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Abstract

A graph Γ is called 1-regular if AutΓ acts regularly on its arcs. In this paper, a classification of 1-regular
Cayley graphs of valency 7 is given; in particular, it is proved that there is only one core-free graph up to
isomorphism.
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1. Introduction

Throughout this paper, all graphs are finite, simple and undirected.
Let Γ be a graph. We denote the vertex set, edge set, arc set and full automorphism

group by V(Γ), E(Γ)Arc(Γ) and AutΓ, respectively. We say Γ is X-vertex-transitive,
X-edge-transitive and X-arc-transitive if X acts transitively on V(Γ), E(Γ) and Arc(Γ)
respectively, where X ≤ AutΓ. We simply call Γ vertex-transitive, edge-transitive and
arc-transitive for the case where X = AutΓ. In particular, Γ is called (X, 1)-regular if
X ≤ AutΓ acts regularly on its arcs, and 1-regular when X = AutΓ. Let G be a finite
group with identity 1. We call Γ a Cayley graph of G, denoted by Γ = Cay(G, S ),
if there is a subset S of G with 1 < S and S = S −1:={s−1 | s ∈ S } such that V(Γ) = G
and E(Γ) = {(g, sg) | g ∈G, s ∈ S }. It is easy to see that Cay(G, S ) has valency |S |.
Moreover, Cay(G, S ) is connected if and only if 〈S 〉 = G.

For a Cayley graph Γ = Cay(G, S ), G can be viewed as a regular subgroup of AutΓ
by right multiplication action on V(Γ). For convenience, we still denote this regular
subgroup by G. Then a Cayley graph is vertex-transitive. If G is a normal subgroup
of AutΓ, then Γ is called a normal Cayley graph of G. While for a nonnormal Cayley
graph Γ, if AutΓ contains a normal subgroup N that is semi-regularly on V(Γ) and
has exactly two orbits, then Γ is called a bi-normal Cayley graph. Both normal
and bi-normal Cayley graphs have nice properties (see, for example, [5, 6, 7, 11]).
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And Cay(G, S ) is called core-free (with respect to G) if G is core-free in some
X ≤ Aut(Cay(G, S )), that is, CoreX(G) :=

⋂
x∈X Gx = 1.

Li proved in [6] that there are only a finite number of core-free s-transitive Cayley
graphs of given valency k for s ∈ {2, 3, 4, 5, 7} and k ≥ 3, and that, with the exceptions
s = 2 and (s, k) = (3, 7), every s-transitive Cayley graph is a normal cover of a core-free
one. Li and Lu gave a classification of cubic s-transitive Cayley graphs for s ≥ 2 in [8].
What about the case where s = 1? Until now, the results on 1-regular graphs have
mainly focused on constructing examples. For example, Frucht gave the first example
of cubic 1-regular graphs in [4]. Conder and Praeger then constructed two infinite
families of cubic 1-regular graphs in [2]. Marus̆ic̆ [9] and Malnic̆ [10] constructed
two infinite families of tetravalent 1-regular graphs. Classification of such graphs has
received great interest in recent years. Motivated by the above results and problem, we
consider 1-regular Cayley graphs in this paper. We present the following theorem.

T 1.1. Let Γ = Cay(G, S ) be a 1-regular Cayley graph with valency 7, and let
N = CoreA(G). Then Γ is connected, and one of the following holds:

(1) G = N and Γ is a normal Cayley graph;
(2) |G : N| = 2, Γ is a bi-normal Cayley graph;
(3) Γ is a normal cover of a core-free graph (up to isomorphism): (A,G) = (S7, S6).

R 1.2. For more information on the core-free graph in (3) of Theorem 1.1, the
readers can refer to Lemmas 2.2 and 2.3.

2. Core-free case

In this section, we will consider the core-free 1-regular Cayley graphs of valency 7.
First, we will list all the (X, 1)-regular graphs with automorphism group X containing
the regular subgroup. For an (X, 1)-regular graph, one does not expect it also to be 1-
regular. So it is an important task for us to determine whether an (X, 1)-regular graph
is 1-regular.

Let X be an arbitrary finite group with a core-free subgroup H. For an element
g ∈ X \ H such that g2 ∈ H, the coset graph Cos(X, H, g) is the graph with vertex set
[X : H], and two vertices Hx, Hy are adjacent if and only if y−1x ∈ HgH. By [8], we
have the following simple proposition.

P 2.1. Let Γ = Cay(G, S ) be a connected (X, 1)-regular Cayley graph of
valency 7 with G ≤ X ≤ AutΓ. Let H be the stabiliser of 1 ∈ V(Γ) in X. Then there
exists an involution τ in S such that τ ∈ X \ NX(H), Γ � Cos(X, H, τ), 〈τ, H〉 = X,
S = G ∩ HτH and G = 〈S 〉.

Let Γ = Cay(G, S ) be a connected (X, 1)-regular core-free Cayley graph of valency
7, where G ≤ X ≤ AutΓ. For convenience, we let Σ = {1, 2, . . . , 7}. By considering
the right multiplication action of X on the right cosets of G in X, we may view X
as a subgroup of the symmetric group S7, which contains a regular subgroup (of S7)
isomorphic to a stabiliser of X acting on V(Γ). And in this way, G is a stabiliser of X
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acting on Σ by marking [X : G] as Σ. Without loss of generality, we may assume that
G fixes 1.

In the following, we will construct all possible connected core-free (X, 1)-regular
Cayley graphs of valency 7 with a given stabiliser H � Z7. Without loss of generality
we let H = 〈σ〉 with σ = (1 2 3 4 5 6 7). Clearly H acts regularly on Σ; then H is a
regular subgroup of S7. By Proposition 2.1, we may take an involution τ ∈ S7 \ NS7 (H)
such that 1τ = 1. Let X = 〈τ, H〉, S = {σ ∈ HτH | 1σ = 1}; then

G = 〈S 〉 = {σ ∈ X | 1σ = 1}

is a complement subgroup of H in X since G is a stabiliser and H is a regular
subgroup of X. Thus G acts regularly on [X : H], and it follows that Cos(X, H, τ) �
Cay(G, S ) is a connected core-free (X, 1)-regular Cayley graph of G. Note that all
isomorphic regular subgroups of S7 are conjugate in S7 (see, for example, [12]), and
Cos(X, H, τ) is independent of the choice of H up to isomorphism. It is well known
that Cos(X, H, τ) � Cos(Xσ, H, τσ) for any σ ∈ NS7 (H). With the help of GAP, we
see that there are in total 74 such τ’s, which are conjugate under NS7 (H) to one of the
following nine permutations:

τ7,1 = (2 7), τ7,2 = (2 4)(3 7), τ7,3 = (2 5)(3 7),

τ7,4 = (2 6)(3 7), τ7,5 = (2 3)(5 7), τ7,6 = (2 6)(3 7)(4 5),

τ7,7 = (2 6)(3 4)(5 7), τ7,8 = (2 3)(4 6)(5 7), τ7,9 = (2 7)(3 5)(4 6).

For i ∈ {1, 2, . . . , 9}, we let Γ7,i = Cos(X7,i, H, τ7,i) and G7,i = {σ ∈ X7,i | 1σ = 1}, where
X7,i = 〈τ7,i, σ〉. Then Γ7,i � Cay(G7,i, S 7,i) with S 7,i = G7,i ∩ Hτ7,iH and G7,i = 〈S 7,i〉.

L 2.2. We have (G7,2, X7,2) � (S4, PSL(3, 2)), (G7,i, X7,i) � (A6, A7) and (G7, j,
X7, j) � (S6, S7), where i ∈ {3, 4, 5} and j ∈ {1, 6, 7, 8, 9}.

P. Let i ∈ {3, 4, 5}, j ∈ {1, 6, 7, 8, 9} and

π1 = (τ7,1σ
−1)4τ7,1, β1 = τ7,1,

π6 = (τ7,6σ
3)2(τ7,6σ)3σ−3, β6 = τ7,6σ

2(τ7,6σ
−3)2τ7,6σ

2τ7,6,

π7 = τ7,7σ
3τ7,7σ

−2τ7,7, β7 = στ7,7σ
−3(τ7,7σ)2,

π8 = (σ−1τ7,8)2σ(στ7,8)2σ−2τ7,8, β8 = (τ7,8σ
−2)2τ7,8σ

−1τ7,8σ
2τ7,8σ,

π9 = (τ7,9σ
−1)4τ7,9, β9 = σ2τ7,9σ

−2τ7,9σ
−1τ7,9σ

2(τ7,9σ)2.

Then π j = (2 3 4 5 6 7) and β j = (2 7). Note that π j acts transitively on Σ \ {1}, and X7, j

acts 2-transitively on Σ. On the other hand, X7, j contains a 2-cycle (2 7), which leads
to X7, j � S7 by [3, Theorem 3.3A]. Furthermore, G7, j � S6.

Let

π3 = σ−1τ7,3σ
−2, β3 = σ2(τ7,3σ)2,

π4 = σ−1τ7,4σ
−2, β4 = (τ7,4σ

2)2,

π5 = σ−1τ7,5σ
3, β5 = (στ7,5σ

−1τ7,5)2.
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Then π3 = (2 6 7 4 5), π4 = (2 6 3 4 5), π5 = (2 4 5 7)(3 6) and βi = (1 2 3). Noticing that
〈τ7,i, πi〉 acts transitively on Σ \ {1}, X7,i acts 2-transitively on Σ. However, X7,i contains
a 3-cycle (1 2 3) and all generators of X7,i are even permutations. Thus X7,i � A7 by
[3, Theorem 3.3A], and, moreover, G7,i � A6.

Let µ = (σ2τ7,2)2 = (1 4)(6 7); then τ7,2 = µσ−2µσ2µ and X7,2 = 〈τ7,2, σ〉 = 〈µ, σ〉.
Note that σ7 = (σ4µ)4 = (σµ)3 = µ2 = 1, X7,2 � PSL(3, 2) and G7,2 � S4 by [1]. �

In the rest of this section, we let

c1=(1 2 3 4 5 6 7)(8 9 10 11 12 13 14),

c2=(1 8)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9),

d1=(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21),

d2=(1 8 15)(2 10 19)(3 12 16)(4 14 20)(5 9 17)(6 11 21)(7 13 18),

τ̄7,1=(3 5)(11 13), τ̄7,2=(3 4)(5 7)(9 11)(12 13),

τ̄7,3=(3 4)(6 7)(9 10)(12 13), τ̄7,4=(4 5)(6 7)(9 10)(11 12),

τ̄7,5=(2 7)(4 5)(9 14)(11 12), τ̄7,6=(2 7)(3 4)(5 6)(9 14)(10 11)(12 13),

τ̄7,7=(2 6)(3 4)(5 7)(9 13)(10 11)(12 14)(16 20)(17 18)(19 21),

τ̄7,9=(2 7)(3 5)(4 6)(9 14)(10 12)(11 13).

Let H̄1 = 〈c1, c2〉, X̄7,i = 〈c1, c2, τ̄7,i〉, Γ̄7,i = Cos(X̄7,i, H̄1, τ̄7,i〉, S̄ 7,i = {σ ∈ H̄1τ̄7,iH̄1 |

1σ = 1} and Ḡ7,i = 〈S̄ 7,i〉, with i = 1, 2, 3, 4, 5, 6, 9. Since c7
1 = c2

2 = 1 and cc2
1 =

c−1
1 , H̄1 � D14. Write Σ̄1 = {1, 2, . . . , 14}, Σ̄2 = {1, 2, . . . , 21}, H̄2 = 〈d1, d2〉, X̄7,7 =

〈d1, d2, τ̄7,7〉, Γ̄7,7 = Cos(X̄7,7, H̄2, τ̄7,7〉, S̄ 7,7 = {σ ∈ H̄2τ̄7,7H̄2 | 1σ = 1} and Ḡ7,7 =

〈S̄ 7,7〉. Since d7
1 = d3

2 = 1 and dd2
1 = d2

1, H̄2 � Z7 o Z3.

L 2.3. If i ∈ {1, 2, 3, 4, 5, 6, 7, 9}, then Γ7,i is not a core-free 7-valent 1-regular
Cayley graph.

P. For convenience, we denote S̄ 7,i = {s̄ | s ∈ S 7,i} with i ∈ {1, 2, 3, 4, 5, 6, 7, 9}.
According to our calculations,

S 7,1={a7,1, b7,1, b−1
7,1, b2

7,1a7,1b−2
7,1, b3

7,1a7,1b3
7,1, b−2

7,1a7,1b2
7,1, b7,1a7,1b−1

7,1},

S 7,2={τ7,2, a7,2, b7,2, a−1
7,2, b−1

7,2, τ7,2b7,2, a−1
7,2b7,2},

S 7,3={τ7,3, a7,3, b7,3, a−1
7,3, b−1

7,3, τ7,3a7,3b7,3τ7,3a−1
7,3, τ7,3a2

7,3b−2
7,3},

S 7,4={a7,4, b7,4, c7,4, b−1
7,4, c−1

7,4, b7,4a7,4b−1
7,4, c7,4b7,4a7,4b−1

7,4c−1
7,4},

S 7,5={a7,5, b7,5, c7,5, b−1
7,5, c−1

7,5, b−1
7,5c7,5a7,5c−1

7,5b7,5, b7,5c−1
7,5a7,5c7,5b−1

7,5},

S 7,6={τ7,6, a7,6, b7,6, a−1
7,6, b−1

7,6, a2
7,6b−1

7,6a−1
7,6b7,6, τ7,6b−2

7,6a7,6b7,6},

S 7,7={τ7,7, a7,7, b7,7, a−1
7,7, b−1

7,7, τ7,7b−1
7,7τ7,7a−1

7,7τ7,7, τ7,7a7,7τ7,7b7,7τ7,7},

S 7,9={τ7,9, a7,9, b7,9, a−1
7,9, b−1

7,9, a7,9b−1
7,9τ7,9, τ7,9b7,9a−1

7,9},
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where a7,1 = (3 5), ā7,1 = τ̄7,1, a7,4 = (3 6)(4 7), ā7,4 = τ̄7,4, a7,5 = (2 7)(4 5), ā7,5 = τ̄7,5

and

b7,1 = (2 7 5 3 6 4), b̄7,1 = (2 7 5 3 6 4)(8 13 11 14 12 10),

a7,2 = (2 6 3)(4 5 7), ā7,2 = (2 7 4)(3 6 5)(8 14 10)(9 13 11),

b7,2 = (2 4)(3 5 7 6), b̄7,2 = (2 7 6 5)(3 4)(8 14)(9 13 12 11),

a7,3 = (2 6 7 4 5), ā7,3 = (2 7 6 5 3)(8 13 12 11 9),

b7,3 = (2 5 4 7 3), b̄7,3 = (2 3 4 6 7)(8 9 10 12 13),

b7,4 = (2 6 3 4 5), b̄7,4 = (2 3 4 5 7)(8 9 10 12 14),

c7,4 = (3 7 4 5 6), c̄7,4 = (2 4 5 6 7)(9 10 11 12 14),

b7,5 = (2 4 5 7)(3 6), b̄7,5 = (2 7 5 4)(3 6)(9 14 12 11)(10 13),

c7,5 = (2 3 6 7)(4 5), c̄7,5 = (2 7 6 3)(4 5)(9 14 13 10)(11 12),

a7,6 = (2 6)(3 4 5), ā7,6 = (2 7 4)(5 6)(9 14 11)(12 13),

b7,6 = (2 6 4 5 3 7), b̄7,6 = (2 7 4 3 6 5)(9 14 11 10 13 12),

a7,9 = (2 7 3 6), ā7,9 = (2 6 3 7)(9 13 10 14),

b7,9 = (2 6 3 5), b̄7,9 = (3 6 4 7)(10 13 11 14),

a7,7 = (2 4 7 5 6 3), b7,7 = (2 4 5 3 7 6),

ā7,7 = (2 5 6 4 3 7)(9 12 13 11 10 14)(16 19 20 18 17 21),

b̄7,7 = (2 4 7 5 6 3)(9 11 14 12 13 10)(16 18 21 19 20 17).

Note that τ̄7,i ∈ S̄ 7,i, τ̄7,i ∈ Ḡ7,i, and it follows that X̄7,i = Ḡ7,iH̄1. It is easy to see
that H̄1 acts regularly on Σ̄1 and 1Ḡ7,i = 1. It follows that Ḡ7,i ∩ H̄1 = 1 and Ḡ7,i

is a complement subgroup of H̄1 in X̄7,i. Hence, we have Γ̄7,i � Cay(Ḡ7,i, S̄ 7,i)
for i ∈ {1, 2, 3, 4, 5, 6, 9}. With a similar argument, we get Γ̄7,7 � Cay(Ḡ7,7, S̄ 7,7).
Let Φ7,1 : a7,1 −→ ā7,1, b7,1 −→ b̄7,1; Φ7,i : τ7,i −→ τ̄7,i, a7,i −→ ā7,i, b7,i −→ b̄7,i; Φ7, j :
a7, j −→ ā7, j, b7, j −→ b̄7, j, c7, j −→ c̄7, j with i ∈ {2, 3, 6, 7, 9} and j ∈ {4, 5}.

According to the proof in the above paragraph, 〈a7,1, b7,1〉 � S6, so 〈ā7,1, b̄7,1〉 is
also isomorphic to S6 by replacing a7,1 and b7,1 with ā7,1 and b̄7,1, respectively. Thus
G7,1 � Ḡ7,1, that is, Φ7,1 is an isomorphism of G7,1 to Ḡ7,1 denoted by GΦ7,1

7,1 = Ḡ7,1.

Furthermore, S Φ7,1

7,1 = S̄ 7,1. With similar arguments, we have GΦ7,i

7,i = Ḡ7,i and S Φ7,i

7,i =

S̄ 7,i. Then Cay(G7,i, S 7,i) � Cay(Ḡ7,i, S̄ 7,i), that is, Γ7,i � Γ̄7,i. Since H̄1 � D14 and
H̄2 � Z7 o Z3, Γ̄7,i is not 1-regular and so Γ7,i for i ∈ {1, 2, 3, 4, 5, 6, 7, 9}. �

3. The proof of Theorem 1.1

In this section, we will prove our main result. First, we need some definitions and
properties.
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Assume that Γ is an X-vertex-transitive graph. Let N be a normal subgroup of X.
Denote the set of N-orbits in V(Γ) by VN . The normal quotient ΓN of Γ induced by N
is defined as the graph with vertex set VN , and two vertices B, C ∈ VN are adjacent if
there exist u ∈ B and v ∈C such that they are adjacent in Γ. It is easy to show that X/N
acts transitively on the vertex set of ΓN . Assume further that Γ is X-edge-transitive.
Then X/N acts transitively on the edge set of ΓN , and the valency val(Γ) = mval(ΓN)
for some positive integer m. If m = 1, then Γ is called a normal cover of ΓN .

We are now in a position to prove Theorem 1.1. Let Γ = Cay(G, S ) be a 1-regular
Cayley graph of valency 7. Then it is trivial to see that Γ is connected. Let A = AutΓ
and N = CoreA(G) be the core of G in A. Assume that N is not trivial. Then either
G = N or |G : N| ≥ 2. The former implies G E A, that is, Γ is a normal Cayley graph
with respect to G. For the case where |G : N| = 2, it is easy to see that Γ is a bi-
normal Cayley graph. Suppose that |G : N| > 2, namely, N has at least three orbits
on V(Γ). Consider the normal quotient ΓN ; we have that ΓN is a Cayley graph of
G/N, G/N ≤ A/N . AutΓN and ΓN is core-free with respect to G/N. Clearly ΓN is
an A/N-arc-transitive Cayley graph of G/N if Γ is A-arc-transitive, and under this
assumption, Γ is a normal cover of ΓN . Now suppose that N is trivial; then Γ is
core-free. According to Lemmas 2.2 and 2.3, there is only one possible core-free
1-regular Cayley graph of valency 7 (up to isomorphism): (G, A) � (S6, S7). The proof
of Theorem 1.1 is complete.
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