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Abstract

Several" "classical" results on algebraic complete lattices extend to algebraic posets and, more
generally, to so called compactly generated posets; but, of course, there may arise difficulties in the
absence of certain joins or meets. For example, the property of weak atomicity turns out to be valid in
all Dedekind complete compactly generated posets, but not in arbitrary algebraic posets. The
compactly generated posets are, up to isomorphism, the inductive centralized systems, where a system
of sets is called centralized if it contains all point closures. A similar representation theorem holds for
algebraic posets; it is known that every algebraic poset is isomorphic to the system i(Q) of all directed
lower sets in some poset Q; we show that only those posets P which satisfy the ascending chain
condition are isomorphic to their own "up-completion" i(P). We also touch upon a few structural
aspects such as the formation of direct sums, products and substructures. The note concludes with
several applications of a generalized version of the Birkhoff Frink decomposition theorem for
algebraic lattices.

1980 Mathematics subject classification (Amer. Math. Soc): 06 A 10, 06 A 23.
Keywords and phrases: poset, up-complete, compactly generated, algebraic, Scott completion, weakly
atomic, irreducible element.

1. Terminology and basic facts

Given a partially ordered set ("poset") P with order relation < , we denote by
I y the principal ideal generated by y e P, i.e.

iy:= {xeP: x^y] (;eP).
For Y c P,

IY:=
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denotes the lower set or decreasing set generated by Y. The lower sets form a
closure system 6(P) which is also a topology, called the Alexandroff completion of
P. An Alexandroff discrete topology, or, for short, an A-topology, is a system of
sets which is closed under arbitrary unions and intersections. It is well known that
the assignment P >-* 0(P) yields a one-to-one correspondence between partially
ordered sets and To — ^4-topologies (cf. [1]). A subset D of P is directed if every
finite subset of D has an upper bound in D (in particular D ¥= 0) . A system 3E
of sets is called inductive if for every subsystem ?) of 3£ which is directed by
inclusion, the union U?) also belongs to 3£. It suffices to postulate this property
for nonempty well-ordered subsystems ?) (cf. Mayer-Kalkschmidt and Steiner
[16]). For any poset P, the system i(P) of all directed lower sets ("ideals" in the
sense of [10]) is inductive; but in contrast to 6(P), it is not closed under arbitrary
unions of non-empty subsystems unless P is a linearly ordered set.

A poset P is called up-complete if every directed subset D of P has a least
upper bound ("join"), denoted by VZ). Again, it suffices to postulate the existence
of joins for all non-empty well-ordered subsets of P in order to guarantee
up-completeness (cf. Cohn [4; 1.5.9]). Of course, every inductive system is an
up-complete poset with respect to inclusion c , but a system which is up-com-
plete with respect to inclusion need not be inductive (see Proposition 1). Now the
well-known concept of algebraic lattices ("compactly generated lattices" in the
sense of Crawley and Dilworth [5]) extends to posets as follows. An element x of
an up-complete poset P is called compact if, for every directed subset (or,
equivalently, for every non-empty well-ordered subset) D of P with x < VA
there exists a j e D with x < y. Thus x is compact if and only if x e fl{ Y e
i(P): x < VF}. The subposet of all compact elements of P is denoted by K(P),
and P is said to be compactly generated if each element of P is a join of compact
elements; moreover, P is called algebraic if for each y e P there exists a directed
set D of compact elements such that y = VD. In this case, one may assume
without loss of generality that D is the set of all compact elements dominated by
y. For complete lattices, the properties of being compactly generated and alge-
braic are equivalent, but this equivalence fails for arbitrary posets, as our first
example shows.

EXAMPLE 1. Let X be an uncountable set, and let S denote the system of all
subsets of X which have either at most one element or a countable complement.
This system is inductive and closed under countable intersections. In particular, it
is an up-complete A -semilattice with respect to inclusion. The compact elements
of S are the singletons and the empty set. Hence S is compactly generated but not
algebraic.
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131 Compact generation in partially ordered sets 71

Of course, every poset satisfying the ascending chain condition (a.c.c.) is
algebraic (since each element of such a poset is compact). Further examples of
algebraic posets which are not complete lattices (except for trivial cases) are the
systems of finite character, i.e. systems X having the property that a set Y belongs
to X if and only if every finite subset of Y belnogs to X. Obviously any such
system is inductive, and the finite members of X are precisely the compact ones.
For example, the system of all chains (linearly ordered subsets) of a fixed poset,
or the system of all linearly independent subsets of a vector space, partially
ordered by inclusion, are algebraic posets. Notice that the only systems of finite
character which are complete lattices (with respect to inclusion) are the power
sets. A general construction principle for compactly generated (respectively,
algebraic) posets will be described in the next paragraph.

2. Set representation of compactly generated and algebraic posets

A famous representation theorem due to Birkhoff and Frink [3] states that the
algebraic complete lattices are, up to isomorphism, precisely the inductive closure
systems. This result can be generalized to compactly generated posets as follows.

By a centralized system on a set X we mean a system X of subsets of X with
the property that each point closure

belongs to X. Obviously, every closure system is centralized, but not conversely.

PROPOSITION 1. A centralized system X is inductive if and only if it is up-com-
plete with respect to inclusion and the point closures are compact members of X. In
particular, every inductive centralized system is a compactly generated poset.

PROOF. If X is inductive and centralized, then X is up-complete, and the point
closures are compact because directed joins agree with the corresponding unions.

Conversely, assume X is up-complete and each point closure is compact. Then
every directed subsystem g) has a join V?) in X, and it suffices to prove
Vg) c Ug). But x <= Vg) e X implies that Cx(Hi) c V?), and, as Q ( X ) is compact,
x e CX(X) c Y c Ut) for some Y <E g).

A system X of sets such that different points have disjoint closures, i.e. such
that CX(X) # Cy(2H) for x # y, will be referred to as a T0-system. A standard
extension of a poset P is a subsystem of 0(P) containing all principal ideals of P.
A straightforward argument shows that a system of sets is a centralized ro-system
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if and only if it is a standard extension of a (unique) poset. By a theorem due to
B. Banaschewski [2], the standard extensions of a poset P (together with the
natural embeddings x -* I x) form a representative system for the join-dense
order embeddings of P (where / : P -* Q is join-dense if each element of Q is a
join of elements in the image of / ) . For further background concerning standard
extensions, see [9].

PROPOSITION 2. For two posets P and Q, the following two statements are
equivalent.

(a) P is compactly generated, and Q is isomorphic to K(P).
(b) P is isomorphic to an inductive standard extension of Q whose compact

elements are exactly the principal ideals of Q.

PROOF, (a) => (b). Given an isomorphism f: Q -* K(P), define an embedding
g: P -* 0{Q) by g(y):= fx[i y n K(P)]. The image X = g[P] is a standard
extension of Q since for x e Q, we have / - 1 [ i f(x) n K(P)] = I x. Being an
isomorphism between P and X, g maps K(P) onto K(3E), and so K(X) =
{/"*[I y n

 K(P)]: y e K(P)} is the set of all principal ideals of Q (because /
maps Q onto K(P)) . Furthermore, by Proposition 1, 3E must be inductive. (Notice
that the point closures of a standard extension are exactly the principal ideals.)

(b) => (a). Let g: P -* 3£ be an isomorphism between P and an inductive
standard extension 36 of Q with K(£) = {I x: x & Q}. Then, by Proposition 1,
X and P are compactly generated posets. Moreover, the restriction of g to K(P)
induces an isomorphism between K(P) and K(X), and K(X) is isomorphic to Q
via the map x >-> J, x.

COROLLARY 1. For a poset P, the following three conditions are equivalent.
(a) P is compactly generated.
(b) P is isomorphic to an inductive standard extension of some poset Q.
(c) P is isomorphic to an inductive centralized system

In (b), one can choose Q = K(P).

Proposition 2 enables us to determine (up to isomorphism) all compactly
generated posets with a fixed given poset Q of compact elements: a system of
representatives for these posets is the set (!) of all inductive standard extensions of
Q whose compact elements are the principal ideals of Q. Only one of these
representatives is an algebraic poset, namely the "algebraic up-completion" i(Q);
and indeed, this is the least inductive standard extension of Q, while 6(Q) is the
greatest one. Consequently, an arbitrary compactly generated poset P contains a
unique algebraic poset P with K(P) = K(P).
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For any up-complete poset P, define the Scott operator T by

T: %(P)-+%(P), Y~> i{\/D: D c ; y, D directed}.

This operator is extensive and preserves finite unions, but it is in general not a
closure operator. However, the system

y(P) = {A c P: T(A) = A]

of all Scott-closed sets is a topological closure system contained in 0(P). The
corresponding Scott-open sets form the so-called Scott topology a(P) (cf. [7], [10]).
Every algebraic poset is continuous (see [10], [12], [13], [14]). It is an important
property of continuous posets that their Scott operator is always a closure
operator and that their Scott topology o(P) is completely distributive (see [7],
[14], [15]). In order to give a characterization of algebraic posets in terms of their
"Scott completion" y(P), we need the notion of prime elements. Call an element
p of a complete lattice L V -prime if for every finite subset Y of L, p < VY
implies that p e I Y. The set of all V-primes of L is denoted by 7rv(L) and is
called the V -spectrum of L. Similarly, we define V'-primes by dropping the
finiteness condition on Y and the V'-spectrum wy(L). A complete lattice in which
every element is a join of V-primes will be referred to as an A-lattice, in view of
the well-known fact that such lattices are, up to isomorphism, precisely the
A -topologies. There are various different characterizations of ^-lattices; for
example, they may be identified as the completely distributive algebraic lattices
(see also [8]).

Some of the equivalences collected in the subsequent proposition are already
known (cf. R.-E. Hoffmann [12], [13], [14]; J. D. Lawson [15]). We list them for
the sake of completeness and easy reference.

PROPOSITION 3. For an up-complete poset P, the following conditions are
equivalent.

(a) P is algebraic.
(b) y(P) is isomorphic to the A-topology 0(Q) of some poset Q.
(c) y(P) (respectively o(P)) is an A-lattice.
(d) y(P) is algebraic.
(e) P is isomorphic to the V'-spectrum TTV (L) of some A-lattice L.
(f) P is isomorphic to the up-completion i(Q) of some poset Q.

In (b) and (f), one may take Q = K(P), and in (e), L = y(P).

PROOF, (a) => (b). The following map is an isomorphism:
/ : y(P) -* 0(K(P)), A^AC\

Indeed, the inverse isomorphism is given by
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(where F is the Scott operator of P). This map is well-defined because the Scott
operator of an algebraic poset is a closure operator.

(b) => (c) =» (d). These are clear.
(d) => (c). This follows from the fact that a A-distributive algebraic lattice is

already an ^-lattice (see [8]), and y(P) is always A-distributive, being a topologi-
cal closure system.

(c) => (e). If y(P) is an ^-lattice, then it is completely distributive, and
consequently P is a continuous poset isomorphic to iry(y(P)) (cf. [7], [14] and
[15]).

(e) => (f). We may assume P = wy(0(g)) for some poset Q. But a direct
inspection shows that ^6(Q)) = i(Q) (cf. [12]).

(f) =» (a). This is clear (see the remark after Corollary 1).

COROLLARY 2. For two posets P and Q, the following four conditions are
equivalent.

(a) P is algebraic, and K(P) = Q.
(b) P is up-complete, and y(P) & 6(Q).
(c) P = irv(L) and Q = ir^L) for some A-lattice L.
(d) P = i(Q).

Using these isomorphisms, one can show easily that the following three
categories are equivalent.

category

A

objects

posets

algebraic posets

A -lattices

morphisms

isotone maps

preserve directed joins
and compact elements

preserve arbitrary joins
and V-prime elements

For more general investigations on such categories, see [9] and [18].
Next let us characterize those posets P which are isomorphic to their own

algebraic up-completion i(P). Such a characterization has been established in the
case of complete lattices by D. Higgs [11]. However, the proof given in [11] is
rather complicated, involves tools of transfinite induction, and requires the
completeness hypothesis. The subsequent proof is easier and works in the general
setting of posets.
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PROPOSITION 4. For aposet P, the following conditions are equivalent.
(a) P is up-complete, and every element ofP is compact.
(b) P satisfies the a.c.c.
(c) The map ij: P -» i(P), y •-• iy i son isomorphism.
(d) i> is isomorphic to i(P).
(e) i»« up-complete, and y(P) = 0(i>).

PROOF. It is well known that i> satisfies the a.c.c. if and only if each directed
subset of P has a greatest element. From this observation the implications
(a) =» (b) =» (c) => (d) and the equivalence (b) <=> (e) are evident.

We prove the remaining implication (d) =» (a). Let / be an isomorphism
between P and i(P). Then P is algebraic, and in particular up-complete. Since
the compact elements of i(P) are precisely the principal ideals of P, and since /
is an isomorphism, we conclude that x e ? i s compact if and only if f(x) is a
principal ideal. Now assume there exists a non-compact element in P. As directed
joins of non-compact elements are never compact, Zom's Lemma ensures the
existence of a maximal non-compact element xQ. Then Y = f(x0) is a directed
lower set but not a principal ideal. Hence xx = V7 is not compact, and I xx is a
member of i(P) properly containing Y. The map

g.P^P, x~r\lx)

is obviously an order embedding, and x0 < g(xj) (since f(x0) = Yd j ,x l =
f(g(xi)))- Repeating this procedure, we obtain a sequence of non-compact
elements x0, xx, x2... such that xn < g(xn+1) for all n = 0,1,2, But then

is an ascending chain whose join is not compact. This contradicts the maximality
of x0. Accordingly, every element of P must be compact.

COROLLARY 3. / / P is an algebraic poset, then K(P) = P already implies that
K(P) = P.

This implication cannot be extended to arbitrary up-complete posets.

EXAMPLE 2. Consider the chain

C = { j c e R : 0 < x < 1/2} U{1)

with its usual order < . Let Cm denote the mth lexicographic power of C
(m = 1,2,...) and form the ordinal sum
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Then the dual poset P* is an up-complete chain (which becomes complete by
adjoining a least element), and the following assignment defines an isomorphism
between P* and K(P*) :

1 -» i e C,

3. Sums and products of algebraic posets

In this section, we collect together a few results concerning the formation of
direct sums and direct products of algebraic posets.

First, we notice that the direct sum ("disjoint union") of any family of
algebraic posets is again algebraic, but of course, the direct sum of at least two
complete (algebraic) lattices is never complete. However, when a greatest and a
least element are adjoined to a disjoint union of complete algebraic lattices, a new
complete algebraic lattice is obtained in which the greatest element is compact. A
straightforward computation shows that direct sums are in fact co-products in the
category AP because the natural injections preserve directed joins and compact-
ness.

On the other hand, it is well known that arbitrary products of complete
algebraic lattices are algebraic. This result can be extended only in part to
algebraic posets, as we shall see below.

Call a poset P uniquely minimized if for every x e P there exists a unique
minimal element Jc < x. Thus, for example, each poset possessing a least element
and every anti-chain is uniquely minimized. More generally, a poset is uniquely
minimized if and only if it is a disjoint union of posets each of which has a least
element. In this case, the minimal elements are obviously compact.

PROPOSITION 5. A direct product P of posets Pj (j <E J) is algebraic if and only if
each Pj is algebraic and the number of indices j for which Pj is not uniquely
minimized is finite.

PROOF. Since the projections preserve directed joins and compactness, it is clear
that each factor Pj of an algebraic product poset P = Y\j&J Pj must be algebraic.

Assume that the set K = {j e J: Pj is not uniquely minimized} is infinite.
Choose y e P such that for no j e K is there exactly one minimal element
dominated by _yy. Then we assert that no element x < y can be compact in P (and
in particular, P cannot be algebraic). Indeed, we may choose an element z < y
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with Xj < Zj for all j e K. Thus

Y = [w e P; w ^ y; {j <= J: Wj £ Zj) finite}

is a directed lower set in P with y = VY but x £ Y.
On the other hand, assume that each P, is algebraic and that there exists a

finite set K <zj such that, for all y e J\K and all u e Py, there is a unique
minimal element v ^ v. Then the product poset P = Tlj e j Pj is up-complete, and
for each y e i>, the set

^ = < x G P: x < y; Xj compact in Pj for all j e / ; {_/ e J: JC, #_yA finite}

is a directed (non-empty!) set of compact elements in P with y = VKy.

COROLLARY 4. (1) The class of algebraic posets is closed under finite direct
products and arbitrary direct sums.

(2) TJie class of uniquely minimized algebraic posets is closed under arbitrary
direct products and direct sums.

(3) The class of algebraic posets with least elements is closed under arbitrary direct
products.

It is easy to see that these direct products and sums have the usual categorical
properties of products and coproducts with respect to the AP-morphisms. More-
over, the category AP of algebraic posets has not only finite but arbitrary
products, since AP is equivalent to the category P of partially ordered sets, where
arbitrary direct products are the products in the categorical sense. However, in
AP a product with an infinite number of factors may be distinct from the usual
direct product. In the general case, one has to take the up-completion
i(TljejK(Pj)) as a representative for the categorical product of the algebraic
posets Pj ( / e 7).

From Proposition 5 we infer that the direct product of a family of (non-empty)
algebraic A -semilattices is algebraic if and only if the number of factors without
least element is finite. Moreover, one has the following result (which is shown in
the same way as Proposition 5): if (Py. j e / ) is an infinite family of non-empty
posets none of which has a minimal element, then the direct product P = YlJfBj Pj
contais no compact elements at all.

EXAMPLE 3. The chain C = {-1, - 2 , - 3 , . . . } of all negative integers is
algebraic; moreover, each element of C is compact. Hence the same holds for
each finite power C". But no infinite cartesian power Cm contains any compact
element at all. The w-th power of C in the category A P is the up-completion
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4. Substructures and weak atomicity

A straightforward computation shows that every Scott-closed subset and every
Scott-open subset of an algebraic poset is again an algebraic poset (with respect to
the induced order). For example, the Scott-closed subsets of a power set (which is
certainly an algebraic complete lattice) are precisely the systems of finite char-
acter, and we have already remarked that such systems are special instances of
algebraic posets.

It is also well-known that every complete sublattice and, in particular, every
interval [a, b] = {x e L: a < x < b} of an algebraic complete lattice L is again
algebraic, although the compact elements of [a, b] may be completely different
from those of L. Unfortunately, this relativization property no longer holds for
algebraic posets.

EXAMPLE 4.

Figure 1

Figure 1 represents an algebraic poset containing an interval [a,l] which is a
complete lattice but certainly not compactly generated. Indeed, the element a is
the only compact element of the interval [a, 1] while a is not compact in the
entire poset.

A poset P is said to be weakly atomic if every interval [a, b] with a < b
contains a jump, i.e. a pair of elements u < v such that [u, v] = {u, v}. It has
been observed by Birkhoff and Frink [3] that every algebraic complete lattice L is
weakly atomic. However, the initial proof given in [3] contained a little gap which
was closed by K.-H. Diener [6]. A straightforward argument is this: if a < b, then
there exists a compact element v of [a, b] (which need not be compact in L) such
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that a < v. By Zorn's Lemma, we can find a maximal element u with a < u < v.
Thus [u, v] is the required jump. The same argument shows that a poset in which
every interval is algebraic must be weakly atomic, but an algebraic poset need not
be weakly atomic.

EXAMPLE 5. For a,b e U, set [a, b[= {x e R: a < JC < b], and set L =

{[0, a]: a e [0,1[} U {[0, a[: a <= [0,1]}. Then L is a complete chain with respect
to inclusion, consisting of all lower sets of the interval [0,1[. Hence L is an
algebraic lattice, and the compact elements of L are the intervals [0, a] with
a G [0,1[ and the empty interval 0 = [0,0[.

If w denotes the chain of all natural numbers 0,1,2,... then w + 1 = wU {«}
is an algebraic chain whose compact elements are the natural numbers. Consider
the set

P = (« X L) U{(«, [0,a[): a e [0,1]} c (w + 1) X L,

together with the partial order
(w, / ) < («, / ) «* m < n, I c / , and I = J = [0,a] implies that m = n.

It is not hard to verify that P is an algebraic poset, the compact elements being
the pairs (n, / ) with n e «, and with / = 0 or / = [0, a] for some a e [0,1[. But
the interval [(w, 0), («, [0,1Q] = {(«, [0, a[): a e [0,1]} c P is isomorphic to
the unit interval [0,1] and contains no jump.

, [ O , O ] )

,0)

Figure 2

In spite of this counterexample, we can prove a slight generalization of the fact
that algebraic complete lattices are weakly atomic. Call a poset P chain-complete
or Dedekind complete (cf. Wolk [17]) if every non-empty chain of P has a join
and a meet (in other words, if P and its dual P* are up-complete).
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PROPOSITION 6. Every compactly generated chain-complete poset is weakly
atomic.

PROOF. Let [a, b] be an interval of a compactly generated chain-complete poset
P with a < b, and let C be a maximal chain in [a, b]. Then C must be complete,
and joins and meets in C agree with those formed in P. Choose a compact
element c of P withc < b but c ^ a. Let v = A{ z e C: c < z}. Then c < u e C
(!) and a < v. Furthermore, D = {z e C: z < 0} is a chain with c ^ z for all
z & D, whence, by compactness of c, c £ u = VD, and so u < v. Thus [M, V] is a
jump in [a, Z>], as desired.

Notice that the proofs of Diener [6] and Crawley and Dilworth [5, 2.2] for the
weak atomicity of algebraic lattices involve the existence of certain finite (undi-
rected) joins and do not work in the present more general setting.

5. Meet-decompositions in compactly generated posets

The famous decomposition theorem for algebraic lattices due to Birkhoff and
Frink [3] extends without any alteration to compactly generated posets.

PROPOSITION 7. Every element of a compactly generated poset is a meet of
completely meet-irreducible elements.

By a completely meet-irreducible (A-irreducible) element of a poset P we mean
an element q which cannot be represented as the meet (greatest lower bound) of a
set Y c P unless q ^ Y. Notice that a maximal element of a poset is A-irreduc-
ible if and only if it is not the greatest element. In view of Proposition 2, the
above decomposition theorem is only a modification of the following version.

PROPOSITION 8. Let 3£ be an inductive standard extension of a poset Q. Then
each member of 3c is an intersection of A-irreducible members of X.

In other words, given Z e l and i e g \ I w e find a A-irreducible 7 e J
with XQ Yand x <£ Y.

This is an immediate consequence of Zorn's Lemma; indeed, a maximal 7 6 J
with X c. Y and x $ Y must be A-irreducible because every Z e 3E properly
containing Y also contains the element x.

We conclude this note with a few applications.
Let D be an inductive system which is closed under intersections of arbitrary

non-empty subsystems (for example, each system of finite character has this
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property). Then g) is an algebraic poset. In fact, 3£ = g) U (U?)} is even an
algebraic closure system whose greatest element is compact iff X ¥= g). The
compact members of X are the finitely generated ones, i.e. the sets (Z) =
D{Y G 3E: Z c Y} with finite Z c U?).

EXAMPLE 6. Let J20(X) denote the set of all partial orders definable on a set X
(considered as subsets of the cartesian product XX X). Obviously £0(X) is
closed under directed unions and under intersections of non-empty subsystems.
However, J20(X) is neither a closure system (missing a greatest element) nor a
system of finite character (|.Y| > 1). Nevertheless, £0(X) is an algebraic poset,
and consequently every partial order is the intersection of A-irreducible ones. But
it is easy to see that the A-irreducible members of £0(X) are precisely the
maximal ones, in other words, the linear orders on X. Thus the well-known fact
that every partial order is an intersection of linear orders may be viewed as a
special case of Proposition 7.

EXAMPLE 7. Since the system of all chains of a fixed poset P is of finite
character, we infer that every chain of P is an intersection of A-irreducible ones.
If P itself is a chain, then the A-irreducible subchains are precisely the co-atoms
of the power set $(P) . But in general, a A-irreducible subchain of a non-linearly
ordered poset P need not be maximal. In fact, one can check easily that a chain
C c P is A-irreducible if and only if it is maximal, or there exists a unique
element j e P \ C such that C U { x} is a maximal chain.

EXAMPLE 8. Consider a fixed vector space V with \V\ > 2. We know that the
system of linearly independent subsets of V is of finite character, and hence is an
algebraic poset. Thus every linearly independent subset of V is a meet (that is, an
intersection) of A-irreducible ones. But a non-maximal linearly independent
subset cannot be A-irreducible. So we conclude that every linearly independent
subset of a vector space V is an intersection of bases (unless \V\ = 2).

EXAMPLE 9. Let SB denote the system of all well-ordered subsets of a fixed
poset P. SB is partially ordered by "propagation":

W1 ^ W2 » Wx is a lower set of W2.

The compact elements of 3B are those which are not isomorphic to limit ordinals.
223 is an algebraic poset and closed under non-empty intersections. Hence every
well-ordered subset of P is an intersection of A-irreducible ones (with respect to
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propagation). Similarly to Example 7, a non-maximal W e 28 is A-irreducible if
and only if W has a unique upper bound. Furthermore, the following four
statements are equivalent.

(a) P satisfies the descending chain condition.
(b) Every chain of P is well ordered.
(c) 28 is of finite character.
(d) 28 is inductive.

Each of the previous examples becomes an algebraic complete lattice by
adjoining a greatest element. In contrast, our final example concerns an algebraic
poset which is not even a V - or a A -semilattice.

EXAMPLE 10. For I G R " and e > 0, let

denote the closed ball with center x and radius e (where || || denotes the usual
Euclidean norm). In particular,

denotes the unit ball. The system

6 := { Dxe: x e E, e > 0, Dxt c E }

of all closed balls contained in the unit ball is up-complete but not inductive.
Furthermore, © neither contains compact elements (the points are not compact in
6) nor A-irreducible elements. Now let

21 := {D: Z ) e ( J } \ { 0 }

denote the system of all open balls contained in E. 21 is inductive, but again 21
has neither compact nor A-irreducible elements. However, it can be shown that
21 is a continuous poset while £ is not. Finally, define

®:= 31 U 39 U S, where
93:= {°D V{y): D <E &; y & D\°D)

consists of all balls contained in E which have exactly one boundary point.
For n = 1, 5D is simply the system of all (non-empty) convex subsets of the

interval [-1,1]; 3) U {0} is an inductive closure system and therefore an
algebraic complete lattice. The A-irreducible members of 5D are the half-open
intervals ]a, 1] (a e [-1,1[) and [ - 1 , b[ (b e ] - 1,1]).

A completely different situation holds for n > 1. In this case, the following
facts are easily checked.

(1) None of the systems 21, 93, S or 2) is a V-ora A -semilattice.
(2) 3) is the least inductive system containing S.
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(3) 6 is the set of all compact elements of ®.
(4) ® is an algebraic poset.
(5) 93 \ { { * } : x G E) is the set of all A-irreducible elements of ®.
(6) Each element of ® is an intersection of A-irreducible ones.

References

[1] P. S. Alexandroff, 'Diskrete Raume', Mat. Sb. (N.S.) 2 (1937), 501-518.
[2] B. Banaschewski, 'Hullensysteme und Erweiterung von Quasi-Ordnungen', Z. Math. Logik

Grundlagen Math. 2 (1956), 369-377.
[3] G. Birkhoff and O. Frink, 'Representation of lattices by sets', Trans. Amer. Math. Soc. 64

(1948), 299-316.
[4] P. M. Conn, Universal algebra (Harper and Row, New York, 1965).
[5] P. Crawley and R. P. Dilworth, Algebraic theory of lattices (Prentice Hall, Inc., Englewood

Cliffs, N. J., 1973).
[6] K.-H. Diener, 'Uber zwei Birkhoff-Frinksche Struktursatze der allgemeinen Algebra', Arch.

Math. 7 (1956), 339-346.
[7] M. Ern6, 'Scott convergence and Scott topology in partially ordered sets II', (in Continuous

lattices, Lecture Notes in Math. 871, Springer, Berlin, Heidelberg, New York, 1981).
[8] M. Em6, 'On the existence of decompositions in lattices', Algebra Universalis, to appear.
[9] M. Ern£, 'Adjunctions and standard constructions for partially ordered sets' (Contributions to

general algebra II, Proc. Klagenfurt Conference 1982, to appear).
[10] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, A

compendium of continuous lattices (Springer, Berlin, Heidelberg, New York, 1980).
[11] D. Higgs, 'Lattices isomorphic to their ideal lattices', Algebra Universalis 1 (1971), 71-72.
[12] R.-E. Hoffmann, 'Sobrification of partially ordered sets', Semigroup Forum 17 (1979), 123-138.
[13] R.-E. Hoffmann, 'Continuous posets and adjoint sequences', Semigroup Forum 18 (1979),

173-188.
[14] R.-E. Hoffmann, 'Continuous posets, prime spectra of completely distributive complete lattices,

and Hausdorff compactifications' (in Continuous lattices, Lecture Notes in Math. 871, Springer,
Berlin, Heidelberg, New York, 1981).

[15] J. D. Lawson, "The duality of continuous posets', Houston J. Math. 5 (1979), 357-386.
[16] J. Mayer-Kalkschmidt and E. Steiner, 'Some theorems in set theory and applications in the ideal

theory of partially ordered sets', Duke Math. J. 31 (1964), 287-390.
[17] E. S. Wolk, 'Dedekind completeness and a fixed point theorem', Canad. J. Math. 9 (1957),

400-405.
[18] J. B. Wright, E. G. Wagner and J. W. Thatcher, 'A uniform approach to inductive posets and

inductive closure', Theoret. Comput. Sci. 1 (1978), 57-77.

Institut fur Mathematik
Universitat Hannover
D-3000 Hannover 1
Federal Republic of Germany

https://doi.org/10.1017/S1446788700033966 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033966

