. H(RB) is not finitely based.

PROOF. We will prove that for any 2 positive integers m and n, there is
a hyperidentity H such that RB satisfies H, but H is not a consequence of
Hm(RB)U Hn(RB).

Take k = max{m, n) + 1. Define H to be the following hyperidentity, with
one &-ary operation symbol F:

(H) F(F(xux2, ...,xk),xu ...,xi) = F(F(xi,xux3, ..., x k ) , xu ..., * , )
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Since H models projections, it is clear that RB\=H.
Now define an algebra A_ = (A; f) as follows. Take

A = {ax, . . . , a k , a x a 2 , ..., a k a k _ x ) ,

the free rectangular band on the k generators au ... ,ak. / i s k-ary, given by

f( \ _ I x i x 2 i if {xi, • • .xk] = {a\, . . . , ak]
f{Xl Xk)-\ xx, otherwise.

Using / for the operation symbol in H leads to an identity which does not hold
in A_, since the valuation x,•. = a,, 1 < i < k, in the identity leads to

axa2 = ax.

Therefore A_ does not satisfy H. However, we claim that A does satisfy all the
hyperidentities in Hm{RB) U Hn(RB).

For if a hyperidentity involves at most n variables, or operation symbols
all of arity < m, since k > m, n it follows that the only A_-terms used in the
hyperidentity amount to projections. So in this case A satisfies the hyperidentity
iff RB does.

Thus we see that H is a hyperidentity satisfied by RB, which is not a con-
sequence of Hm(RB) U Hn{RB). Therefore H(RB) is not finitely based.

As noted in Examples 2.4.2, there are only three closed and hyper-associa tive
varieties of bands: RB, NB, and RegB. Our results here, and Penner's results
for SL (which extend to SL — NB by Lemma 1.4) give a complete picture of
the hyperidentities for the first two of these three. For RegB, however, we have
only the basis for H(RegB){2) obtained in Example 2.4.2.

OPEN PROBLEM 3.11. Find bases for H(RegB)(n), H(RegB)(n), and
//(Reg B).

4. Hyperidentity bases for nilpotent varieties

In this section we extend the results of the previous section to deal with
hyperidentities for the nilpotent varieties Nk, k > 2. We saw in Example 2.4.3 a
basis of size four for H(N2)(2); a slight modification of Theorems 3.4 and 3.8
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now gives a basis of size n for H(N2){n), and one of size n + 2 for H(N2){n).
Similar results may be obtained for H(N2 v NB) by modifying proofs from
[6]. We also show that H(N2 v RB) is not finitely based. Finally, we examine
hyperidentities for the varieties Nk = Nkv RB, for k > 3.

We begin by looking at hyperidentities satisfied by the variety N2 = Z of zero
semigroups, or equivalently by its closure Z = Z v RB. Z has only n + 1 terms
of arity n, for n > 1 : x{,..., xn, and xj; and Z satisfies any identity u = v
where u and v both have length greater than or equal to 2. From this it is clear
that Z satisfies all the hyperidentities in H(RB) except those of the form which
equate a single variable to a hyperterm involving at least one operation symbol.
In particular, Z satisfies the elimination hyperidentity in the basis F(«), but not
the idempotent one, F(x,... ,x) = x. Examination of the proof of Theorem 3.4
(that F(n) is a basis for H(RB){n}) reveals that the idempotent hyperidentity
is used there in two ways. The first is to deal with hyperidentities P = Q of
the form F(—) = x, which we need no longer be concerned with for Z. The
second use of idempotence is to inflate hyperterms such as

F ( F ( x u . . . , x n ) , y 2 , . . - , > ' « )

t o
F ( F ( x u ..., x n ) , F ( y 2 , ..., y 2 ) , ... F ( y n , . . . , v B ) )

in order to use the other hyperidentity to eliminate the variables nabp. However,
we may do away with this need for idempotence for Z by replacing the one
elimination hyperidentity by the following:

F(F(xu ..., xn), v 2 , . . . , yn) = F(xu y2,..., yn)

F(yuF(xu...,xn),y3, ..., yn) = F(yux2, y3, . . . , yn)

F(yu...,yn_i,F(xu...,xn)) = F(yu ..., y«_i, xn).

Let us call the set containing these n hyperidentities £(«). By repeating the
proof of Theorem 3.4 for Z instead of RB with modifications just described, we
prove the following:

THEOREM 4.1. For n > 1, E(«) is a basis of size n for H(Z)(n).

Similarly we may modify the hyperidentities and proof given for
H(RB){n). We still need the medial hyperidentity M(n,n); we must delete
the idempotent hyperidentity; and we must modify the one elimination hyper-
identity so that we can still eliminate all nabp variables without having to invoke
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idempotency. Define E (n) to be the set

[M(n,n)}U'E{n}\J{F(xu...,xn)

= F(G,(JC, , . . . , JCI), . . . , Gn(xn, ..., xn))}.

Note that the last new hyperidentity used here essentially allows the use of
idempotency, as long as the context of its use guarantees words of length > 2.
This is sufficient to allow us to carry over the proofs of Lemmas 3.6 and 3.7,
and Theorem 3.8, with appropriate changes, since any use we need to make in
them of idempotence for the case of Z is within this special context. This gives

THEOREM 4.2. For « > 1, E («) is a basis of size n + 2for H(Z)(n).

Finally, the proof of Theorem 3.9 also carries over to deal with Z. The
hyperidentity (//) given in that proof is satisfied by Z but not by the algebra
A_ given there. We saw that for any n, m < k, that algebra A satisfied any
hyperidentity in Hm{RB) U Hn(RB), which includes Hm(Z) U Hn(Z). Thus
we have also proved

THEOREM 4.3. H(Z) is not finitely based.

We note that similar modifications may be made to Penner's proofs in [6],
where a basis is given for H(Sl)(n) and H(SL) (n), to obtain bases for H(NB v
Z)(n) and H(NB v Z)(n).

We next consider hyperidentities for the nilpotent varieties Nk, and their
closures Nk V RB, for k > 3. We will show how to produce a basis for
H(Nk){n), fork>3 and n > 2. Since the hyperidentities in the arbitrary case
are rather cumbersome, we will illustrate with the situation for H(N^){2), then
discuss the generalization.

DEFINITION 4.4. let A3(2) be the set of hyperidentities:

F(F(x,y),z
F(x,F(y,z))

F(F(F(x,y),z),w)
F(x, F(y, F(z, w)))

F(F(x,F(y,z),w
and f(x, F(F(y,z), w))

= FiFix,w),z)
= Fix,Fiw,z))
= FiFix,z),w)
= Fix,Fiy,w))
= FiFix,y),w)
= Fix, F(y, w)).

(Ai)
(A2)
(A3)
(A4)
(A5)
(A6)

https://doi.org/10.1017/S1446788700032079 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032079


284 Shelly L. Wismath [15]

Before proving that A3(2) is a basis for H(N3)(2), we discuss what these
hyperidentities "mean". Recall that the hyperidentities used in the basis for
H(RB){n) essentially encoded the fact that variables nabp could always be
eliminated, since they were arbitrary. Here, however, because N3 imposes
a length restriction on the hyperidentities, variables nabp cannot always be
eliminated, although they are always still arbitrary. Thus hyperidentities Ai and
A2 above encode the fact that in "short" hyperidentities (height 2), variables
nabp are arbitrary, while A3 — A6 show that any variable which has height 3 and
is nabp can be eliminated, decreasing the height of its hyperterm by 1. (We note
that there are actually 6 = 23 — 2 ways for a variable to be nabp and at height
3. If we use R and L to describe right left turnings in the hypertree, these 6
ways can be described as RRL, LLR, RLR, LRL, RLL, and LRR. However,
2 of the corresponding hyperidentities can be easily deduced from the others, so
only 4 such hyperidentities are included in A3(2).)

THEOREM 4.5. A3 (2) forms a basis for H (N3) (2).

PROOF. Let P — Q be any hyperidentity of type (2) satisfied by N3 =
N3v RB. We will assume that = length of P > length of Q.

If = 1, it is clear that length of Q must also be 1, and that P — Q
must be trivial. If = 2, P must be one of F(F(x, v), z), F(y, F(z, x)), or
F(F(x, y), F(z, w)). In any case, the variable x (or w) must also appear in Q
at height 2, since otherwise using the term x2 for F would lead to the identity
JC4 = x2, which doesn't hold for N3. This restriction means that P and Q must
have the same shape, and then we have {Alt A2} \- P = Q.

For any height > 3, P must have variables nabp at height > 3. We then use
A3 — A6 to eliminate all such variables, producing a new hyperterm P* such
that A3(2) h P = P*, and P* has height 2. Similarly, reduce Q to Q*. Now
N3y RB\=P* = Q*, so by the case = 2, A3{2) h / " = Q*. This gives
A3(2) h P = Q, as required.

It is now clear how the technique used here may be extended. For H(N3 v
RB){n), n > 3, we need n hyperidentities saying that variables nabp at height 2
are arbitrary; plus (at most) n3 — n hyperidentities saying that an nabp variable
at height 3 may be eliminated, down to height 2. (As before, some of these
hyperidentities will not be needed for the basis.)

For values of k > 4, the situation is only a little more complicated. For each
such A^, there is a minimum height t at which one may begin eliminating nabp
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variables. (For k — 3 above, for instance, we had t = 3.) Hence a basis needs
a finite number of hyperidentities describing how variables nabp are arbitrary
at heights < t, plus a finite number more which describe how to reduce from
height t to height t — 1, by eliminating one nabp variable at height t. This proves
the following:

THEOREM 4.6. There is a finite basis for H(Nk)(2),for any n > 2 and any
k>2.

Unfortunately this approach does not seem to extend to hyperidentities in
H(Nk)(n), with two or more operation symbols. It appears that the situation
there is more complicated. For instance, the variable z in the hyperterm P,

P = F(G(F(H(x,y),z),w),t)

is nabp and at height 4, yet N3 does not satisfy the elimination hyperidentity

P = F(G(H(x,y),w),t).

In fact, for any given height k, one can construct a hyperidentity of type
(2, 2 , . . . , 2) which expresses that a variable nabp at height k can be elimin-
ated, yet which is not satisfied by N3. Moreover, once k > 5, Nk does not even
satisfy the medial hyperidentity.
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