Can. J. Math., Vol. XXIII, No. 3, 1971, pp. 421-425

SOME THEOREMS ON THE STRUCTURE OF NEARLY
EQUICONTINUOUS TRANSFORMATION GROUPS

FRED A. ROBERSON

The purpose of this paper is to extend the theorems in [3; 7] to uniform
spaces and to prove some additional theorems. These results are related to
[4; 5]. Notation and definitions are as in the book [2]. For a general reference
on nets see [6]. All topological spaces are assumed to be Hausdorff.

TaeoreEM 1. Let (X, T, 1) be a tramsformation group, where X is a locally
compact, locally connected, uniform space. Let E denote the set of all points at
which T is equicontinuous and N = X — E. Let N be closed totally disconnected
and each orbit closure in N be compact and let E be connected. Then N contains
at most two minimal sets. (Note: We will assume that N # @ so that N will contain
at least one minimal set.)

Proof. Let s = {s,Ja € D} beanetin I. If x € X, let C(x, s) denote the set

of accumulation points of {xs,la € D}. We define
A= {x € X|C(x,s) N\ E = 0}.
We will prove that

(1) A4 is open-closed in E.

Choose 2 € 4 and let x € C(z,s) M E. Choose a € # (W is a compatible
uniformity for X) such that xa N\ N = @ and xa is compact. Choose 8 such
that 82 C «a and a neighbourhood U of z such thaty € U= y¢ € 28 for every
t € T,and U C E. Since x € C(z,s), we may select a subnet # of s such that
zu, € xBforeverya.Ify € U, then (x, yu,) = (x, 2u,) - (2ug, yu,) € B-B C a.
Thus yu, € ¥a for every a € D’, hence {yu,} has a cluster point w € xa. Then
w € C(y,s) M Eand U C 4. We have shown 4 is open in E.

We will now prove that 4 is closed in E. Let x € A N E and choose « € #
such that

Xa N\ N = @ and Xa is compact.

Choose B such that 83 C «, and choose a neighbourhood U of x such that
w € U implies wt € xta for every ¢ in 7. Since x € 4, we may choose
y € UNA,z€ C(y,s) N E and «v such that vy - y C 8 and a neighbourhood
V of zsuch thatw € Vimplies wt € 2ty for every ¢ in 1. Choose a subnet u of s
such that yu, € V for every a € D’. Then

(v, yuguy) = (v, 2us71) « (2uy™", yuatty) € v -y CB
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for all @ € U such that a > b, b in some element of D’. Thus

(x, xuaub_l) = (.’)C, y) * (yr yuaub_l) * (yuaub_lv xuaub_l)
€EB:B-BCa
for every a in % such that @ > b, hence xu,u,~! € ¥a for every a in u such that

a > b. Therefore, {xu.u»!} has an accumulation point w in ¥a and wu, is an
accumulation point of {xu,}. Since E is invariant under 7" we have

wuy € Clx,s) N E

so that x € 4. We have shown that 4 is closed in E.

Now let z € N. Since T is not equicontinuous, there is an @ € ¥ such that
for every neighbourhood U of z, Ut ¢ xta for some ¢ in T'. Choose o, 8 € ¥
such that 8-8 C a, and a finite cover Uy, Us, . .., U, of 2T such that U,
is compact, U; C v,8 for some y; and Fr(U;) "N = 0. Let {V,|y € U} be
a net of connected open neighbourhoods of z such that 1V, C zy and let
Ul= U, U...U U,. For each v there is a ¢, such that V,t, '  zt,"la;
Note that V,t, ! meets some U; but is not contained in any U,. Since V!
is connected, there is a x, such that x,t,! € Fr(U;) for some 7. Since
Uiz1 Fr(U;) is compact {x,t,1} has an accumulation point x, and a subnet
{xst5"1|6 € D'} such that {xs;7!'} — x. We will prove that {xt;} — 2. Let v
be given and find p € ¥ such that p - p C v. Since x € E there exists a neigh-
bourhood W of x such that y € W= vyt € «xtp for all ¢ € T; choose b € D’
such that x;¢,~! € W ior all 8 C b and b C p. Now for all 6§ C b we have

(Z, xta) = (Z, xﬁ) ¢ (xﬁ) xt5) E p°p C Y

This proves that {xt;} — 2. Now if we let ¢ = {;|6 € D’} we get from (1)
that

2) Cx,t) NV E = @ for every x € E.

Now let U be an open neighbourhood of z such that U is compact and
NNFr(U) = 0. Let B = {x € E|{xt,Ja € D} is eventually in U}. We will
prove that B is open and closed in E.

Let x € BN E and assume that x ¢ B. Then there exists a subnet
u = {uyla € D'} of ¢t such that {xu,} ¢ U for every a in D’. Since T is equi-
continuous at x, there is an x, such that (x.u,, xu,) € « for all ¢ in D’. Since
{x,U,} is eventually in U, we may choose a subnet ¥” = {t,Ja € # } of U
such that

3) (Xaay x0,) € a for everya € W and x,0, € U.

Then {x.2.} clusters at a pointy € U. By (3),y € C(x, u), hence y € Fr(U).
Therefore, we have y € Fr(U) M C(x, t), and this contradicts (2). We have
shown that B is closed in E.

Let x € B and assume x ¢ int B. Then for each a € # choose an open
neighbourhood U, C E of x such that y € u, implies (xs, ys) € a for every
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s € T. Since U, — B # @, there is a y, € U, such that given any a € D
there is a & > a such that y.f, ¢ U. Since x € B we may select a subnet
U = {uale €¥ C W} such that yau, ¢ U and xu, € u for every a € ¥ .
Then {xu,} clusters at a point w € U. Since (Xuta, Xatta) € a for every
@, {Yqlte} clusters at w also. Thus w € Fr(U) and hence C(x,t) N\ E = @;
this contradicts (2), and shows that B is open. Finally since B # @, we find
that B = E. Since each point of NV has a neighbourhood base consisting of
open sets with compact closures whose boundaries do not intersect N, we have
shown that

4) if z € N, there exists anett = {f,]a € D}

in T such that {xt,} — 2 for each x € E.

We now show that N contains at most two minimal sets. Assume that
%1, X2, and x3 € N are such that x,7, x»7, and x3;7 are distinct and minimal.
Since X is locally compact and x,7" is compact and N is totally disconnected,
we can find an open neighbourhood W such that

WD ul, WN @ JxT) =6,
and N N Fr(W) = @. Choose connected open neighbourhoods of x; and x.
respectively such that V C W, U is compact and U N x;7 = 0. Since E is
dense in X, we may select y € UM E. By (4) there is s’ € T such that
ys' € V. Then C= VU Us’ is a compact connected set such that
CNx;T # 0, CNxT 5= Pand CN xsT = P

Now choose an open neighbourhood M of x; such that # N C = @. Choose
o € W such that M M U,eexe = 0 and let s = {s,Ja € D} be any net in T.
For each a € D, we have that x,7NCs, =0 and for ¢=1,2
x:1 M Cs;~! # @ and since Cs,~! is connected, we must have

Cse ' Fr(W) = 0.

Thus for each ¢ € D we have y, € C such that y,s,~! € Fr(W). Since Fr(W)
and C are compact, there is a subnet {u,Ja € D’} of s such that

{¥asa™} =y € Fr(W)

and {y,} — x € C. Choose B such that 88 C a. Since y € E, we may select
a neighbourhood U of y such thatif w € U then wt € ytB forall fin T". Choose b
such that @ > b implies y,5,7! € U and y, € xB, so that

(xy ysa) = (x! ya) * (yay ysa) €B-8Ca.

This means ys, € U,ccxa for every a > b. Thus the net {ys,} cannot eventu-
ally be in M. Since s is an arbitrary net in 7" this contradicts (4) and completes
the proof.

In the following corollaries the hypothesis of the theorem is assumed.

CorOLLARY 1. If X is not compact, then N contains exactly one minimal set.
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Proof. This follows from the main theorem in exactly the same way that
the theorem in [7] follows from the theorem in [3].

COROLLARY 2. If x1, X9, x3 belong to X, then of the three orbit closures, at least
two have nonempty intersections.

Proof. Each orbit closure contains a minimal set of N. The result follows.

Note. The corollaries of [3; 7] are valid here.

The results above are generalizations of previous results on metric spaces to
uniform spaces. The following theorems are new results concerning when the
minimal sets of the above theorem are points.

LeEMMA 1. Under the hypothesis of the theorem if z € N and x1T C N is a
minimal set of N such that z ¢ xT and t = {t,Ja € D} is the net which carries
all of E to 3 then there exist a subnet s = {i,Ja € D’} of t such that

sV = {t{;7 e € D'}
will carry all of E to x.

Proof. The net ¢ can be induced by a subnet ¥~ of ¥/, such thatif aisin ¥
there is a 6 in ¥~ such that 6 C a. Let U be any neighbourhood of z such that
U is compact and Fr(U) N\ N = @. For each 6§ € ¥ there is a 8 C 6 such
that Vst M U # @ where Vs C x6 is a connected neighbourhood of x. For
each & choose a ysin Vits M Fr(U). Since Fr(U) is compact, the net {x;]6 € ¥}
has an accumulation point vy in Fr(U), and we can assume without loss of
generality that {ys|6 € ¥"} — . Since y € E, for each g € ¥ there is a
neighbourhood W of y such that w in W implies wt € yiy for all ¢ in 7" where
y-yCB and y; € Wior all s Cbc¥ .

(x, yts™1) = (x, yste™) « (yoto ™, yts™') € v v CB

for all 8 C b’ where ' C b and b’ C «. Itis clear that s = {ty|6 € 77} is the
required subnet.

TrEOREM 2. If N contains two minimal sets both are points.

Proof. Assume x1, x2, x3 belong to NV and x; is in one minimal set and x, is
in another. From Lemma 1 there is a net { = {tala € D} such that ¢ takes all
of E to x3 and t7! = {{,'|a € D} takes all of E to x.. Again from Lemma 1,
there exists a subnet s = {t{a € D'} of ¢ such that s7! = {{,; Y|« € D'} takes
all of E to x;. This is a contradiction. Hence NV contains at most two points.

COROLLARY 3. If X is not compact then N consists of a single point.
Proof. This follows from Theorem 2 and Corollary 1.

LemMA 2. If N consists of a finite number of points then N consists of two
points.

Proof. Let z € N and ¢ = {t,]Ja € D} be the net which takes all of E to z.
Since N is finite, we can find a subnet which maps z onto a single point of N.
Let this subnet be s = {f,Ja € D’} and consider s’ = {t,7%,]Ja < b} where a
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is in D’ and b is a fixed element of D’. Now s’ is a net in T which leaves z
fixed and still takes all of E to z. Now assume N contains more than two points.
The same process used in the lemma can be repeated here to get a subnet of
s’ such that s'~! takes E to two different points of N, which is a contradiction.

THEOREM 3. If N contains o point which is isolated from the rest of N, then N
contains at most two points.

Proof. Let z be the isolated pointand @« € U. Let {Usli = 1,...,n} be a
finite subcover of z7 such that z belongs to one U; which does not meet the
others, and U; C za for some z; € 27. Let t = {t,Ja € D} be the net which
takes all of £ to z and find a subnet s of £ which maps z into Uy where Uy is one
of the U,’s. Now if there are two points outside Uy, we can find a subnet s/,
of s such that s'~! will take E into both points, which is a contradiction. This,
plus the fact that Uy is arbitrarily small, implies 27" can contain only three
points. Now if there are points outside z7, then N contains two minimal sets
and the result follows from the main theorem; if not, the results follow from
Lemma 2.

COROLLARY 4. If N contains a point which has a countable neighbourhood
wn N, then N has at most two poinis.

Proof. Apply [1; Theorem 10.3] to z7 to get a point z isolated from the rest
of 27" and the result follows.

COROLLARY 5. If N is countable, then N contains at most two points.

Remark. 1 originally set out to prove that N has at most two points. I have
shown that if N has more than two points, then X must be compact, 7' must
be non-abelian and have an infinite number of components, and N must be
minimal or have exactly one fixed point. In addition, every neighbourhood
in N must contain an uncountable number of points.

Question. Does one such transformation group exist?
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