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1. Introduction

Let Bn(f;x) denote the Bernstein polynomial of degree n on [0,1] for a function f(x)
defined on this interval. Among the many properties of Bernstein polynomials, we recall
in particular that if f(x) is convex in [0,1] then (i) Bn(f;x) is convex in [0,1] and (ii)
Bn(f;x)^Bn+1(f;x), (n = l,2,...). Recently these properties have been the subject of
study for Bernstein polynomials over triangles [1].

Our object here is to consider these properties in relation to the Bernstein-
Schoenberg spline operator first introduced by Schoenberg [6]. We shall denote by
Vj(f; x) the B-S spline of degree n with reference to a knot sequence T (not necessarily
distinct) in the interval (0,1). The operator 7 j ( / ; •) shares many properties with
Bernstein polynomials. Besides its convergence properties, it also has the variation-
diminishing property which yields the fact that if f(x) is convex, then so is Vj(f; x).

We shall give here an analogue of property (ii) for B-S operators. We also find
conditions for equality to be attained and derive, as a special case, a result of Freedman
and Passow [3] for Bn{f;x). In Section 2 we give the preliminaries and a statement of
results, which are contained in Theorem 1 and 2. The first Theorem is proved in Section
3 and the second in Section 4.

2. Preliminaries

For given integers n^l,fe^0, take a sequence of knots {ti}
k^n

n+1 in [0,1] satisfying

For i=0,l,...,k + n let Nnj(x) = N(x\ti-n,...,ti+i) denote the B-spline of degree n with
knots t,_n,...,tt+l normalized so that Y!i=oNn,,{x) = l. Following Schoenberg [6], for
any function / on [0,1], we set

i = 0
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where ^ ,=( l /n)(f ,_n + 1+ ••• + £,) and T = {tt,...,tk} denotes the set of knots with
multiplicities in the open interval (0,1). The operator VT

n reproduces linear functions and
reduces to Bernstein polynomials of degree n when k = 0.

We note that if / is convex, then V*(f; x) 2: f(x) with equality if and only if / is
linear. This is so since for x e [0,1],

VT
n{f\ x) = £ f(QNn, fr) ̂  / ( £ £iVn, ((x)) = f(x).

i = 0

In this paper we consider two operators VT
n(f;x) and V%,(f;x) such that the B-splines

{NnJ(x)} for Vr
n lie in the linear span of the B-splines {Nm,,•(*)} for FjJ, and show that

then F j ( / ; x ) ^ V%,(f;x) when f(x) is convex in [0,1]. It is clearly sufficient to prove the
result for the following two cases:

(A) Firstly suppose m = n and that S comprises T together with one extra knot, i.e.
S = {su...,sk+l} r = { t l J . . . , t J and s^tt ( i= l , . . . , / ) , r , ^ s I + 1 < t I + 1

and Si = t{_l (i = l + 2,...,k + l). In this case we shall prove

Theorem 1. Suppose f(x) is convex in [0,1] and S and T are as given in (A). Then

)^Vs
n{f;x) (2.2)

and equality occurs only if f is linear on [£,•-!,£;] for i = l+l,...,p + n where
p = max{i: t , < s , + 1 } . Moreover if f is any function (not necessarily convex) which is linear
on [£,-_!,£,•] for i = l+l,...,p + n, then equality holds in (2.2).

Remark. When t,<sl+1 <tl + 1, then p=l. If s/ + 1 = t, = t , _ 1 = ••• = r , _ v > t , _ v _ 1 , for
some v, then p = l—v — 1.

(B) Secondly we suppose m = n +1 and S comprises the same distinct knots as T but
with the multiplicity of each element increased by 1. In this case, we have

Theorem 2. Suppose f(x) is a convex function in [0,1] and S and T satisfy the
conditions in (B). Then

vTn(f;x)^vs
n+i(f;x) (2.3)

and equality occurs only if f is piecewise linear with simple knots at those £,{ for which
{t;-n + ! , . . . , t j comprises at most two distinct elements. Moreover if f is any piecewise
linear function (not necessarily convex) with knots as above, then equality occurs in (2.3).

By putting k = 0 we have

Corollary. / / f(x) is a convex function on [0,1], then

i(f;x) (2.4)
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and equality occurs only if f is linear on [i/n, i+l/ri] for i = 0,1,.. .,n— 1. Moreover if f
is any function which is linear on [i/n, i + 1 / n ] for i = 0, l , . . . , n — 1 then equality occurs in
(2.4).

Remark. Take n ^ l and suppose / is linear on [ i /n , i+l /n] for i = 0, l , . . . ,n —1.
Then for any m ^ l , / is linear on [i/mn,i+l/mn], i = 0, l , . . . ,mn — 1 , and the corollary
tells us that Bmn(/;x) = Bm n + 1(/ ;x). This yields a result of Freedman and Passow [3].

3. Proof of Theorem 1

Take S and T as in Theorem 1. As before we let Nn^x) = N(x\ti-n,...,ti+l)
(i = 0,l,...,k + n) and set

Now for i = 0, \,...,k + n, { t ,_n , . . . , t , + 1}s{s ,_n , . . . , s , + 2} and so there are numbers a;,/?,-
such that

JVn, ,<x) = «,#„, ,<*) + ft JVn,, + !(x). (3.1)

We claim that a, = 0, j8, = 0. For i = 0 , l , . . . , / - l , we have {t,_11,...,t,+1} = {sl_1I, . . . ,s l+1}
and so a, = l, /Sj = 0. For i = p + n+ l,...,k + n, we have £,_n^s,+ 1 so that {£;_„,. . . ,t i + l} =
{Si_B + l J . . . ,s i + 1} and so a; = 0, ft = l. For i = / , . . . ,p + «, we have t i _ B < s , + 1 < t i + 1 . Thus
the support of Nni(x) contains {s,_n,...,s1+2} a n d s o a . =/= 0 =/= ̂ ,-. Indeed if t,_n has
multiplicity fi in {t,_n,..., t i + 1 } , then

N^T^'W-n)>0, A^r^DfotJ>0

while J^B"f/1
+1)(t,'t.n)=O. So (3.1) gives a,->0. Similarly considerations near ti+1 give

y9£>0, which proves the assertion. Now letting T, = l/n(s,_B+1 + • •• +s,) , we have

t/(Ti)iVn,I(x). (3.2)
i = 0

Also from (3.1), we see that

i = 0

= t+Z+ ' {"Md + Pi- iMi- l)}"n, ,<*) (3-3)
1=0

where we have set cck+n + 1=O = P_l. Comparing (3.2) and (3.3) and putting / (x) = l
gives

<x, + ft_1 = l (i = 0,l , . ...k + n+l). (3.4)
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Similarly, putting f(x) = x gives

a^l + /Jl_15,_1=TJ (i = 0,l,...,fc + n + l). (3.5)

If / is convex, then from (3.4) and (3.5),

and so from (3.2) and (3.3), we get (2.1).
Equality occurs in (2.1) if and only if for i = 0 ,1 , . . . , k + n + 1,

/ ( aA + j8f-^,-i) = « l / ( « + A - 1 / ( ^ - i ) , (3.6)

For i = 0,l,...,l, we have )?>_1 = 0 and af = l and (3.6) is satisfied. For i=p + n+l,...,
k + n+l, we have seen above that )?i_1 = 0, <x,= l and again (3.6) is satisfied. For
i = l+l,...,p + n we have af>0, /3i-1>0 and so if / is convex, (3.6) is valid only if /
is linear in [^-i ,^,] . Moreover if / is any function which is linear on [£,-!,(!;,], then
(3.6) holds. •

4. Proof of Theorem 2

Let T comprise distinct elements x l 5 . . . , x , with multiplicites \iu...,\ix respectively, so
that £i/f,- = fc. Then S comprises the same distinct elements xu...,xt with multiplicities
^! + l , . . . , / i , + l respectively. We define {si}

kJn
l+?+2 so that

0 = s _ n _ ! = ••• = s o < s 1 ^ s 1 ^ s 2 ^ ••• ^ s k + , < s k + l + 1 = --- = s k + l + n + 2 = l

a n d S = {sl,...,sk+l}. As before w e let NnA(x) = N(x\ £ ; - „ , . . . ,ti + i) (i=0,l,...,n + k), a n d
we set

Lemma 1. For any i (0^i^n + k), let X = X{i) denote the number of distinct elements of
T in (t;_n,ti+1). Then for some \i (depending on i), we have

x + i

Nn,,{x)= X alVMn + liJ.+,(x) (4.1)
J=o

where ai0>0, a i A + 1 >0 and a.j^O for l^j^L

Proof. For k = 1 the coefficients (afJ) can be determined explicitly. However for k> 1
this does not appear feasible and so for all k ^ 1 we shall prove the coefficients are non-
negative by using the concept of total positivity.

Suppose tf_n has multiplicity v in {*,•_„,...,t1 + 1 } , i.e., r ;_n= ••• = t i _ n + v _ 1 < t i _ n + v .
Choose n so that ti_n = s^_n_1= ••• =sM_n_1 + v < s ^ _ n + v . Then clearly (4.1) holds for
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some constants a(j (j = 0 ,1 , . . . , k + 1). Now

So from (4.1), a i O>0. Similar reasoning near ti+i gives at A + 1 > 0 .
It remains to show that a.j^O for l^j^L Let vo,...,vx + 1 denote the distinct

elements of {£,-_„,...,ti+1}. For j = 0,1,...,A choose any point a} in (Vj,vJ+1) and
consider the system of X + 2 equations

(4.2)

Differentiating (4.1) (n + 1) times shows that the system (4.2) has a unique solution
Bj=aii (; = 0,1,...,A+1). So the matrix for the system (4.1) is non-singular and solving
by Cramer's rule gives

where

(4.3)

(4.4)

Now we recall that a matrix is called totally positive if all its minors are non-negative.
We shall call a matrix M = (mjfc)J=0J=0 checkerboard if the matrix

is totally positive.
For m |n , we set

where Mm ;(x)s0 when s;_n

1

Then

n + 1

where

0,

Thus

(4-5)

E.M.S.—C
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where

It is easily seen that the matrix (a$)j=o!k=o checkerboard. Similarly, we have

M'nJ+ft_l(x) = £ fl5?M,,_1>t+^_2(x) (4.6)

where the matrix cffij^olk^o *s checkerboard. Differentiating (4.5) and applying (4.6)
gives

A + 2 JL + 3

* = 0 1 = 0

Continuing in this way and noting that the product of checkerboard matrices is
checkerboard, we obtain

X+n + 2

A// '. (v^ =: > A/f., nyn , (x\ (4 1\
n + l , j + /i\ / /_t jk 0, k + ii — n ~ IV / \ I

k = 0

where the matrix M = (MJk)j=o;k
x=S+2 is checkerboard. Now note that

Sj<X<SJ+l

(.0 elsewhere.

Thus these are numbers 0<jo<j1<--- <jx<A + n + 2 such that for k = 0,1,...,X

(.0, otherwise.

Then from (4.7) we get

(4-8)

Recalling (4.4) we see from (4.8) that since M is checkerboard

(-iy+JCj^O (; = 0,l,. ..,A+1), (4.9)

where s = jo-\ +j^+ii
Then (4.9) and (4.3) give atj S 0 (; = 0,1, . . . , X +1). •

We now apply Lemma 1 to express Kj in the form

Vj{f; x) ="+1'+' {"£ DijMDfM,+x, ,(x) (4.10)

where D(J ^ 0 for all i, j .
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Letting T, = (1 /« + l)(s£_n+ ••• +s,), we have

n+fc+J+1
svs
n+l(f;x)= X /(T,)Mn+lil.(4 (4-11)

i = 0

Putting f(x) = l and comparing (4.10) and (4.11) gives

7 = 0

Similarly, putting f(x) = x gives

(4.12)

l ; . (4.13)

J=o

If / is convex, then from (4.12) and (4.13),

/(x;) ^ "£ D;,/(y {i = 0,1,..., n + k +1 +1),
j = o

and so from (4.10) and (4.11) we get (2.3).
Equality occurs in (2.3) if and only if for i = 0 , 1 , . . . , n + k +1 + 1,

( n + k \ n + k

E^J=Z^«/(y- (4-14)
j=0 / j=0

To see when this occurs, we must examine the constants Dtj more closely. Fix
i (0^i^n + k + l + l) and suppose si-n-l and si + 1 have multiplicities a = a(i) and /? = /?(*)
respectively in {sl_I I_1,. . . ,s,-+1}. We choose y = y{i) and 8 = 5(i) as follows. If /?(i)^2,
tv_^+2<£7_p + 3 = - - - = t y + 1 = s i + 1 . I f j8(0 = l, t h e n t y < t 7 + 1 = s i + 1 . I f a ( 0 ^ 2 , thens,_n + 1 =
«,_„=••• = t«_ B + a _ 2 < t 4 _ n + a _ 1 . If a(i) = l, then S j - ^ ^ t , . ^ ^ . ^ ! . Clearly y^<5
and as in Lemma 1, we can see that I>ly>0, Dig>0 and D u = 0 for j<y and j>(5.

If / is convex, then (4.14) holds only if / is linear on [£y,yJ. Moreover if / is any
function which is linear on [^ y ,^] , then (4.14) holds. Thus if / is convex, equality holds
in (2.2) only if / is piecewise linear and the possible knots are those points i,i which do
not lie in any interval of the form (<=fv(£>,<Ŝ <£>) for i = 0, l , . . . ,n + fc + / + l. This can happen
if and only if for some i, ^J = ^ ( i ) = ^ ( i + 1 ) . Checking all possible cases we see that this
happens if and only if the set {t J_n + 1 , . . . , t J} contains at most two distinct elements.
Similarly, if / is any piecewise linear function with knots at such points ^ , then equality
holds in (2.2).
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