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Abstract

Further to systematic experiments on the flexural strength of laboratory-grown, fresh water
ice loaded cyclically, this paper describes results from new experiments of the same kind
on lake ice harvested in Svalbard. The experiments were conducted at −12 °C, 0.1 Hz
frequency and outer-fiber stress in the range from∼ 0.1 to∼ 0.7 MPa. The results suggest
that the flexural strength increases linearly with stress amplitude, similar to the behavior of
laboratory-grown ice.

Introduction

The propagation of ocean swells into a floating ice cover has led, in at least a few recorded
instances, to the sudden break-up of the ice cover into smaller ice floes (Asplin and others,
2012; Collins and others, 2015; Kohout and others, 2016). In these works, the sudden break-up
of first-year and multi-year ice was observed due to wave action which is discussed in Ardhuin
and others (2020). These observations raise a question about the effect of cyclic loading on the
mechanical behavior of ice. From a practical perspective, this question is relevant not only to
floating ice covers that form on cold lakes and oceans and these were investigated previously in
the laboratory and in situ in the field (Mellor and Cole, 1981; Nixon and Smith, 1987; Cole,
1990, 1998; Haynes and others, 1993; Cole and Durell, 1995; Haskell and others, 1996;
Langhorne and Haskell, 1996; Bond and Langhorne, 1997; Weber and Nixon, 1997; Cole
and others, 1998; Gupta and others, 1998; Langhorne and others, 1998, 1999, 2001; Iliescu
and Schulson, 2002; Cole and Dempsey, 2004), but also to the stability of floating ice shelves
(Holdsworth, 1969; Vinogradov and Holdsworth, 1985; Sergienko, 2010), accretion of atmos-
pheric ice on power transmission lines (Kermani and Farzaneh, 2009) and, under tidal forcing
of an extraterrestrial origin, the strength of the icy crust of Jupiter’s Europa and of Saturn’s
Enceladus (Burns and Matthews, 1986; Hammond and others, 2018). With that in mind,
we recently performed systematic experiments (at −25 to −3o C at 0.03–2 Hz) on the behavior
under 4-point cyclic loading of columnar-grained S2 fresh water ice produced in the laboratory
and loaded across the long axis of the columns (Iliescu and others, 2017; Murdza and others,
2018, 2019, 2020). We found that the flexural strength increased upon cycling, scaling linearly
with the amplitude of the outer-fiber stress (0.1–2.6 MPa) and reaching a factor of two or more
greater than the noncycled strength. Is this behavior, we wondered, a characteristic also of ice
produced under natural conditions? To explore this point, we performed similar experiments
on lake ice. This paper describes our results.

Procedure

We harvested the ice from the ∼50 cm thick cover on a lake in the Arctic, located near Mine 7
in Longyearbyen, Svalbard. The ice was characterized by columnar-shaped grains of 17 ± 3
mm diameter, Figure 1, an S2 growth texture (c-axis was randomly oriented within the hori-
zontal plane of the parent ice cover and confined within ∼15° to that plane), and a density of
915 kg m−3. From large (∼120 cm × 70 cm × 50 cm) blocks cut from the cover and then trans-
ported to and stored at UNIS, we fabricated plate-shaped specimens of dimensions h∼ 45 mm
in thickness (parallel to the long axis of the grains), b∼ 100 mm in width and l∼ 600 mm in
length. The specimens were equilibrated at −12 °C and then nonreversely loaded across the
columns at 0.1 Hz at an outer-fiber stress in the range from ∼ 0.1 to∼ 0.7 MPa, using a
custom-built 3-point bending rig, Figure 2, attached to a uniaxial loading system termed
‘Knekkis’ (for details on Knekkis see Nanetti and others (2008); Sukhorukov and
Marchenko (2014)). The specimens were free from cracks, at least of a size detectable by
the unaided eye, but contained a few narrow (< 1 mm dia.) air channels oriented parallel to
the long axis of the grain columns.

To load and then unload the specimen, the mechanical actuator of ‘Knekkis’ was driven up
and down under displacement control with the displacement limited in both directions. In
addition to a built-in load cell, an external more accurately calibrated HBM load cell was
placed between the middle loading span and the press. The results showed there was no sig-
nificant difference in measurements made using the two load cells. The displacement of the
top surface of the ice plate was measured using three calibrated HBM LVDT gauges and
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the outer-fiber stress σf was calculated from the relationship:

sf = 3PL
2bh2

, (1)

where P denotes the applied load, L is the load span (460 mm)
and b and h the dimensions noted above.

Results and observations

Firstly, we conducted three tests where the flexural strength of
noncycled ice was measured. Table 1 lists the results. The average
and Std dev. of the measured flexural strength are 1.52 ± 0.04 MPa
which indicates good reproducibility. These values compare favor-
ably with the values of 1.73 ± 0.25 MPa reported by Timco and
O’Brien (1994) for S2 fresh water ice at temperatures below
−4.5 °C and with the values of 1.67 ± 0.22MPa reported by
Murdza and others (2020) for S2 fresh water ice at −10 °C.

Subsequently, we cycled four specimens in a nonreversed man-
ner for a certain number of cycles (up to 12 000) and then
brought the ice to a forced monotonic failure by bending in the
same sense as cycled. Table 1 lists the stress amplitude during cyc-
ling, the number of cycles imposed and the flexural strength after
cycling. Figure 3 plots the flexural strength versus amplitude of
outer-fiber stress and compares the present results with those
obtained earlier (Murdza and others, 2020) from laboratory-
grown ice. Despite somewhat different loading conditions and a
different origin of ice, specified in Table 2, the lake ice appears
to behave similarly to the laboratory-grown ice under cycling:
its flexural strength increases in an apparent linear manner as
stress amplitude (and outer-fiber stress) increases.

In all tests, failure occurred in the midpoint of the sample, i.e.
beneath the mid-loading span. Interestingly, that this place is the
most ‘strained’ zone within the sample given that the degree of
strengthening depends on the outer-fiber stress amplitude and
that the outer-fiber stress reaches its maximum in the midpoint
of a specimen in 3-point bending test. Therefore, the location of
ice failure is an important characteristic of an experiment as it
may indicate the dependence of flexural strength on the stress
amplitude. This is different from the 4-point bending test where
the peak outer-fiber stress is produced along an extended region
between inner loading spans and, therefore, failure occurs ran-
domly within the middle section.

In contrast to experiments reported by Iliescu and others
(2017) and Murdza and others (2020), where samples were cycled
between two specified load limits, in the present experiments spe-
cimens were cycled between two specified displacement limits.
We observed inelastic deformation during cycling and, as a result,
both mean load and maximum load per cycle gradually decreased
during cycling. Therefore, stresses in Figure 3 and Table 1 are the
average amplitudes of outer-fiber stresses.

It is worth noting that, similarly to the earlier experiments on
laboratory-grown ice (Murdza and others, 2020), acoustic emis-
sions were essentially not detected above minimum AE amplitude
detection of 45 dB (unlike Langhorne and Haskell, 1996; Cole and
Dempsey, (2004, 2006); Lishman and others, 2020) until the ice
broke into two pieces and that the remnant pieces contained no
cracks large enough to be detected by eye. This means that the
flexural strength of both the lake ice and the lab ice was governed
by the tensile stress to nucleate the first crack.

Not detected by the unaided eye in the present experiments
were grain boundary decohesions (Ignat and Frost, 1987; b;
Nickolayev and Schulson, 1995, Picu and Gupta, 1995a; Gupta
and others, 1997; Weiss and Schulson, 2000; Frost, 2001).
Features of that kind were quite prominent in earlier tests
(Iliescu and others, 2017; Murdza and others, 2020) and were
taken to be evidence of grain boundary sliding. That we did not
observe them here does not necessarily mean that grain boundary
sliding did not occur. Fewer grains boundaries appropriately
oriented for sliding were located within the narrow region of
highest tensile stress in 3-point bending (present case) and so
this could account for the apparent absence of decohesions.

Discussion

Although the physical process underlying cyclic strengthening is
not the focus of this letter, our sense is that the process is probably
similar to the one discussed in Murdza and others (2020) for
laboratory-grown ice; namely the development of an internal
back-stress that opposes the applied stress in nucleating cracks.
It may be significant that of the two possible mechanisms pro-
posed earlier (Murdza and others, 2020) for generating

Fig. 1. Photographs showing the microstructure of lake ice: horizontal (a) and vertical
(b) thin sections.

Fig. 2. Sketch of the three-point bending apparatus connected to a ‘Knekkis’ mech-
anical testing system: 1 – immobile steel plate; 2 – HBM load cell; 3 – mid-loading
span; 4 – ice specimen; 5 – outer loading span; 6 – loading press; 7 – steel plate;
8 – schematics of columns within the ice specimen. The upper immobile part 1 is
attached to the frame of the machine while the mobile lower part 6 is attached
through a fatigue-rated load cell to the piston.

Table 1. Flexural strength of both noncycled and cycled lake ice samples

Test
#

Flex. strength
non-cycled

(MPa)
Test
#

Flex strength
cycled (MPa)

Average amplitude
of outer-fiber
stress (MPa)

Number of
cycles

1 1.48 4 1.49 0.1 11961
2 1.52 5 1.66 0.23 3909
3 1.56 6 2.14 0.66 2860

7 1.74 0.37 4182
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back-stress, namely dislocation pileups and grain boundary slid-
ing, the latter may be the less likely, given that the strengthening
measured in the present experiments is very close to that mea-
sured earlier, yet decohesions were not detected. However, given
that under a 3-point bending much smaller volume of ice is sub-
jected to the critical stress compared with a 4-point bending, there
could be no grain boundaries that are favorably oriented for grain
boundary sliding. Indeed, Figure 10 in Murdza and others (2020)
shows that not all the boundaries are favorably oriented for deco-
hesion development. Therefore, further work is required to eluci-
date the underlying physics.

Lastly, we would like to caution the reader to not necessarily
expect the strengthening of every lake ice upon cycling; for
example, in the case of lake ice with c-axis oriented vertically,
no shear stress acts on basal planes when the ice cover is flexed
and so the results can be different.

Conclusions

New results, although few in number, indicate that ice produced
under natural conditions on an Arctic lake when flexed in the
laboratory in a nonreversed manner under 3-point loading
at −12 °C and 0.1 Hz, is strengthened upon cycling. In other
words, cyclic strengthening appears to be a characteristic of ice
per se and not of its origin nor of the exact method of cycling.
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