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Abstract

A module M is said to satisfy the condition (p*) if M is a direct sum of a projective module and a
quasi-continuous module. In an earlier paper, we described the structure of rings over which every
(countably generated) right module satisfies (p*), and it was shown that such a ring is right artinian. In
this note some additional properties of these rings are obtained. Among other results, we show that a
ring over which all right modules satisfy (p*) is also left artinian, but the property (p*) is not left-right
symmetric.

2000 Mathematics subject classification: primary 16D70, 16P20, 16D50.

1. Introduction

Throughout this note, all rings are associative with identity, and all modules are
unitary modules. Let M be a right module over a ring R. The Jacobson radical and
the injective hull of M are denoted respectively by J(M) and E(M). For a module M
consider the following conditions:

(CO Every submodule of M is essential in a direct summand of M.
(C2) Every submodule isomorphic to a direct summand of M is itself a direct

summand.
(C3) If A, B are direct summands of M with A n B = 0, then A © B is a direct

summand of M.

A module M is defined to be a CS module (or an extending module) if M satisfies
condition (C^. If M satisfies ( d ) and (C2), then M is said to be a continuous module.
A module M is called quasi-continuous if it satisfies (CO and (C3).
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Let M be a module. A module N is called M-injective if every homomorphism
of any submodule L c M to iV can be extended to a homomorphism of M to N. A
module N is called quasi-injective (or self-injective), if N is jV-injective.

If M is a module of finite composition length, we denote its length by 1{M).
Following [5], a module M is said to satisfy the condition (p*) if M is a direct

sum of a projective module and a quasi-continuous module. A ring R is called a right
p*-semisimple ring, if every right i?-module satisfies (p*). Rings whose countably
generated right modules satisfy (p*) were characterized in [5, Theorem 7]. These
rings are exactly right artinian rings over which every finitely generated right module
is a direct sum of a projective module and a quasi-injective module (and in particular,
are also right p*-semisimple). In this note we improve this result by showing:

(1) Every right p*-semisimple ring is left artinian.
(2) A right p*-semisimple ring is not necessarily left p*-semisimple.
(3) In general, the direct sum decomposition of R in [5, Theorem 7 (III)] is not a

ring-direct sum decomposition.
(4) Finally we give a correction that the right ideal B of R is not necessarily a CS

right /?-module as claimed in [5, Theorem 7 (III) (ii) and Lemma 11].

Thus, combining with [5, Theorem 7], we describe the structure of right p*-
semisimple rings in the following theorem.

THEOREM 1.1. For a ring R, the following conditions are equivalent:

(I) Every countably generated right R-module satisfies (p*).
(II) R is right artinian and every finitely generated right R-module satisfies (p*).

(Ill) R is a right and left artinian ring with Jacobson radical square zero;
RR = A © B © C, where (B © C)A - BC = CB = 0, and BR and CR are
nonsingular right ideals of R. In general, this direct sum is not a ring-direct sum.
Moreover,

(i) AR = A, © • • • © Ah where each A, is uniform, £(A,) is projective, and
l(E(A,)) ^ 2.

(ii) BR = B\ © • • • © Bm, where each Bj is a uniform module of length one or two;
the injective hull E(S) of each minimal submodule S ofBR has length three. Moreover,
E(S)/S is a direct sum of two simple modules, in particular E(S) — xR + yR for
some x, y e E(S). If B ^ 0, then there exist at least two {uniform) direct summands
Bj and B, of B with l(Bj) = 1, l(Br) = 2 and B, = Soc(Br). Furthermore, BR is
not necessarily CS and has the structure described in Proposition 3.2.

(iii) CR = C\ © • • • © Cq, where each Ck is an indecomposable module of length
one or three; the injective hull of each minimal submodule of CR is of length two
and not projective. IfC^O, there exist at least two Cj, say C\, Ci with l(C\) = 1,
/(C2) = 3 and C\ is embedable in Soc(C2).
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(IV) Every right R-module is a direct sum of a projective module and a quasi-
injective module. In particular, R is right p*-semisimple.

In general, right p*-semisimple rings need not be left p* -semisimple.

2. The proof of Theorem 1.1

We refer to [5, Theorem 7] for the stucture of a right p*-semisimple ring. Hence, in
addition to [5, Theorem 7], for a right p*-semisimple ring R we need to prove:

(1) R is left artinian.
(2) The direct sum decomposition RR = A © B © C in [5, Theorem 7 (III)] is not

necessarily a ring-direct sum decomposition.
(3) R is not necessarily left p*-semisimple.
(4) In general, BR in (ii) of [5, Theorem 7 (III)] is not CS.

PROOF. (1) By [5, Theorem 7], R is right artinian, and for any right ft-module M,
M = P®Q, where PR is projective, and QR is quasi-injective. By [1, Theorem 27.11 ],
P is a direct sum of cyclic modules, each of which is isomorphic to some eR with a
primitive idempotent e2 = e e R. As R is right artinian, Q = ©,-e/'£/,-, where each £/,
is uniform and isomorphic to the quasi-injective hull of some simple right ft-module
(compare with [7]). By [5, Theorem 7], each £(S,) is 2-generated. But, as a right
artinian ring, R has only finitely many non-isomorphic simple right /?-modules, and
finitely many non-isomorphic indecomposable projective right ^-modules. It follows
that R has only finitely many non-isomorphic indecomposable right /^-modules, or in
other words, R is a ring of finite representation type. Thus it is well-known that R is
left artinian.

(2) We consider the following example.
Let C and R be the fields of complex numbers and real numbers, respectively.

^ V = {(Vo) I y e c } C \{ly
x) | x, y € C}, K = {($«) | x e € } , and

F = {(5°) I x e R}. Then V is a K-bialgebra with dim(V^) = dim(^V) = 1,
dim(V» = dim(FV) = 2, V2 = 0, and KV = VK = FV = VF = V. Notice that
K = C, F = R, and F is a subfield of AT with d im(A» = 2. We consider the ring

and aim to show first that R is a right p*-semisimple ring.
Matrix rings of this type are very useful in describing the structure of some other

interesting classes of rings, see [6].
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Let

ThenR/? = L ,©L2ffiL3, a direct sum ofthree local left ideals with l(L\) = 1, 1{L2) =
l(Li) = 2. In particular, R is left serial. Moreover, R/J(R) = K © K © F, that
is, commutative. Hence by [3, Theorem 3.2], the injective hull of every simple
right ^-module is uniserial, that is, its lattice of submodules is linearly ordered by
inclusion. Let 5 be a simple right /?-module, and let E(S) be the injective hull of
S. As J(R)2 = 0, we have E(S)J(R) c S. This shows that the uniserial module
E(S)/S is semisimple, hence it is zero or simple. Therefore l(E(S)) ^ 2.

Set

( K V 0\
0 0 0
0 0 0 /

Then At is injective, because 1{A{) — 2. Moreover, C, and C2 are nonsingular right
ideals, C\ has length 3, and uniform dimension 2. Each simple submodule of C, is
isomorphic to C2.

Write Soc(Ci) = 5 © T where S, T are minimal right ideals. Let T* be a maximal
essential extension of T in C\, that is, T* is a closure of T in C\. If l(T*) > 1,
then T* © S = C|, a contradiction. Hence /(r*) = 1, or equivalently, T* = T, that
is T is a closed submodule of C,. Therefore, C\/T is uniform (compare with [2,
Section 5.10 (1)]), and it has length 2. Whence C\/T must be injective, and since S
embeds in C , /7 \ we have £(5) = C, /7 \ Moreover, C\/T is not projective, because
otherwise 7" would split in C\. A similar consideration yields that Cx/S is injective,
uniform, not projective, l(C\/S) = 2 and E(T) = Ci/5. It follows that £(C2) is also
not projective, and /(£(C2)) = 2.

Set A = A,, C = C, © C2. Then /? = A © C and CA = 0. Thus R is a ring of
Theorem 1.1 with B = 0, but AC ^ 0. This proves (2).

(3) We consider the left side of the above right p*-semisimple ring R. Let L, be as
before. It is easy to check that L3 is a two-sided ideal of R, for which we have

K

K

It follows that (lv
K) is an injective left ideal of R/L}. Hence (L2 + L3)/L3 (= L2)

is an injective left /?/L3-module. Therefore L2 is a quasi-injective left ideal of R.
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We aim to show that it is even an injective left ft-module. It is obvious that L2 is
Lt-injective. Let

(K V 0s

T = 0 0 V
\ 0 0 0,

Then T is an essential left ideal of R. As V2 = 0, it is clear that T Soc(L3) = 0.
This means that Soc(L3) is a singular left ideal of R. As L2 is a nonsingular left ideal
of R, there is no nonzero map from submodules of L3 to L2. This shows that L2 is
L3-injective. Thus by [1, Section 16.13 (2)], L2 is (L{ © L2 © L3 = fl)-injective, as
claimed.

Now if R is left p*-semisimple, so applying [5, Theorem 7] for left p*-semisimple
rings we see that L3 must be injective. This means that R is a direct sum of a simple
left ideal and two injective uniform left ideals of length 2. By [2, Section 13.5 (e), (g)],
R must be right serial also. However, this is impossible because the local right ideal
C\ defined in the proof of (2) is not uniform. Thus R is not left p*-semisimple,
completing the proof of (3).

We prove (4) by giving a more general observation on CS modules in the next
section. In particular, in Proposition 3.2, we will give more information on the
structure of the right ideal B c R of Theorem 1.1. •

3. A correction

The conclusion in (ii) of [5, Theorem 7 (III)] and [5, Lemma 11], that BR is CS,
is unfortunately incorrect. This mistake arose from an incorrect conclusion in the
proof of [5, Theorem 7] on page 144, line 6, that 'anns(u;) = annR(ur) D annR(vs)
if w = ur + vs'. Fortunately, this mistake does not affect the correctness of other
parts of Theorem 1.1, because the CS conclusion for BR was not used anywhere in the
remainder of the proof of [5, Theorem 7]. In (a) of the proof of [5, Lemma 13] the
fact that BR is a direct sum of uniform modules was used, but this property follows
from the definition of BR and not because BR was CS.

For the purpose of showing that the right ideal B of R in [5, Theorem 7] is, in
general, not a CS right ^-module, we first prove a general result, which might also be
of interest on its own.

For a module MR over a ring R we denote by a[M] the full subcategory of Mod-ft
whose objects are submodules of M-generated modules. For N e a[M], the injective
hull of N in o[M] is denoted by EM(N). It is known that EM(N) is M-injective and
for each nonzero proper submodule T of EM(N), T is not M-injective. This fact is
used in the proof of Lemma 3.1 below. For more on basic properties of EM(N) we
refer to [8, Section 15].

https://doi.org/10.1017/S1446788700014063 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014063


364 Dinh Van Huynh and S. Tariq Rizvi [6]

LEMMA 3.1. For a right module MR over a ring R, let MR = M, © • • • © M, ffi

M,+ \ © • • • © Mn, such that each M, is uniform, I (Mi) = ••• = l(M,) = 2, (t ^ 1),

and l(M,+i) = ••• = l(Mn) = 1. Assume further that Soc(M,) = Soc(M ; ) , and

l(EM(Mj)) > 2foralli, j = l , 2 , . . . , n . Then M is a CS module ifand only ift = 1.

PROOF. Let t = 1 and let V be a closed submodule of M. If M, n V = 0, then by
modularity we have M, © V = M, © V where V - (Mi © V) n (M2 © • • • © AfJ.
Since V is a direct summand of M2 ffi • • • © Mn, it is clear that M, ffi V is a direct
summand of M. It follows that V is a direct summand of M. Now we consider the
case U = M C\V j^ 0. If U = Mi, then by modularity, we conclude that V i sa direct
summand of M. If U ^ M,, then f/ is a minimal submodule of M,. Let 5* be the
closure of U in V. As V is closed in M, 5* must be closed in M (see, for example,
[2, Section 1.10 (4)]). Hence l(S*) is at least 2. Since 5* n (M2 © • • • © Mn) = 0, we
have S* © (M2 © • • • © Mn) = M. From here we conclude as before that V is a direct
summand of M. Thus M is CS.

Conversely, assume that / > 1. We use an idea in the proof of [4, Theorem 6] to
show that M is not CS. Suppose on the contrary that MR is CS. Then for j = 2, . . . , t,
Mi © Mj is a CS module. Hence by [2, Section 7.3 (ii)], M, is A/rinjective. Let S,
be the socle of M,. Then M| is 5,-injective for any ;'.

Let <p : Si -y Sj be an isomorphism, and let L = {x + tp(x) | x € 5,}. Then L is a
minimal submodule of A^ ffi Mj. There are two possibilities:

(a) L is closed in M{ © My. Hence L is a direct summand of M, ffi Mj. This is
impossible by the Krull-Schmidt Theorem (compare with [1, Section 12.9]).

(b) L is not closed in M| ffi Mj. Then the closure L' of L in M, ffi Mj has length
at least 2. As l(Mx © A/,) = 4, we have M, ffi Mj = L' ffi My = M, ffi L'. It follows
Mi = Mj. Thus by [1, Section 16.13 (2)], M, is (M, ©• • -ffiM, ©M,+, ©• • -©Mn =
A/)-injective, a contradiction to the assumption that l(EM(Mi)) > 2. D

The following example shows the existence of a ring R (= B) of Theorem 1.1 with
A = C = 0, but R is not right CS.

EXAMPLE 1 (compare with [4, Example 3.2]). Let

Then R is a right (and left) SI ring, that is a ring over which every singular right (left)
fl-module is injective (see [3, Chapter 3]). Let
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Then R can be written in the form R = euR © e22R © e^R. It is clear that

e33R = Soc(euR) = Soc(e22R), l(enR) = l{e22R) = 2.

Moreover,

/c c c\
£(<?„*)= 0 0 0 ,

\0 0 0/
and hence l(E(euR)) = 3. Thus /? is a ring of Theorem 1.1 with A = C = 0.
However, by Lemma 3.1, R is not right CS.

In light of Lemma 3.1, we can give some more information on the structure of the
right ideal B of R in Theorem 1.1.

PROPOSITION 3.2. Let R be a ring of Theorem 1.1 and B be a right ideal of R
described in III (ii). Then BR = V, © • • • © Vk © Vk+X © • • • © Vn, where each V, has
a homogeneous socle such that for i ^ j , Soc(V,) ^ Soc(Vy). Moreover, V\, ..., Vk

are CS, and Vk+i,..., Vn are not CS.

PROOF. AS in Theorem 1.1 part III (ii), B = B{ © • • • © Bm where each 5, is
uniform of length 1 or 2, and the injective hull of each simple submodule of BR has
length 3. We can renumber the B,ys such that Bu ..., Bk has length 2, each pair of
these B;'s do not have isomorphic socles, and no Bj e {Bk+i,..., Bm] is of length 2
and has a socle isomorphic to the socle of one of the B, 's for / — 1, . . . , k. The next
Bk+i,..., Bn (n ^ m) have the property that each pair of them do not have isomorphic
socles, each Bj, k + 1 ^ j ^ n, has length 2 and for each of them there is at least one
more Btj e {Bn,..., Bm] such that l(Bh) = 2 and Soc{Btj) = Soc(Bj). The socle of
each B, e {Bn+i, ..., Bm} is isomorphic to either the socle of some Bt, 1 ^ i ^ k, or
the socle of some Bj with k + 1 ^ j ^. n.

Now let [B,] be the direct sum of all B,. e {Bu ..., Bm) with Soc(fi,0 = Soc(B,).
By the structure of the right ideals A, B, C of R in Theorem 1.1, there is no nonzero ho-
momorphism of any submodule of A R and respectively, of any submodule of CR to BR.
This implies that every submodule of B is A- and C-injective. Hence any fi-injective
submodule of B is injective. Thus we can apply Lemma 3.1 to see that [ f i j ] , . . . , [Bk]
are CS modules, and [Bk+]], . . . , [Bn] are not CS, proving Proposition 3.2. •
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