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1. Introduction

Let B,(f;x) denote the Bernstein polynomial of degree n on [0, 1] for a function f(x)
defined on this interval. Among the many properties of Bernstein polynomials, we recall
in particular that if f(x) is convex in [0,1] then (i) B,(f;x) is convex in [0,1] and (ii)
B,(f;Xx)ZB,,(f;x), (n=1,2,...). Recently these properties have been the subject of
study for Bernstein polynomials over triangles [1].

Our object here is to consider these properties in relation to the Bernstein—
Schoenberg spline operator first introduced by Schoenberg [6]. We shall denote by
VI(f;x) the B-S spline of degree n with reference to a knot sequence T (not necessarily
distinct) in the interval (0,1). The operator VI(f;) shares many properties with
Bernstein polynomials. Besides its convergence properties, it also has the variation-
diminishing property which yields the fact that if f(x) is convex, then so is VI(f;x).

We shall give here an analogue of property (ii) for B-S operators. We also find
conditions for equality to be attained and derive, as a special case, a result of Freedman
and Passow [3] for B,(f;x). In Section 2 we give the preliminaries and a statement of
results, which are contained in Theorem 1 and 2. The first Theorem is proved in Section
3 and the second in Section 4.

2. Preliminaries
For given integers n21,k >0, take a sequence of knots {t;}**"** in [0, 1] satisfying
O=t_,= " =t,<UuSLS - S4<bi1=" =l =1
L a<tivy (i=0,1,...,k+n).
For i=0,1,...,k+n let N,,,,(x)=N(x|t,-_,,,...,t,-H) denote the B-spline of degree n with

knots t;_,,...,t;+, normalized so that ) {22 N, (x)=1. Following Schoenberg [6], for
any function f on [0, 1], we set

k+n

Vilfix)= ; SN, i(x), (2.1)

333

https://doi.org/10.1017/50013091500017144 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500017144

334 T. N. T. GOODMAN AND A. SHARMA

where &=(1/n)(t;—,4,+ - +t) and T={t,...,1,} denotes the set of knots with
multiplicities in the open interval (0, 1). The operator VI reproduces linear functions and
reduces to Bernstein polynomials of degree n when k=0.

We note that if f is convex, then VI(f;x)2 f(x) with equality if and only if f is
linear. This is so since for xe[0,1],

VI =Y SEIN, (02 f< Y &N, i(x)) e
i=0 i=0

In this paper we consider two operators VI(f;x) and V3(f;x) such that the B-splines
{N,.{x)} for VT lie in the linear span of the B-splines {N,, (x)} for V3 and show that
then VI(f;x)=V5(f;x) when f(x) is convex in [0, 1]. It is clearly sufficient to prove the
result for the following two cases:

(A) Firstly suppose m=n and that S comprises T together with one extra knot, i.e.
S={Sl,...,sk+1} T={t1,...,tk} and Si=ti (i=1,...,l), tl§Sl+l<tl+l
and s;=t;_, (i=1+2,...,k+1). In this case we shall prove
Theorem 1. Suppose f(x) is convex in [0,1] and S and T are as given in (A). Then
Valfsx)ZVif;x) 22
and equality occurs only if f is linear on [&,_(,&] for i=I1+1,...,p+n where
p=max{i:t;<s;.,}. Moreover if f is any function (not necessarily convex) which is linear

on [&_1,&] fori=Il+1,...,p+n, then equality holds in (2.2).

Remark. When t,<s;,,<t;4+y, then p=I If 5., =t;)=t,_ =" =t;_,>t;_,_,, for
some v, then p=[—v—1.

(B) Secondly we suppose m=n+1 and S comprises the same distinct knots as T but
with the multiplicity of each element increased by 1. In this case, we have

Theorem 2. Suppose f(x) is a convex function in [0,1] and S and T satisfy the
conditions in (B). Then

Valf;02Vaii(f3%) (2.3)
and equality occurs only if f is piecewise linear with simple knots at those &; for which
{t;—n+1s.--5t;} comprises at most two distinct elements. Moreover if f is any piecewise
linear function (not necessarily convex) with knots as above, then equality occurs in (2.3).

By putting k=0 we have

Corollary. If f(x) is a convex function on [0, 1], then

B,(f;%)2 B, 1(f;%) (24)
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and equality occurs only if f is linear on [i/n, i+1/n] for i=0,1,...,n—1. Moreover if f
is any function which is linear on [i/n,i+ 1/n] for i=0,1,...,n—1 then equality occurs in
(2.9).

Remark. Take n=1 and suppose f is linear on [i/n,i+ 1/n] for i=0,1,...,n—1.
Then for any m=1, f is linear on [i/mn,i+ 1/mn], i=0,1,...,mn—1, and the corollary
tells us that B,,,(f; x)=B,,,+(f; x). This yields a result of Freedman and Passow [3].

3. Proof of Theorem 1
Take § and T as in Theorem 1. As before we let N,,_,-(x)=N(x|t,-_,,,...,t,-H)
(i=0,1,...,k+n) and set
N,,_,-(x)=N(x|s,-_,,,...,s,-+1) (i=0,1,....,k+n+1).

Now for i=0,1,....k+n, {t;_p---stis1} S{Si—p--.,S;+2} and so there are numbers a;, f;
such that

Nn.i(x)=aiﬁn.t{x)+ﬁiﬁn.i+ 1(x)- (3.1

We claim that «;20, §;20. For i=0,1,...,]—1, we have {t;_,,-.., tis 1} ={Sizms---»Si+1}
and so o;=1, §;=0. Fori=p+n+1,...,k+n, we have t;_,>s,,, so that {t;_,,...,t;4,}=
{Si—n+1s---5Si+1} and so a;=0, f;=1. For i=l,...,p+n, we have t;,_,<s;4; <t;;,. Thus
the support of N, (x) contains {s;_,,...,5+2} and so «;#0+#p; Indeed if ¢;,_, has
multiplicity p in {t;_,,...,t;4+,}, then

Ne7er Ot y>0, NOT# 91t ) >0

while N7 U(r )=0. So (3.1) gives «;>0. Similarly considerations near t;,, give
B:>0, which proves the assertion. Now letting 7;=1/n(s;_,.,+ - - +s5;), we have

k+n+1

Valfix)= Y, f@IN, (). (32)
i=0
Also from (3.1), we see that
k+n
Valf;x)= 3 SEIN,.{)
i=0
k+n+1
= Y {af (&) +Bi- 1 f(&i- )N, {X) (33)
i=0

where we have set o, ,,,.,=0=p_,. Comparing (3.2) and (3.3) and putting f(x)=1
gives

ai+ﬂl’—1=1 (l=0,1,,k+n+1) . (3'4)
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Similarly, putting f(x)=Xx gives

o+ Bi-1&i1=1; (i=0, 1,...,k+n;1~1). (3.5)
If f is convex, then from (3.4) and (3.5),

S@Eaf (&) +Bi- 1 f(&i-1)

and so from (3.2) and (3.3), we get (2.1).
Equality occurs in (2.1) if and only if for i=0,1,...,k+n+1,

flai+Bi-1&i-D)=0f(E)+Bi— 1 f(&i-1)s (3.6)

For i=0,1,...,I, we have f,_,=0 and ;=1 and (3.6) is satisfied. For i=p+n+1,...,
k+n+1, we have seen above that f,_,=0, o;=1 and again (3.6) is satisfied. For
i=l+1,...,p+n we have o,>0, B;,_; >0 and so if f is convex, (3.6) is valid only if f
is linear in [&,_,, &} Moreover if f is any function which is linear on [£;_,,¢&;], then
(3.6) holds. O

4. Proof of Theorem 2

Let T comprise distinct elements x;,...,x, with multiplicites p,..., y, respectively, so
that Z’l p;=k. Then S comprises the same distinct elements x,,...,x; with multiplicities
ui+1,..., u+1 respectively. We define {s;}**'*"*2 so that

O=5_, 1=""=80<$1S85; 5855 " S 1<Sktr141= """ =Spsrrn+2=1

and S={s;,...,5¢ 4} As before we let N, (x)=N(x|t;—p-..,t;+1) (i=0,1,...,n+k), and
we set

M,,+1’,~(x)=N(x|S,-_,,_1,...,Si+1) (l=0, 1,.-. ,n+k+l+l).

Lemma 1. For any i (0<i<n+k), let A= A(i) denote the number of distinct elements of
T in (t;_,,t;+1). Then for some u (depending on i), we have

i+l

Nn,t{x)= z aijMn+1,j+u(x) (41)

j=0

where a;,>0, a; ;>0 and a;20 for 1< j<.

Proof. For k=1 the coefficients (a;;) can be determined explicitly. However for k> 1
this does not appear feasible and so for all k=1 we shall prove the coefficients are non-
negative by using the concept of total positivity.

Suppose t;_, has multiplicity v in {t;_,,..., 611}, i€, Liop="""=ti piy-1<li_piy
Choose p so that t;_,=S,_,_1=""=8,_,_14+,<S,-n+, Then clearly (4.1) holds for
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some constants a;; (j=0,1,...,4+1). Now
NPT ) >0, MO uU(,)>0, NEPIei)=0 (j=1,...,A+1).

So from (4.1), a;,>0. Similar reasoning near t;,, gives a; ;,,>0.
It remains to show that g;>0 for 1<j<A Let v,,...,0;,, denote the distinct
elements of {t;_,,...,t;,;}. For j=0,1,...,41 choose any point o; in (v;v;,,) and

consider the system of A+ 2 equations

i+l
Z BjME;"-:ll,)j+p(O-k)=0 (k=0,1,...,7), Biv1=a; ;41 (4.2)

j=0

Differentiating (4.1) (n+1) times shows that the system (4.2) has a unique solution
B;=a;; (j=0,1,...,44+1). So the matrix for the system (4.1) is non-singular and solving
by Cramer’s rule gives

a=a; (= 1)*ICCTY (j=0,1,...,44+ 1), 4.3)
where
C;j=Det(M %+ d0,)5=0,30 (4.4)
q¥j

Now we recall that a matrix is called totally positive if all its minors are non-negative.
We shall call a matrix M =(m)j-¢ %~o checkerboard if the matrix

(- 1)j+kmjk);’,i=o

is totally positive.
For m<n, we set

M, (X)=N(x|Si=ps---,8i+1) (i=m—n—1,.. n+k+I1+1)

where M,, (x)=0 when s,_,,=s;,,. Then

1
n——M:l+l,j+u(x)=bjMn,j+u—l(x)_bj+ 1Mn,j+u(x)

+1
where
1
b
bi= 9 Sj+p—Sjtu-n-1 Sitp-n—1<Sj+p
0, Sjtp=n-1=5j+p-
Thus
A+2
1
M:|+1,j+u(x)= Z a_[ik]Mn,k+u—1(x) (4.5)
k=0
EMS—C
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where

0571‘]=("+ Db;jds—m+1)bjs 041 -

It is easily seen that the matrix (al})}2{:22¢ checkerboard. Similarly, we have
A+3
M, iy 1(x)= Z aﬁ]Mn—l,kﬂ—z(x) (4.6)
k=0
where the matrix a{#2Z:/*3 is checkerboard. Differentiating (4.5) and applying (4.6)
gives
A+2 A+3
My jeu(X)= z Z aﬁ]aﬁ‘]M..— o+ 2(%)-
k=0 =0

Continuing in this way and noting that the product of checkerboard matrices is
checkerboard, we obtain

A+n+2
Mf."++1‘.’j+,,(x)= Z Mjkmo,k+u—n—1(x) 4.7
k=0
where the matrix M =(M)}25:228*2 is checkerboard. Now note that

1 s5;<x<s;4,

Mo,,(x)={

0 elsewhere.

Thus these are numbers 0< j, < j, < -+ <j; <A+ n+2 such that for k=0,1,...,4

1 J=Jk
Mg ivy—n-lo ={
A 1(o) 0, otherwise.

Then from (4.7) we get
Mi:n++11.)j+u(ak) =m; ;. (4.8)
Recalling (4.4) we see from (4.8) that since M is checkerboard
(—1y7C;z0 (j=0,1,...,A+1), 4.9

where s= jo+ - + ji +3(A+1)(A+2).
Then (4.9) and (4.3) give a;=20 (j=0,1,...,A+1). O

We now apply Lemma 1 to express V[ in the form

VnT(f§x)=" Z {" Dijf(éj)}Mn+l,i(x) (4.10)
=0

i=0 J

where D;;=0 for all i, j.

https://doi.org/10.1017/50013091500017144 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500017144

A PROPERTY OF BERNSTEIN-SCHOENBERG SPLINE OPERATORS 339

Letting 7,=(1/n+ 1)(s;-,+ - +53), we have

n+k+i+1

V§+ (%)= Z S@EIM, (%) 4.11)

i=0
Putting f(x)=1 and comparing (4.10) and (4.11) gives

n+k

Y Dy=1  (i=0,1,...,n+k+I+1). (412)
j=0

Similarly, putting f(x)=x gives

n+k

Y D=7, (i=0,1,...,n+k+I1+1). (4.13)
i=0

If f is convex, then from (4.12) and (4.13),

n+k

f(ri)ézDijf(éj) (i=0,1,...,n+k+1+1),

j=0

and so from (4.10) and (4.11) we get (2.3).
Equality occurs in (2.3) if and only if for i=0,1,...,n+k-+1+1,

n+k n+k
f( Z Dij€j>= Z Dijf(fj)- (4.14)
j=0 j=0 .

J

To see when this occurs, we must examine the constants D;; more closely. Fix
i(0fign+k+I1+1) and suppose s;_,-, and s;,, have multiplicities «x=o(i) and f=p(i)
respectively in {s;_,_;,...,8.+,}. We choose y=y(i) and d=4(i) as follows. If f(i)=2,
ty_pr2<ty_pgiz=- =t =84 If pl)=1,thent, <t . =5, . ()22, then s;_,, =
Lyon=""" =lsopta-2<lg-pira—1- I a)=1, then s, =t;_,<t;_,4+,. Clearly y<é
and as in Lemma 1, we can see that D;, >0, D;;>0 and D;;=0 for j<y and j>4.

If f is convex, then (4.14) holds only if f is linear on [{,,7,]. Moreover if f is any
function which is linear on [£,,&;], then (4.14) holds. Thus if f is convex, equality holds
in (2.2) only if f is piecewise linear and the possible knots are those points &; which do
not lie in any interval of the form (&), &5) for i=0,1,...,n+k+1+1. This can happen
if and only if for some i, &;=&;;=¢,4+1) Checking all possible cases we see that this
happens if and only if the set {¢;_,.,,...,t;} contains at most two distinct elements.
Similarly, if f is any piecewise linear function with knots at such points £;, then equality
holds in (2.2).

Acknowledgement. The second-named author wishes to thank the Edinburgh
Mathematical Society for a grant from its centenary fund to finance a trip to the
University of Dundee during which this research was conducted.

https://doi.org/10.1017/50013091500017144 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500017144

340 T. N. T. GOODMAN AND A. SHARMA

REFERENCES

1. G. Cuang and P. J. Davis, The convexity of Bernstein polynomials over triangles, J.
Approx. Theory 40 (1984), 11-28.

2. P.J. Davis, Interpolation and Approximation (Dover, New York, 1975).

3. D. Freepman and E. Passow, Degenerate Bernstein polynomials, J. Approx. Theory 39
(1983), 89-92.

4. T. N. T. GoopmaN and S. L. Leg, Spline approximation operators of Bernstein—-Schoenberg
type in one and two variables, J. Approx. Theory 33 (1982), 248-263.

5. G. G. Lorentz, Bernstein polynomials (University of Toronto Press, Toronto, 1953).

6. 1. J. ScHoEnBERG, On spline functions, Inequalities: Proceedings of a Symposium (O. Shisha,
Ed., Academic Press, New York, 1967), 255-294.

DEPARTMENT OF MATHEMATICAL SCIENCES
UNIVERSITY OF DUNDEE

Dunpee DD1 4HN

ScoTtLanp, UK.

https://doi.org/10.1017/50013091500017144 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500017144

