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Based on the assumption of locally quasi-steady behaviour, Duran & Moreau (2013 J.
Fluid Mech. 723, 190-231), assumed that, at a critical nozzle throat, the fluctuations of
the Mach number vanish for linear perturbations of a quasi-one-dimensional isentropic
flow. This appears to be valid only in the quasi-steady-flow limit. Based on the analytical
model of Marble & Candel (1977 J. Sound Vib. 55, 225-243) an alternative boundary
condition is obtained, which is valid for nozzle geometries with a finite limit of the second
spatial derivative of the cross-section on the subsonic side of the throat. When the nozzle
geometry does not satisfy this condition, the application of a quasi-one-dimensional theory
becomes questionable. The consequences of this for the quasi-one-dimensional modelling
of the acoustic response of choked nozzles are discussed for three specific nozzle
geometries. Surprisingly, the relative error in the inlet nozzle admittance and acoustic
wave transmission coefficient remains below a per cent, when the quasi-steady boundary
condition is used at the throat. However, the prediction of the acoustic fluctuations
assuming a quasi-steady critical-throat behaviour is incorrect, because the predicted
acoustic field is singular at the throat.
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1. Introduction

The quasi-one-dimensional linearised-Euler equations provide an effective tool to analyse
the response of choked nozzles, rocket engines or gas turbines to the passage of upstream-
generated acoustic or entropic perturbations. Duran & Moreau (2013) provided an original
analytical approach for the integration of one-dimensional equations and an extensive
discussion of the literature available at that time. Their work has been quite influential,
as evidenced by the high number of citations. Examples of recent notable publications
citing Duran & Moreau (2013) are Magri (2017), Huet, Emmanuelli & Le Garrec (2020),
Yeddula, Guzman-Inigo & Morgans (2022), Jain & Magri (2022) and Gentil et al. (2024).
However, we have identified a problem with the locally quasi-steady boundary condition
imposed by Duran & Moreau (2013) at the nozzle throat.

In this text, we propose a new alternative boundary condition for the choked-nozzle
throat. This boundary condition is based on the idea of Crocco quoted by Tsien (1952)
(in a footnote) that a physically relevant solution should not display a singularity. This
idea was used by Marble & Candel (1977) to obtain an analytical solution for the acoustic
response of a nozzle with the geometry of Tsien (1952). The geometry of Tsien (1952)
is such that the time-averaged velocity profile in the nozzle is a linear function of the
distance to the throat. Tsien (1952) and Marble & Candel (1977) show that, in that case,
the general solution for the amplitude of an harmonically oscillating acoustic field can
be expressed in terms of two hypergeometric functions of the distance to the throat.
One of these hypergeometric functions is discarded because it has a leading-order term
proportional to the inverse of the distance to the throat. This involves a singular behaviour
at the throat. Moase, Brear & Manzie (2007) argue that the solution proposed by Marble &
Candel (1977) is locally valid as long as the velocity gradient is uniform. In the present
work the assumption of Crocco, that a non-singular solution prevails at the throat, is
generalised to the case of more general nozzle profiles. The boundary condition is obtained
as a combination of the equations of motion, from which a term is removed to impose a
non-singular solution at the throat (Appendix A). Our analysis is limited to isentropic
main-flow conditions of a perfect gas (an ideal gas with a constant specific heat ratio).
The use of the proposed boundary condition is validated by comparison with a quasi-one-
dimensional solution of the nonlinear Euler equations, solved by means of the CEDRE
code (Refloch et al. (2011)). For the sake of efficiency the code is used with a single
transversal mesh. Details of the numerical method used are provided in Appendix B.

A nozzle geometry for which experimental data on the inlet admittance Y are available
(Bell, Daniel & Zinn (1973)) is considered. In addition, among the nozzles considered by
Duran & Moreau (2013), the nozzle geometry proposed by Goh & Morgans (2011) has a
discontinuity in the rate of change of the cross-section at the throat. The limitations of the
quasi-one-dimensional model for such a geometry are highlighted. For this purpose both
the original geometry of Goh & Morgans (2011) and a smoothed geometry obtained by
mirroring the upstream geometry with respect to the throat (Appendix C) are considered.
The limitations of quasi-one-dimensional models due to two-dimensional effects as
discussed by Emmanuelli et al. (2020) for entropy sound are ignored.

2. Upstream acoustic boundary condition at the critical nozzle throat

At the quasi-steady and low-frequency limit, the nozzle throat remains choked when
subjected to perturbations, and the perturbation M’ of the Mach number M vanishes at
any position up to the choked throat. This is a direct consequence of the fact that, for an
isentropic quasi-one-dimensional flow, the Mach number is only a function of A, /A, the
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ratio of the throat cross-section A, and the local channel cross-section A. Indeed, for an
ideal gas with constant heat capacity ratio y = c¢,/cy, this ratio is (Shapiro (1953))

A 1 o5
=
M _r+b , Q.1
A 2+ ( — HM?

where the subscript (), refers to the conditions at the choked-nozzle throat (M, =1).
As there are no perturbations of the geometry (A’ = 0) the linearisation of this equation
implies M’ =0, at any position upstream of the critical nozzle throat, in the quasi-steady
limit. This low-frequency approximation was introduced by Tsien (1952) and Marble &
Candel (1977).

The analysis of Stow, Dowling & Hynes (2002) suggests that, up to the first order in
the frequency, the quasi-steady boundary condition M), =0 remains valid at the throat.
Duran & Moreau (2013) assumed that one can always consider a narrow region around the
critical throat for which a quasi-steady approximation is valid, because the said region is
small compared with the wavelength of perturbations. This would imply the validity of the
condition M, =0 for any frequency. However, this is in fact not correct. In the following,
a correction for the critical-throat upstream boundary condition is proposed. Moreover,
some limitations of the quasi-one-dimensional theory are discussed.

Tsien (1952) considered a nozzle geometry such that the steady-flow longitudinal-
velocity gradient (diz/dx) is constant within the nozzle. Using the nozzle geometry
of Tsien (1952), Marble & Candel (1977) obtained an exact solution for the linear
perturbations of a quasi-one-dimensional flow through a choked nozzle. In their case, the
constant velocity gradient in the nozzle is du/dx = (du/dx)« = ¢« /X, With ¢, the critical
speed of sound and x, the distance between the throat and a point at which the extrapolated
linear velocity u (x) = c4«(x/x4) vanishes. For an inlet Mach number M; and corresponding

speed of sound ¢; one has c,/c; = \/ y+1)/C+(y — 1)Ml.2). Using the continuity of

the normalised amplitude of the pressure fluctuations P = p/(y p) and its derivatives, the
boundary condition just upstream from the choked nozzle found by substituting (x /x, = 1)
in (45) of Marble & Candel (1977) (or (2.24c¢) of Moase et al. (2007)) is

Q+i2)Uy=(y — 1 +i2) P, + o4, (2.2)

where the dimensionless velocity U, pressure P and entropy o are defined as

(5 =5 =)
v=(%) p=(L) o=(2). 3)
u vp Cp

and the dimensionless frequency 2 as

2 f

Q=—
(die/dx)

(2.4)
where i, p and § are the amplitudes of the harmonic oscillations of frequency f in axial
velocity u, pressure p and entropy s, respectively (y =y + y =y + J exp[+iwt], with
y the time-averaged values of y =u, p or s). Details of the derivation of this boundary
condition are provided in Appendix A.

It is proposed that, as long as the quasi-one-dimensional assumption remains valid, the
boundary condition given in (2.2) can be generalised by incorporating (2.4), where the
local velocity gradient (diz/dx), at the throat is used.
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For isentropic flow the amplitude fluctuations of the Mach number at the critical throat

are then given by
M, = (V I+ie vy 1) P.. 2.5)
2+i2 2

It should be noted that the theory of Marble & Candel (1977) relies on a quasi-one-
dimensional approximation. We generalised this notion and, in the following, apply it to a
sufficiently smooth nozzle profile.

The proposed generalised boundary condition just upstream from the choked throat,
within a quasi-one-dimensional framework, exhibits meaningful asymptotic behaviour in
both the low- and high-frequency limits.

At low frequencies, 2<1,22) yields

U*:(V_1+i:}(”+l)>1)*+a—*(1—ig)+0(:}2), (2.6)

2 4 2 2

which corresponds to the first-order correction to the quasi-static condition M, = 0.
At high frequencies, £2 >> 1, one finds

1 )
U, =P, (1—1”Jf )—107*+0(92), 2.7
17 17

which is a first-order correction to the simple-wave downstream-radiation condition in a
tube of uniform cross-section: p/, = (pcu’), (at the throat one has (dA/dx). = 0).

It is noteworthy that the influence of entropy fluctuations on the boundary condition
at the critical throat becomes negligible at very high frequencies (for an isentropic main
steady flow).

For a given cross-sectional area A(x), assuming a quasi-one-dimensional isentropic
steady reference flow with constant y, the rule of I’Hopital to determine the critical flow
behaviour (Shapiro 1953, § 8.10) yields

(d_ﬁ B 1 d’A 28
dx)*_c* (o + DA \ax? ) )

Hence, as long as the second derivative d?A/dx? exists at the critical throat, which
is characterised by (dA/dx), =0, the boundary condition ((2.2)) can be used. When
(dA/dx), is discontinuous, as for the nozzle geometry proposed by Goh & Morgans
(2011), the boundary condition will be applied in the limit approaching the throat from
the upstream (subsonic) side.

3. Validation and limits of the quasi-one-dimensional model

To validate the proposed model numerical integration of the nonlinear Euler equations
for quasi-one-dimensional flows was done using the unstructured computational fluid
dynamics (CFD) code CEDRE (Refloch et al. (2011)). Details of this model and
information concerning numerical aspects are provided in Appendix B.

Using CEDRE, isentropic harmonic pressure fluctuations were imposed at the nozzle
inlet with an amplitude of |p’|/(y p) =1 %. For the CEDRE-model results, both the
steady-flow velocity gradient (di/dx), and the amplitude M, of the Mach number
fluctuations are numerically extracted by approaching the throat from the subsonic side.
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Figure 1. Modulus |M, /P«| (a) phase angle mg(M* /Py) (b) of the normalised critical Mach number
fluctuations and relative deviation |(]l;liw‘ — A;If:”c) / Mivﬂ (c) between numerical (Miw“, Refloch et al. (2011))

and analytical (Mi”c, (2.5)) results (—) as a function of the dimensionless frequency R=2n f/(du/dx), for
three nozzle geometries the ‘smoothed’ nozzle of Bell er al. (1973) (@), the ‘smoothed’ nozzle of Goh &
Morgans (2011) (*) and the original nozzle of Goh & Morgans (2011) with discontinuous dA/dx at the
throat (m).

The influence of nonlinear effects, as accounted for in the CEDRE model, was assessed
by performing simulations with varying input amplitudes (|p’|/(y p) = 0.1 %—2 %). The
results indicate that nonlinearities contribute less than 0.1 % to the overall deviation.

In figure 1 the evolution of the normalised fluctuation amplitude | M,/ P | of the critical
Mach number is shown as a function of the dimensionless frequency for both the modified
analytical model (( YMC __) and the nonlinear (CEDRE) results (( )F).

A fair agreement is found (within 1 %) between both approaches for the nozzle of Bell
et al. (1973) (o) and one order of magnitude better for the smoothed nozzle of Goh &
Morgans (2011) (x), both geometries have well-defined (dZA/dxz)* (see Appendix C).
While deviations of the order of 1 % remain for the nozzle of Bell et al. (1973), it
is clear that the proposed generalised boundary condition (2.2) provides a much better
prediction of the critical-throat behaviour than the quasi-steady assumption M, =0.
This deviation was found to be independent of the chosen numerical parameters (see
Appendix B).

In the following the original nozzle geometry of Goh & Morgans (2011) (with a
discontinuity in (dA/dx) at the throat, Appendix C) will be considered (m). The definition
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of £2 and the boundary condition (2.2) are assumed to be valid as long as (du/dx), has
a well-defined finite value, to wit, when the throat is approached from the subsonic side
(M < 1). The limit of (dZA/ dx?), = limy 4y, (d2A/ dx?2) on the subsonic side of the throat
is used to calculate (du/dx), by means of (2.8). In this case, we posit that, because of
the deviation from quasi-one-dimensional behaviour, a one-dimensional model for the
behaviour of the actual nozzle should at the throat have a second derivative of the order
of magnitude 1; viz., (dzA/dxz)* = O(1). Moreover, we submit that the exact value of
(d?A/dx?), that should be used depends on the actual shape of the channel in the throat
(two-dimensional planar or axisymmetric flow). This proposed geometric correction will
hereafter be referred to as smoothing.

However, if one elects to not apply the above-suggested correction for quasi-one-
dimensional geometries, and one applies the quasi-one-dimensional theory to the original
geometry proposed by Goh & Morgans (2011), some numerical problems arise. One
observes in figure 1 a larger deviation for the original geometry of Goh & Morgans (2011)
compared with the smoothed one.

The deviation is at least partially due to a problem in application of the CEDRE
numerical scheme (used with a single lateral mesh) to a flow with discontinuity of (dA/dx)
at the throat. There is a significant difference between the analytical value of (diz/dx).
(2.8) and the value calculated numerically. This relative difference is estimated to 1 x 1072
for the considered geometries. This results into a systematic error in the calculation of 2
by means of (2.4).

4. Influence of the boundary condition on the acoustic pressure distribution

In this section, the influence of the proposed critical-throat boundary condition on the
shape of the longitudinal distribution of the pressure fluctuations is discussed. Use
of a quasi-one-dimensional linearised-Euler model incorporating (2.2) as the boundary
condition at the throat or the quasi-steady assumption M = 0 of Duran & Moreau (2013)
was made to investigate this. Typical results for the nozzle of Bell et al. (1973) are shown in
figure 2. One observes for the quasi-steady boundary condition M, = 0 a discontinuity of
|p| at the throat x = x,. The above-described observation led us to examine the boundary
condition at the choked throat more carefully. This discontinuity is eliminated when the
proposed boundary condition (2.2) is applied.

5. Acoustic reflection and transmission coefficients

In figure 3 the acoustic-reflection coefficient R, normalised by the quasi-steady-state
value 2 — (y — 1)M;)/ 2+ (y — 1)M;) (Marble & Candel (1977)) as a function of the
dimensionless frequency Q2=2r f/(du/dx), is shown. Results obtained using both the
CEDRE model and the quasi-one-dimensional linear model are provided for the three
above-considered geometries. For the linear model of the nozzle of Goh & Morgans
(2011) the value of (du/dx). calculated analytically, just upstream from the throat, by
means of (2.8) is used. The proposed acoustic boundary condition is used to close the
linear model. An excellent agreement is found between linear analytical and nonlinear
numerical results for the smoothed nozzle geometry. Some differences are observed for
the original geometry of Goh & Morgans (2011). As noted above, calculating numerically
the gradient (du/dx), poses some problems for the original discontinuous nozzle
geometry of Goh & Morgans (2011). To assess the impact of the proposed boundary
condition relative to the commonly used quasi-steady critical Mach number model
M/, =0, the relative difference in the linear model results is evaluated using two different
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Figure 2. Modulus (a) of the acoustic pressure, | p(x)/p;|, as a function of the position along the x-axis, for the
dimensionless frequency £ =2.06 (nozzle of Bell et al. (1973)). The linear analytical model is provided for two
critical-throat boundary conditions: respectively (M)mc (2.2), —) and locally quasi-steady-flow condition
M) =0 (---). The absolute relative difference is shown in the graph (b).

critical boundary conditions: MC, corresponding to (M) umc (2.2), and the quasi-steady
assumption M, =0. As expected, at low frequencies the difference between the two
boundary conditions is minimal. However, this difference increases with frequency,
reaching 2 x 1072 for the geometry of Bell et al. (1973) and 3 x 1073 for the two
geometries of Goh & Morgans (2011).

In figure 4, the acoustic transmission coefficient 7, is plotted as a function of the
dimensionless frequency 2=2r f/(du/dx),. Results obtained from both the CEDRE
simulations and the quasi-one-dimensional linear model are shown for the three nozzle
geometries previously considered. The proposed boundary condition (2.2) is used to close
the quasi-one-dimensional linear model. Excellent agreement is observed between the
linear analytical and nonlinear numerical results for both the ‘smoothed’ and original
nozzle geometries of Goh & Morgans (2011). For the nozzle of Bell et al. (1973), a
maximum deviation of 3 x 10~! between nonlinear and linear results is observed at very
high frequencies, while at low frequencies (2 < 1), a fair agreement is maintained.

To evaluate the impact of the proposed boundary condition compared with the quasi-
steady critical Mach number model M, =0, the relative difference in the acoustic
transmission coefficient 7, predicted by the linear model is computed using both boundary
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2 4 6
2=2nf/(du/dx),

Figure 3. Modulus |R;|(2+ (y — I)Mi)/(Z —(y — DM;) (a) and phase angle arg(R,) (b) of the CEDRE
acoustic-reflection coefficient as a function of the dimensionless frequency Q=2 f/(du/dx), for three
nozzle geometries (Bell et al. 1973 (e@), original Goh & Morgans 2011(m) and ‘smoothed” Goh & Morgans
2011 (x)). Results obtained by means of the quasi-one-dimensional acoustic model are also shown (Bell et al.

1973 (—), original Goh & Morgans 2011 (---)) and ‘smoothed’ Goh & Morgans 2011 (-----)). The absolute
relative difference |1 — R2*="/ RMC)| (c) between the quasi-one-dimensional linear model using two different

boundary conditions at the throat (respectively, Rg”c for (]l;l*) mc (2.2) and Rf,w +=0 for M, =0) is shown in the
lower graph.

conditions: the proposed model (denoted MC, (2.2)) and the quasi-steady assumption
M, =0. As expected, the difference between the two boundary conditions is negligible
at low frequencies, with relative deviations below 1 x 107>, However, this difference
increases with frequency, reaching 1 x 10~* for the two geometries of Goh & Morgans
(2011). A similar behaviour is observed for the nozzle of Bell et al. (1973), with a
maximum deviation of 2 x 10~%.

The results of Bell er al. (1973) for the admittance (Y) defined as the inverse of the
impedance (Z)

MU

_1-R,
===

14+ R,

1 u

) 6.1

i i
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Figure 4. Modulus |7,| (@) and phase angle arg (7,) (b) of the CEDRE acoustic-reflection coefficient as a

function of the dimensionless frequency §2 =2x f/(dit/dx), for three nozzle geometries (Bell ez al. 1973 (@),
original Goh & Morgans 2011 (®) and ‘smoothed’ Goh & Morgans 2011 (x)). Results obtained by means of
the quasi-one-dimensional acoustic model are also shown (Bell ez al. (1973) (—), original Goh & Morgans

(2011) (-+-)) and ‘smoothed’ Goh & Morgans (2011) (----). The absolute relative difference |1 — e +=0 /TME))|
(c) between the quasi-one-dimensional linear model using two different boundary conditions at the throat

(respectively, Tj”c for (M*) mc (2.2) and TaM’,‘:O for M, = 0) is shown in the lower graph.

are shown in figure 5 and compared with results obtained with the CEDRE model and
quasi-one-dimensional model. At low frequencies 2 <1 the difference between Ypc
(calculated with (2.2)) and Y, —¢ is negligible because one approaches the quasi-steady
behaviour M, = 0. At high frequencies §2 > 5 the error is less than 0.1 %. For intermediate
frequencies (1 < £2 < 5), one observes a few peaks in the error that reach the order of a
few per cent.

As the error in predicted reflection and transmission coefficients due to the use
of the quasi-stationary boundary condition (M’), =0 is small, the global conclusions
obtained by Duran & Moreau (2013) are correct. While for the isentropic flow conditions
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Figure 5. Comparison of acoustic admittance (') for the geometry of Bell ef al. (1973) calculated with CEDRE
(@) and with the quasi-one-dimensional linear model using two different boundary conditions at the throat
(respectively, Yy c for (M*)Mc (2.2), (+-+) and Y =0 for M, =0) (- -). Real (a) and imaginary (b) parts of
the acoustic admittance are presented as function of the dimensionless frequency S (using the notation of Bell
et al. (1973)). The corresponding alternative dimensionless frequency Q=2 f/(dit/dx), is indicated on top
of the graph. The absolute value of the relative difference || = [(Ypc — Yum:=0)/Ymc)| (c) is shown in the
lower graph.

considered, we only observe minor errors in the reflection and transmission coefficients,
the solution with a singularity at the throat remains physically wrong.

6. Conclusions

The quasi-one-dimensional linearised-Euler equations can be integrated for isentropic
steady main flow through a choked nozzle by using the proposed boundary condition at
the critical throat (2.2). This is a generalisation of Marble & Candel’s (1977) boundary
condition. While Marble & Candel (1977) assume a constant velocity gradient diu/dx
within the nozzle, the proposed theory only assumes the continuity at the throat of
the slope dA/dx and second derivative d>A/dx2 for the subsonic part of the nozzle
cross-section A(x).
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We find that when there is a discontinuity in dA/dx, as in the nozzle geometry proposed
by Goh & Morgans (2011), the quasi-one-dimensional approximation must be used with
care. Firstly, the quasi-one-dimensional assumption with a discontinuity in the slope
dA/dx may not accurately represent the actual flow. Secondly, the discontinuity, combined
with the numerical methodology used in CEDRE (single lateral mesh, implicit time inte-
gration, spatial discretisation methods adapted to complex flows and unstructured meshes),
may result in greater discrepancies between the linear model and CEDRE solutions.

Moreover, when the quasi-steady assumption M), =0 is used, the predicted amplitude
of acoustic fluctuation shows a singularity at the throat, which is not observed in nonlinear
quasi-one dimensional numerical simulations using CEDRE. However, the prediction of
the inlet reflection coefficient, admittance and transmission coefficient do not seem to be
significantly affected in the case of the chosen geometries, which explains the satisfactory
results obtained by Duran & Moreau (2013). For more complex flows, such as non-
isentropic heated flows (e.g. thermally choked nozzles), the use of the proposed boundary
condition might be essential to accurately describe the acoustic behaviour.
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Appendix A. Generalised critical-throat boundary condition
A.l. Flow motion model

For an ideal gas, assuming no losses due to viscosity, thermal diffusion or external force
fields, the standard quasi-one-dimensional equations for mass, momentum and energy
conservation are expressed as follows:

Dp ou

it e =0,

Dt +'08x + pua

yDu 1op_ (A1)

Dt  pox

D D

Zp _C2_'0:()’

Dt Dt

where D/Dt =0/0¢t +u d/0x is the material derivative, p is the density, u is the

longitudinal velocity, « = (dA/dx) /A is the relative variation of the nozzle cross-sectional

area A, p is the static pressure, c is the speed of sound and y = ¢, /¢, is the ratio of specific

heats at constant pressure ¢, and constant volume c,. For clarity and conciseness, the

system of (A1) will hereafter be referred to as the quasi-one-dimensional Euler equations.
To close the quasi-one-dimensional Euler equations (A1), the ideal gas law is used

p=prT, (A2)

where T is the static temperature, r =R/VV is the specific gas constant, with R =
8.3145 Jmol~! K~! the universal gas constant, and W the molar mass of the gas.

The gas considered here is air, described as an ideal gas with a specific isobaric heat
capacity ¢, independent of the temperature and prescribed as constant.
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A.2. Linearised-Euler equation system

To study the propagation of acoustic waves through a nozzle with non-uniform steady flow-

field, quasi-one-dimensional Euler equations (A1) are linearised using the perturbation

convention y(x, t) = y(x) + y'(x, t), where y denotes the steady component and y’

the small perturbation of y =[p, u, p, T, c]. Neglecting second-order perturbations and

introducing the normalised quantities D' = p’/p, U' =u'/u, P' = p'/(y p) yields the

following linearised system of differential equations:

oD ta (U +D")=0,
u_

ot ax

U’ U’ & 8P’ du

u - + —
at ax u 0x
P’ a

Py +ua—(U + P')=0.

(2 U'-y P+ D')=0, (A3)

A.3. Critical-throat boundary condition

To obtain the quasi-one-dimensional critical-throat boundary condition model for an
isentropic choked flow nozzle, the quasi-one-dimensional linearised-Euler equations (A3)
are considered.

The steady-flow velocity profile, i(x), is locally approximated at the throat as u(x) =
(du/dx).x, where (di/dx), denotes the velocity gradient at the critical throat. The origin
of the coordinate x is chosen such that the extrapolated velocity profile i(x) vanishes
at x =0. Hence, the throat position is X, = ¢,/ (di,/dx),. Based on this definition, the
following time—space transformation is introduced as performed by Marble & Candel

(1977):
Cs F\?
- g:(T). (A4)

Xx

The linearised momentum and total energy Euler equations (A3) can be rewritten using
the time—space transformation as follows:
U’ o Ay’ N 252 P’
at o0& c2 ¢
BP’
o 2&—S (U + P)=0.

Introducing the dimensionless frequency Q=27 f/(du/dx),, the system (AS) is further
expressed in the frequency domain. Applying the Fourier transform, with the convention
y(&, 1) = y(&) exp(+if27), to the variables D =p/p, U =u/u, and P = p/(yp), the
resulting system of equations becomes:

+2U —yP + D' =0,

(AS5)

dU _&dp

25@ +2_—2E+(2+1Q)U—yP+D=O
(A6)
2sd—U +2g—+ i2P=0
dg dg
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Subtracting the momentum equation from the energy equation yields

c“\ dP . A . A

2( —é>£—(2+19)U+(y+1Q)P—D:O. (A7)
This equation is now evaluated at the steady critical-throat position. The assumption
of Tsien (1952), as proposed by Crocco, is used such that U , P and ﬁ, as well as their
derivatives, are continuous at the critical-throat location. It is further assumed that none
of the derivatives are proportional to 1/(1 — &), as such a condition would lead to a
singularity at the critical throat. Under these assumptions, and because at the throat £ =1
and ¢, = ¢, the term proportional to (d P/d&). vanishes and the boundary condition at the

critical-throat position becomes

(24i2) Uy = (v +i82) P. — D,. (A8)

For a mono-species gas, the linearised Gibbs equation provided a relation between
entropy, pressure and density fluctuations

Dy =0y — Py. (A9)
Finally, the entropy-based form of the boundary condition writes

2+iR2) U= (y — 1 +i2) Py + o, (A10)

Appendix B. The CEDRE numerical model and integration linear model

The Euler equations are considered for a calorically perfect, ideal gas (Duran & Moreau
(2013)). The numerical simulations are performed using the ONERA CFD code CEDRE
(Refloch et al. (2011)). The computational set-up consists of a two-dimensional domain
discretised with Ax/L =5 x 107> for each geometry. This resolution ensures adequate
spatial discretisation of acoustic waves, providing at least 50 points per wavelength for
frequencies below 6000 Hz.

Since the flow is assumed to be purely longitudinal, only one cell is used to discretise the
transverse direction. This single lateral mesh is numerically very efficient but might not
be an optimal use of the code. Spatial discretisation employs a second-order multi-slope
Monotonic Upstream-centered Scheme for Conservation Laws interpolation method with
an Harten-Lax-van Leer-Contact solver (Le Touze, Murrone & Guillard (2015)), while
temporal integration is carried out using an implicit second-order Runge—Kutta scheme
with a time step of Ar =35 x 1077 s, ensuring a Courant—Friedrichs—Lewy number of
u; At/Ax =0.27, with u; the inlet steady flow-field velocity.

Unsteady solutions corresponding to acoustic forcing are obtained using a modulated
post-processing time step based on the inlet forcing frequency. To ensure satisfactory
temporal resolution, 50 periods are simulated, with 100 points per period selected for data
storage. Spectral analysis (fast Fourier transform) is performed on the last 35 periods to
ensure that transient phenomena are excluded.

For mono-harmonic isentropic acoustic forcing, entropy injection is eliminated from the
flow by imposing the following two inlet-boundary conditions:

pi(t) = pi (1+nsin2x f1)),

- (1) — pi (B1)
() =T, (1 o 1>L_p‘>,
Y Pi

where f is the chosen frequency, and 5 is set to ensure that the normalised pressure
fluctuation amplitude is |p;|/(y pi) =1 %. A supersonic boundary condition is applied
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at the outlet of the geometry, allowing for the evacuation of acoustic waves. Simulations
with four levels of grid refinement (Ax/L =5 x 1074, 1 x 107%,5x 10 and 1 x 107>,
where L is the length of the nozzle) and three time steps (Af =1 x 107°, 5 x 10~/ and
1 x 10~7) confirm the independence of the results, indicating that the discretisation error
in the presented simulations is negligible. The validation of the mesh independence is
performed by comparing the steady velocity gradient (diu/dx), at the critical throat.
One finds a maximum relative deviation of 9 x 1073 in (dii /dx), estimated with CEDRE
compared with the one-dimensional analytical solution (2.8), for the original nozzle
geometry of Goh & Morgans (2011). The validation of the chosen time step independence
is performed by comparing the normalised pressure fluctuations, p’/(y p), for each nozzle
geometry for an acoustic forcing of £2 = 10. A maximum relative deviation of 6 x 10™% is
found.

The linearised quasi-one-dimensional Euler equation system (Marble & Candel (1977))
is solved for velocity, pressure and density fluctuations using an iterative shooting method,
starting from the inlet-boundary conditions. Spatial integration is performed with an
explicit fourth-order Runge—Kutta scheme. Integration with lower-order schemes and
different discretisations gave the same results, confirming the numerical convergence of
the results.

Appendix C. Nozzle geometries
The two-dimensional planar nozzle geometry studied by Goh & Morgans (2011) is defined

as follows:
l(ﬁ—l)(cos(n£>+l) § €0, &]
@_ 2 \ A, €x , o (C1)
Ae 1+<ﬁ_1)5‘g* £elt 1]
A* 1_5*, *, 1],

where A (&) is the nozzle cross-sectional area at position £ = x /L.

This geometry is fully defined using the normalised inlet (); and outlet (), sections,
A;/A, and A, /A, as well as the normalised critical-throat position &, = (x,/L) =0.15.
In this study, the inlet and outlet Mach numbers are prescribed as M; =0.29 and M, =
1.5, respectively. The corresponding normalised inlet and outlet areas, A; /A, and A, /A,
are obtained using the following isentropic area—Mach number relation (2.1). A smooth
version of this geometry is obtained by mirroring the subsonic geometry with respect to
the throat.

The subsonic part of the cylindrical symmetric nozzle of Bell et al. (1973) has an inlet
radius r,. Its longitudinal cross-section consists of three sections: a circular arc of radius
rec and angle 6, a conical section with the same angle 6 and another circular arc with the
same radius 7., and angle 0

Fe — Fee |:1 — Cos (arcsin (i)>:|, x €0, x1,
Yee

r(x) = r(x;) — (x —xp)tan9, x € [x1, x2], (C2)

. X — X3
T'th +Fee [1 — cos (arcsm < ))} X € [x2, x3],
Vee
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where the positions x1, x2, and x3 are defined as

re —2rec(1 —cos @) —ry,
; = . C3
and X3 =x2 + X1 (C3)

The supersonic part of the nozzle is obtained by mirroring the second and third sections
with respect to the critical-throat position. Since the nozzle is choked, its geometry is fully
defined by three parameters: the inlet Mach number M; = 0.08, the arc angle § = 15° and
the arc curvature ratio r../r. = 0.44. The area ratio A/A, = (r/ ra)? is used to calculate
the Mach number (2.1).

X]=rVeeSING;  xo=x1 +
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