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The main aim of this paper is to study the convergence of a sequence of con­
tractions in a generalized metric space. More specifically, we investigate the 
following question: 

"If a sequence of contractions {fr} with fixed points ur (r= 1,2,...) converges to 
a mapping /with a fixed point u9 under what conditions will the sequence ur con­
verge to w?" 

A partial answer to the above question has been given in metric spaces by 
Bonsall [1]. This result has since been improved by Russell and Singh [6]. Further 
results will now be given in a generalized metric space. 

During the course of our investigations we shall make use of two fixed point 
theorems of Luxemburg ([3], [4]), and also a more general fixed point theorem of 
Margolis [5]. 

The generalized metric space, first introduced by W. A. J. Luxemburg, we define 
as follows: 

DEFINITION. A generalized metric space (X9 d) is a pair composed of a non-empty 
set X and a distance function d: Xx X->[09 oo] satisfying the usual axioms for a 
metric space: 

(a) d(x, y) = 0 if and only ifx = y. 
(b) d(x9 y) = d(y, x). 
(c) d(x9y) é d(x9z)+d(z9y). 

If further: 

(d) lining» d(xn9 xm) = 0 => lim^» d(x9 xn) = 0, 

where xn e X(n= 1, 2, . . .)andx is unique, then (X9 d) is called a generalized complete 
metric space. 
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THEOREM 1. Suppose fr (r = 1, 2, • • • ) is a sequence of self-mappings of a generalized 
complete metric space X satisfying the following: 

(1) d(frx9fry)<pd(x9 y)(0<p< 1) for all (x, y) in X with d(x, y) < oo. 
(2) The family of contractions fr, have fixed points ur ( r= 1, 2 , . . . ) . 
(3) limr _> « frx =fxfor all xe X, where fis any self-mapping of X. 
(4) Let x0 e X be arbitrary and define xn=fxn^1. Then there exists an index 

N(x0) such that d(xN, xN+l) < oo, /= 1, 2, 

Then lim^o, ur = u, and u is a fixed point off 

Proof. Since /> < 1 is the same Lipschitz constant for all/ r, we get 

d(fx,fy) = lim d(frx,fry) < pd(x,y) 
r-*a> 

for all (x, y) in X with d(x, y)<oo. Hence fis a contraction on X. Using property 
(4) we can show tha t /has a fixed point u say. By an inequality of Luxemburg [3], 
we have, for each r = 1, 2 , . . . , 

d(ur,fr
nx0) < Çld{fNXQjr^iXoX 

where N(x0) is an index and n> N. 

Put n = N=0 and x0 = w. Then 

d(ur, u) < z d(u,fru) = -| d(fu,fru). 
1-p 1-/) 

But r->oo, d(fu,fru)->0. Hence 

lim d(ur, u) = 0. 
r-*co 

Example 1. Let X={\, 2, 3 , . . . , « , . . . } and let 

Let fr, for each r — 1, 2 , . . . , as well as / be the identity mapping on X, i.e., 
fri=i=fi for each r and each /. Let ur = r for each r = 1, 2, Now all the con­
ditions of the above theorem are fulfilled. Alsolimr_>oo wr = oo, and oo is a fixed 
point for/. 

Remark, A "local" version of the above theorem can be similiarly proved by 
using Luxemburg's "local" theorem [4]. 

THEOREM 2. Suppose / ( r = 1, 2 , . . . ) is a family of self-mappings of a generalized 
complete metric space X satisfying the following: 

(1) d(frx,fry)<pd(x, y), (0< p < I) for all x, y in X with d(x, y)<C,C>0. 
(2) The family of local contractions fr have fixed points ur ( r= 1,2, . . .) . 
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(3) limr^ «J frx =fxfor all xe X where fis any self-mapping of X. 
(4) Let X0E Xbe arbitrary and define xn=fxn-1. Then there exists an index N(x0) 

such that d(xn9 xn+l)<Cfor alln>Nand/= 1, 2, 

Then limr_> «, ur=u9 and u is a fixed point off 

Proof. Adopt the procedure of Theorem 1 and use the inequality of Luxemburg's 
"local" theorem [4]. 

Example 2. Let X be the extended reals with the ordinary Euclidian metric. 
L e t / : X->XbQ defined byfrx=(x+ l)/(r+1). Nowlim r_o o / rx=0=/x. The fixed 

points offr are given by ur—\\r. All the conditions of the above theorem are 
satisfied for any c>0. Clearly limr_«> ur=0 where 0 is a fixed point of/. 

Remark. If all of the family {fT} commute, then /and f share a common fixed 
point. Using Luxemburg's extra condition (C3), we can show tha t /and {/} share 
a common unique fixed point in both of the above theorems. 

We now prove a fixed point theorem "of the alternative" for a sequence of 
contractions in a generalized complete metric space. 

THEOREM 3. Suppose (X9 d) is a generalized complete metric space andf: X->X 
is a sequence of contractions in the sense that d(x9 y)<co=> d(frx9fry)< pd(x9 y)9 

(0<p<l) and(r=l, 2 , . . . ) . Letlimr^xfrx=fx for all xe X, where f is any self-
mapping of X. Suppose x0e X and consider the sequences of successive approxi­
mations with initial element XQ\ -^0î 

frX0,fr
2x0,... ,fr

lx0,..., where 7=0, 1,2, . . . . 
Then the following alternative holds: 

Either (a) for every / = 0 , 1 , 2 , . . . one has d(fr
lx0, fr

l + 1x0) = oo, or (b) the sequences 
of successive approximations are d-convergent to ur (r— 1, 2 , . . . ) , the fixed points of 
fT andTimr_> «> ur = u, a fixed point off 

Proof. There are two mutually exclusive possibilities: Either (1) for every 
/ = 0 , 1 , 2 , . . . one had d(fr

lxQ,fr
l + 1x0) = co which is precisely alternative (a), or 

(2)d(fr
lx0,fr

l + 1x0)<œ. 
Assume that (2) holds. Follow the proof of Theorem 2 of [2] and we get the 

following inequality: 

d(fr
nXo,frn + 1Xo) < Rn-N^'d(fr

NX09fr
N^X0) l-p 

whenever n>N(x0). 
It can be shown using the method of the above theorem that for each r = 1, 2 , . . . , 

there exists an element uT in X such that limr_oo rf(/r
nx0, wr)=0. 

One can now show that each m a p / has fixed point uT {r == 1, 2 , . . . ). I.e., fr(ur) = u 
for each r. 

Since d(x9 y) < oo we now have 

d(frX,fTy) < pd(x,y)9 
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and lim d(frx9fry) < pd(x,y) 
r-*co 

i.e., d(fx,fy) < pd(x9y). 

Hence/is a contraction on Zand by Diaz and Margolis [2], has fixed point u, say. 

Referring to the above inequality we have for each r = 1, 2 , . . . , 

d(ur9fr
nx0) < f^d(fr

Nx0Jr
N + 1x0) 

whenever n>N(x0). 
Using the same procedure as in Theorem 1, we can now show that lim^oo ur = u. 
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