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Abstract Let X, Y be compact Hausdorff spaces and let T : C(X, R) → C(Y, R) be an invertible linear
operator. Non-standard analysis is used to give a new intuitive proof of the Amir–Cambern result that
if ‖T‖‖T −1‖ < 2, then there is a homeomorphism ψ : Y → X. The approach provides a proof of the
following representation theorem for such near-isometries:

Tf = (T1X)(f ◦ ψ) + Sf,

with ‖S‖ � 2(‖T‖ − (1/‖T −1‖)), so ‖S‖ < ‖T‖. If ‖T‖‖T −1‖ = 1, then S = 0, giving the well-known
representation for isometries.

Keywords: Banach–Stone; non-standard analysis; representation theorem

2000 Mathematics subject classification: Primary 47B38
Secondary 46S20

1. Introduction

In [4] we gave a new and intuitive proof of the Banach–Stone theorem, which showed
how to extend Banach’s original proof from the setting of compact metric spaces to
compact Hausdorff spaces X, Y . For this we used non-standard peak functions: that is,
functions of norm 1 in the non-standard extension of C(X) that are supported in the
infinitesimal neighbourhood of a single point of X. It was shown that a linear isometry
T : C(X) → C(Y ) takes a peak function to a peak function. This induces a bijection
between the underlying spaces in a natural way.

In this paper we extend the techniques of [4] to small-norm linear isomorphisms: that
is, invertible linear isomorphisms T : C(X) → C(Y ) such that ‖T‖ ‖T−1‖ < 2. It was
first proved by Amir [1] and Cambern [3] that this still implies that X and Y are
homeomorphic. A survey of related results can be found in [6]. Here we prove the Amir–
Cambern result using some new results for peak functions, combined with some ideas
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from Amir’s paper. Cambern uses point masses, and showed that the adjoint of T turns
a point mass into the orthogonal sum of a point mass and a measure that is of smaller
norm. Peak functions do about the same on the function level: we show that a peak
function gets mapped to a function that has one distinct peak, but may not necessarily
be a peak function. From the proof we obtain a new representation theorem for small-
norm isomorphisms: any such operator T can be written as the sum of a composition
operator times T1X and an operator of smaller norm.

2. Notation and preliminaries

A general introduction to non-standard analysis can be found, for example, in [2] or [5].
Any notions and notation that we do not explain can be found in either of those books.

Let X and Y be compact Hausdorff spaces. For a point x ∈ X, the monad of x is
defined to be

m(x) =
⋂

(∗U : U is a neighbourhood of x).

Here ∗U denotes the non-standard extension of the standard entity U .
The first lemma goes back to Robinson [7]. It sums up the properties of the non-

standard extension of a compact Hausdorff space that we need.

Lemma 2.1. Let X be a compact Hausdorff space. Then

(1) for x, y ∈ X, m(x) ∩ m(y) �= ∅ ⇐⇒ x = y;

(2) for each z ∈ ∗X, z ∈ m(x) for some x ∈ X.

By (1) and (2) the standard part map ◦ : ∗X → X, which assigns the value x to each
z ∈ m(x), is well defined.

We also use another well-known lemma.

Lemma 2.2. If X, Y are compact Hausdorff spaces and Φ : ∗X → ∗Y is internal
and S-continuous (i.e. x1 ≈ x2 implies Φ(x1) ≈ Φ(x2)), then the (standard) function
ϕ : X → Y defined by

ϕ(x) = ◦Φ(x) (= ◦Φ(x′) for any x′ ≈ x)

is continuous. We write ϕ = ◦Φ.

The following lemma about the existence of peak functions is from [4]. Its proof uses
Urysohn’s lemma.

Lemma 2.3. Let X be a compact Hausdorff space. For each x ∈ ∗X, there is a non-
negative function fx ∈ ∗C(X) with ‖fx‖∞ = 1, such that the support of fx is contained
in m(◦x) and fx(x) = 1. This function can be chosen so that the family {fx x ∈ ∗X} is
internal.
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Definition 2.4.

(a) A peak function is a non-negative function in ∗C(X) of norm 1 with support in a
single monad.

(b) A peak function fx as given by Lemma 2.3 (with fx(x) = 1) is said to be a peak
function for x. Figure 1 illustrates such a peak function fx.

In this paper we only consider real-valued C(K)-spaces. We fix two compact Hausdorff
spaces X, Y and write C(X) for C(X, R) and similarly for Y . For the rest of the paper
we also fix a linear isomorphism

T : C(X) → C(Y )

with ‖T‖ ‖T−1‖ < 2. To help the notation, define

α = ‖T‖,

β = ‖T−1‖,

so that we have 1 � αβ < 2. It is also convenient to write

δ = α − 1
β

.

Further inequalities that follow from this and are used frequently are

(i) 0 � δ = α − 1
β

<
α

2
<

1
β

,

(ii) 0 � β − 1
α

<
β

2
<

1
α

;

(iii) note also that for any f ∈ C(X) and g ∈ C(Y ) we have

‖Tf‖ � 1
β

‖f‖ and ‖T−1g‖ � 1
α

‖g‖.

The following lemma comes from [1], where Amir used it to define a new operator T̄

with T̄1X > 0. With our approach we do not need to define a new operator. By using
peak functions we can also simplify Amir’s lemma.

Lemma 2.5. Let T : C(X) → C(Y ) be a linear operator with αβ < 2. Then

(i) |T1X(y)| � α(2 − αβ) > 0 for every y ∈ Y ;

(ii) |T−11Y (x)| � β(2 − αβ) > 0 for every x ∈ X.

Proof. (i) Clearly, |T1X(y)| � α for all y. Since α � α(2−αβ) we need only consider
points y with |T1X(y)| < α.

For any such y take a peak function gy; then ‖∗T−1gy‖ � α−1, so there is x with
|∗T−1gy(x)| � α−1. Suppose first that ∗T−1gy(x) � α−1.
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Figure 1. A peak function fx for a point x ∈ ∗X.

Define h1 ∈ ∗C(Y ) by
h1 = ∗T1X + (α − T1X(y))gy.

We show that ‖h1‖ ≈ α. First we have that h1(y) = α, so that ‖h1‖ � α. For y′ �≈ y we
have

|h1(y′)| = |∗T1X(y′)| � α.

For y′ ≈ y, since h1 � ∗T1X we have h1(y′) � −α. Further, the continuity of T1X

implies that ∗T1X(y′) ≈ ∗T1X(y), so

h1(y′) ≈ T1X(y) + (α − T1X(y))gy(y′) � T1X(y) + α − T1X(y) = α.

This establishes that ‖h1‖ ≈ α.
Then

αβ ≈ ‖h1‖β � ‖∗T−1h1‖ � 1 + (α − T1X(y))∗T−1gy(x)

� 1 + (α − T1X(y))(1/α) = 2 − T1X(y)
α

.

This implies that T1X(y) � α(2 − αβ).
If ∗T−1gy(x) � −α−1, then apply the above to −T to obtain T1X(y) � −α(2 − αβ).

Part (ii) follows by symmetry. �

Corollary 2.6.

(i) The set B := {y ∈ Y | T1X(y) � 0} is both open and closed and the function 1B

is continuous.

(ii) The set A := {x ∈ X | T−11Y (x) � 0} is both open and closed and the function 1A

is continuous.

Proof. This follows immediately from Lemma 2.5, since T1X is continuous and never
equal to zero. �
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3. Constructing a homeomorphism ϕ : X → Y

In this section we establish that T maps any peak function to a function whose abso-
lute value exceeds δ in exactly one monad, and that this induces a continuous bijection
between X and Y .

Lemma 3.1. Let x ∈ ∗X with peak function fx. Then

(a) if y ∈ ∗B, then Tfx(y) � −δ;

(b) if y /∈ ∗B, then Tfx(y) � δ.

Proof. (a) ‖2fx − 1X‖ = 1 so ‖2Tfx − T1x‖ � α. Hence, for y ∈ ∗B, we have

2Tfx(y) � T1x(y) − α � α(2 − αβ) − α (by Lemma 2.5)

= α(1 − αβ) � 2
β

(1 − αβ) = −2δ.

Hence Tfx(y) � −δ, which is part (a).

Part (b) follows by applying (a) to −T . �

Proposition 3.2. Let x ∈ ∗X with peak function fx. Then there is a y0 ∈ ∗Y with

(a) |Tfx(y0)| � (1/β) > δ;

(b) for y �≈ y0, ◦|Tfx(y)| � δ;

(c) if y0 ∈ ∗B, then Tfx(y) � −δ for all y ≈ y0;

(d) if y0 /∈ ∗B, then Tfx(y) � δ for all y ≈ y0.

Proof. (a) Since ‖Tfx‖ � (1/β), there is a y0 ∈ ∗Y with |Tfx(y0)| � (1/β). (In fact,
from Lemma 3.1, Tfx(y0) � (1/β) if y0 ∈ ∗B and Tfx(y0) � −(1/β) if y0 /∈ ∗B.)

(b) Take y1 �≈ y0 and g ∈ C(Y ) with ‖g‖ = 1 and {◦g(y0), ◦g(y1)} = {1,−1} and such
that ∗T−1ḡ(x) � 0, where the function ḡ ∈ C(Y ) is given by

ḡ(y) =

{
g(y) if y ∈ B,

−g(y) if y /∈ B.

Since β � ∗T−1ḡ(x′) ≈ T−1ḡ(x) � 0 for any x′ ≈ x (and fx is zero elsewhere), we have

◦∥∥∥∥fx − 1
β

T−1ḡ

∥∥∥∥ � 1

and so
◦∥∥∥∥Tfx − 1

β
ḡ

∥∥∥∥ � α.
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Figure 2. Illustration for Proposition 3.2.

Let i ∈ {0, 1} with ◦g(yi) = −1. If yi ∈ ∗B, then ḡ(yi) = g(yi) and so

◦Tfx(yi) � α +
◦g(yi)

β
= δ,

which means that i = 1 (since, by (a), we have Tfx(y0) � (1/β) > δ if y0 ∈ ∗B). This,
together with Lemma 3.1 (a), gives ◦|Tfx(y1)| � δ, which is (b) in this case.

If yi /∈ ∗B, then ḡ(yi) = −g(yi) and so

◦Tfx(yi) � −α −
◦g(yi)

β
= −δ,

so that again i = 1. So ◦Tfx(y1) � −δ, giving ◦|Tfx(y1)| � δ when combined with
Lemma 3.1 (a).

For (c) and (d), since B is both open and closed, for y ≈ y0 we have y ∈ ∗B if and
only if y0 ∈ ∗B. Now use Lemma 3.1. �

Note that Proposition 3.2 can be summarized as follows (see Figure 2). Given any peak
function fx for x ∈ ∗X, its image ∗Tfx has standard part bounded by ±δ except on a
single monad, where it peaks at some point y0 with value |Tfx(y0)| � (1/β) > δ. For
all y ≈ y0 its values only go outside the interval [−δ, δ] in one direction (depending on
whether or not y0 ∈ ∗B).

Definition 3.3. Let fx ∈ ∗C(X) be a peak function. We say that ∗Tfx peaks at y ∈ ∗Y

if |∗Tfx(y)| � (1/β). Similarly, we say for a peak function gy ∈ ∗C(Y ) that ∗T−1gy peaks
at x ∈ ∗X if |∗T−1g(x)| � (1/α).
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Note that ‖∗Tfx‖ � (1/β) > δ. So Proposition 3.2 tells us that for each peak function
fx ∈ ∗C(X), ∗Tfx peaks in exactly one monad and on that monad the peak is above δ

if the monad is contained in ∗B and below −δ if the monad is contained in ∗(Y \ B).
Outside that monad, ◦|∗Tfx(y)| � α − (1/β).

A modification of the proof of Proposition 3.2 (b) yields the following corollary.

Corollary 3.4. Let x1, x2 ∈ ∗X, x1 ≈ x2 with peak functions fx1 and fx2 , respectively.
Then ∗Tfx1 and ∗Tfx2 peak in the same monad.

Proof. Assume that ∗Tfx1 and ∗Tfx2 peak in different monads. Then there are points
y1, y2 ∈ ∗Y with y1 �≈ y2 such that |∗Tfxi(yi)| � (1/β) for i = 1, 2. By Urysohn’s lemma
there exists a standard g ∈ C(Y ) with ‖g‖ = 1 such that g(y1) ≈ 1 and g(y2) ≈ −1.
Without loss of generality we may assume that ◦∗T−1ḡ(x1) = ◦∗T−1ḡ(x2) � 0 (otherwise
replace g with −g and relabel y1 and y2).

Arguing as in the previous proof we have

◦∥∥∥∥fx2 − 1
β

T−1ḡ

∥∥∥∥ � 1,

and so
◦∥∥∥∥Tfx2 − 1

β
ḡ

∥∥∥∥ � α.

If y2 ∈ ∗B, then ḡ(y2) = g(y2) and so

◦Tfx2(y2) � α +
◦g(y2)

β
= δ,

which contradicts the hypothesis that Tfx2 peaks at y2.
Similarly, if y2 /∈ ∗B, then ḡ(y2) = −g(y2) and so

◦Tfx2(y2) � −α −
◦g(y2)

β
= −δ,

again contradicting the hypothesis. �

The above two results (Proposition 3.2 and Corollary 3.4) allow the definition of an
S-continuous (internal) mapping Φ : ∗X → ∗Y as follows. Let {fx}x∈∗X be an internal
family of peak functions and define

Φ(x) = a point in ∗Y where ∗Tfx peaks

(i.e. Φ(x) is a point where ‖∗Tfx‖ assumes its maximum). Similarly, we may define an
S-continuous internal mapping Ψ : ∗Y → ∗X using an internal family {gy}y∈∗Y of peak
functions.

The next crucial result shows that Φ and Ψ are essentially inverse to one another, and
will be used to show that X and Y are homeomorphic.
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Proposition 3.5. Let x ∈ ∗X with peak function fx. If ∗Tfx peaks at y ∈ ∗Y , and
gy is any peak function for y, then ∗T−1gy peaks in the monad of x.

Proof. Let fx be a peak function for x ∈ ∗X with ∗Tfx peaking at y. That is,
|Tfx(y)| � (1/β) and ◦|Tfx(y′)| � δ for y′ �≈ y. By Corollary 3.4, any two peak functions
for y have their images under ∗T−1 peaking in the same monad, so it is sufficient to prove
the result for one particular peak function gy, which we now define.

Assume first that y ∈ B. We split off the part of ∗Tfx that peaks above δ and normalize
it to a peak function gy. Explicitly, set

gy(y′) = max
( ∗Tfx(y′) − δ

‖∗Tfx‖ − δ
, 0

)
.

We will show that

‖∗Tfx − αgy‖ � δ = α − 1
β

. (3.1)

Once this is proved we have |fx − α∗T−1gy| � βα − 1, and so, for x′ �≈ x,

|∗T−1gy(x′)| � β − 1
α

.

From Proposition 3.2 (applied to T−1 : C(Y ) → C(X)) this means that T−1gy peaks in
the monad of x.

To check (3.1), if |Tfx(y′)| � δ, then gy(y′) = 0 so |Tfx(y′)−αgy(y′)| � δ. If Tfx(y′) >

δ, then
Tfx(y′) − αgy(y′) = δ + (‖∗Tfx‖ − δ − α)gy(y′).

Result (3.1) follows from observing that

0 � δ + α − ‖∗Tfx‖ � δ + α − 1
β

= 2δ.

If y /∈ B, then apply what we have already proved to the operator −T . �

We now have all the ingredients for our proof of the following.

Theorem 3.6 (Amir, Cambern). Let X and Y be compact Hausdorff spaces. If
there is an invertible linear operator T : C(X) → C(Y ) with ‖T‖ ‖T−1‖ < 2, then X

and Y are homeomorphic.

Proof. Take the internal S-continuous functions Φ : ∗X → ∗Y and Ψ : ∗Y → ∗X

defined above. From these, define continuous mappings ϕ = ◦Φ : X → Y and ψ =
◦Ψ : Y → X using Lemma 2.2. Proposition 3.5, together with Corollary 3.4, tells us
that Ψ(Φ(x)) ≈ x for all x ∈ ∗X, and similarly Φ(Ψ(y)) ≈ y for all y ∈ ∗Y . Hence
ψ = ϕ−1. �
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4. Representation of small-norm isomorphisms

It is well known that all isometries between C(K)-spaces are (up to a sign function)
composition operators of the form (Tf)(y) = g(y)f(ψ(y)), where g = T1X ∈ C(Y ) with
|g(y)| = 1 for all y ∈ Y and ψ : Y → X is a homeomorphism. In this section we generalize
this result to near-isometries: every near-isometry is the sum of a composition operator
times the image of the function constant 1 and an operator of smaller norm.

Theorem 4.1. Let T : C(X) → C(Y ) be an invertible linear operator such that
αβ < 2. Then there is a homeomorphism ψ : Y → X, a function g = T1X ∈ C(Y ) with
‖g‖ � α and a linear operator S : C(X) → C(Y ) with

‖S‖ � 2
(

α − 1
β

)
< α

such that
(Tf)(y) = g(y)f(ψ(y)) + (Sf)(y) for all y ∈ Y.

Proof. Let ψ : Y → X be the homeomorphism given by Theorem 3.6. Take f ∈ C(X)
with f � 0 and ‖f‖ = 1. Fix a y ∈ Y and consider the function f − f(ψ(y)) ∈ C(X).
Take a peak function fψ(y) ∈ ∗C(X) for the point ψ(y). For x ≈ ψ(y), ∗f(x) ≈ f(ψ(y)).
For x /∈ m(ψ(y)), fψ(y)(x) ≈ 0. Hence

◦‖f − f(ψ(y)) ± fψ(y)‖ = 1

and therefore ‖Tf − f(ψ(y))(T1X) ± Tfψ(y)‖ � α. By construction of ψ we know that
|Tfψ(y)(ȳ)| � (1/β) for some point ȳ ≈ y. Hence

|(Tf)(ȳ) − f(ψ(y))(T1X)(ȳ)| � α − 1
β

.

Since Tf − f(ψ(y))T1X is a standard function and ȳ ≈ y, this implies that

|(Tf)(y) − f(ψ(y))(T1X)(y)| � α − 1
β

.

Define an operator S : C(X) → C(Y ) by

(Sf)(y) = (Tf)(y) − f(ψ(y))(T1X)(y).

For non-negative functions f we showed that

‖Sf‖ � ‖f‖
(

α − 1
β

)
.

An analogous argument works for non-positive functions f ∈ C(X). Decomposing any
f ∈ C(X) into f+ and f− finishes the proof, since

‖Sf‖ � ‖Tf+ − (f+ ◦ ψ)(T1X)‖ + ‖Tf− − (f− ◦ ψ)(T1X)‖ � 2‖f‖
(

α − 1
β

)
.

�
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Corollary 4.2. Any bijective linear isometry T : C(X) → C(Y ) is of the form

Tf(y) = (T1X)(y)f(ψ(y)),

where ψ : Y → X is a homeomorphism.

Proof. The proof follows immediately from Theorem 4.1, since here

‖S‖ = 2
(

α − 1
β

)
= 0.

�

5. The complex case

Amir’s proof [1] of the Amir–Cambern theorem was for real-valued functions only,
whereas Cambern’s proof in [3] is for complex-valued functions. A natural question is
whether the ideas we have developed in this paper to prove the real-valued version extend
to the complex case. Here we have to report complete lack of success. The infinitesimal
approach above draws on ideas in Amir’s paper—we have been unable to find a natural
way to generalize these. A first goal in this direction would be to handle the complex
isometric case: by finding a characterization of complex peak functions that is invariant
under isometries, as in [4]. Even here, unfortunately, there has been no progress to date.
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