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Abstract
There has been a growing interest among pension plan sponsors in envisioning how the mortality expe-
rience of their active and deferred members may turn out to be if a pandemic similar to the COVID-19
occurs in the future. To address their needs, we propose in this paper a stochastic model for simulating
future mortality scenarios with COVID-alike effects. The proposed model encompasses three parameter
levels. The first level includes parameters that capture the long-term pattern of mortality, whereas the sec-
ond level contains parameters that gauge the excess age-specific mortality due to COVID-19. Parameters
in the first and second levels are estimated using penalised quasi-likelihood maximisation method which
was proposed for generalised linear mixed models. Finally, the third level includes parameters that draw
on expert opinions concerning, for example, how likely a COVID-alike pandemic will occur in the future.
We illustrate our proposed model with data from the United States and a range of expert opinions.
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1. Introduction
The COVID-19 pandemic can be seen as an intervention to long-term mortality dynamics, intro-
ducing an additional piece of uncertainty surrounding future mortality experiences of pension
portfolios. Traditional stochastic mortality models, which are estimated to (typically a few decades
of) historical mortality data, clearly cannot incorporate the uncertainty induced by the pandemic
and are thus unable to fulfil the needs of practitioners who wish to envision how future mor-
tality may be affected by the COVID-19 pandemic and perhaps a similar pandemic that may
occur in the future. In our view, there is a need to develop a broader framework of stochastic
mortality models, which learn from not only historical mortality data but also inputs from other
sources.

During the outbreak of COVID-19, information concerning themortality arising from the pan-
demic is limited. Death tolls predicted by medical and biological scientists with infectious disease
models would enrich stochastic mortality models used in actuarial work, especially in the aspect
of disentangling COVID-related and non-COVID-related mortality trends. We call such predic-
tions “external forecasts,” which are warranted to be incorporated into the broader modelling
framework.

Although there exist advanced infectious disease models, many determinants of the impact of
COVID on future mortality improvements remain impossible to model in a purely data-driven
manner. Examples include the long-term effect on health, the potential positive impact due to
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improved hygiene, policy changes, and advancement in medical sciences including vaccine devel-
opment. In this aspect, it would be useful to consider expert opinions, which can complement the
information that cannot be extracted from historical data. As a fact, expert opinions have been
shown to be useful in strengthening models when data are lacking and modifying models to suit
practical needs in various disciplines (Murray et al. 2009; Kuhnert et al. 2010; R.J. Verrall 2005).

The key contributions of this paper are three-fold. First, we introduce a broader framework of
stochastic mortality models that takes both external forecasts and expert opinions into account, on
top of the information contained in historical data. Second, we estimate the proposedmodels with
a one-stage penalised quasi-likelihood (PQL) approach which properly disentangles the impact of
COVID and the fluctuation in long-term mortality improvements. Third, we examine parameter
uncertainty from different sources and illustrate how parameter uncertainty may be incorporated
into the simulation of future mortality scenarios.

The specific model we propose encompasses three levels of parameters. The first level includes
parameters that capture the long-term, COVID-free pattern ofmortality. The second-level param-
eters reflect the impact of COVID on the basis of external forecasts. The third-level parameters
draw on expert opinions on the long-term impact of COVID, a determinant of future mortality
improvements that is very difficult to model on a statistical basis. The proposed model allows
us to generate stochastic mortality scenarios that incorporate the short- and long-term impacts
of COVID as well as the possibility of an outbreak of a COVID-alike pandemic in the future.
The scenarios help pension plan sponsors better envision how the mortality experience of their
members may continue to evolve.

Several researchers (Chen&Cox 2009; Zhou et al. 2013; Lin &Cox 2008; Deng et al. 2012; Liu &
Li 2015) proposed mortality models that incorporate temporary or permanent jumps, which may
be associated with events such as pandemics. These models are built to capture the patterns of
historical jump effects, which are then extrapolated into the future. However, each pandemic has
its own distinct features, so relying on the information from historical mortality jumps alone may
not be effective in predicting the impact of a new pandemic. For example, while half of the deaths
due to the 1918 Spanish flu were from the 20-40 age group, the majority of the reported COVID
deaths were from the 70-and-over age group. Thus, using the impact of the 1918 pandemic as the
sole predictor of the impact of COVID can lead to large errors. Societal changes occurred between
the two pandemics may have also altered the speed of transmission. For instance, globalisation
has accelerated the spread of diseases, but facilitated an efficient global collaboration towards dis-
ease mitigation. We therefore believe that it is important to utilise the newest knowledge of the
pandemic when evaluating its impact on future mortality improvements.

Previous studies of mortality jumps, including the works of Lin & Cox (2008), Chen & Cox
(2009) and Zhou et al. (2013), incorporated mortality shocks into the dynamics of long-term
mortality improvement. This setup is restrictive, because the mortality shock caused by a pan-
demic is forced to share the same age pattern with the long-term mortality improvement. Liu
& Li (2015) examined the age pattern of mortality jumps using US data and demonstrated that
the age patterns of mortality jumps and long-term mortality improvement are significantly dif-
ferent. On the basis of this empirical finding, they extended the Lee-Carter model to include a
separate age pattern for mortality jumps and showed that the extension leads to a better fit to
historical data.

While we allow the age patterns of COVID-related and non-COVID-related mortality to be
different, our model and findings differ from that of Liu & Li (2015) in a number of aspects. First,
Liu & Li (2015) studied historical mortality jumps, the impact of which has been fully observed,
and estimated jump-related parameters using historical data; however, we deal with a new mor-
tality shock that is still unfolding and partially understood, so that external forecasts and expert
opinions are sought to estimate jump-related parameters. Second, the mortality jumps studied
in Liu & Li (2015) are attributable to different causes, so their magnitudes and age patterns may
vary. In contrast, we focus on the impact of COVID on mortality and evaluate the uncertainty

https://doi.org/10.1017/S1748499522000033 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499522000033


Annals of Actuarial Science 455

arising from different external forecasts. Third, Liu & Li (2015) assume that a mortality jump only
affects mortality in its occurrence year, and thus, the impact is transitory; however, we allow the
pandemic impact to last for multiple years and also consider permanent shifts in mortality trends
caused by COVID.

We view the proposedmodel as a generalised linearmixedmodel (GLMM) and estimate its first
and second levels of parameters by maximising its PQL. The PQL approach is a single-stage esti-
mation method developed for estimating GLMM by Breslow & Clayton (1993). In the literature,
the Lee-Carter model and its variants are often estimated using a two-stage approach, in which the
estimates of age and period effects are first obtained and then a process for the estimated period
effects is calibrated. However, we find that the two-stage approach cannot properly disentangle
the impact of COVID and the fluctuation in long-term mortality improvements. The one-stage
PQL approach assumes a multivariate normal distribution for the long-term mortality improve-
ments and penalises the deviation of the estimated long-term mortality improvements from the
assumed distribution. The penalty term helps the PQL approach produce reasonable estimates for
all of the model parameters. So far as we are aware, our work represents the first attempt to apply
the PQL approach to stochastic mortality modelling, although Cairns et al. (2011), Haberman &
Renshaw (2012), and Liu & Li (2015) have considered other single-stage estimation methods in
the same context.

With the first and second levels of parameters estimated using the PQL approach, we determine
the third level of parameters using expert opinions. We consider a range of expert opinions on the
long-term impact of the COVID and illustrate the long-term impact with simulated mortality
paths.

We collect external forecasts from three different studies (Ferguson et al. 2020; Centres for
Disease Control and Prevention 2020; O’Driscoll et al. 2021), conducted several months apart
from each other. The three external forecasts are notably different. We examine how such differ-
ences may affect the estimated mortality model and the resulting simulated mortality scenarios.
This examination highlights the importance of utilising the most recent information in an evolv-
ing pandemic. In addition, each external forecast bears a certain extent of forecast uncertainty.
We illustrate how this piece of uncertainty may be incorporated into the simulation of mortality
scenarios.

The remainder of the paper is organised as follows. Section 2 introduces our proposed model.
Section 3 describes the data. Section 4 estimates the proposed model with the PQL method.
Section 5 examines how the choice of external forecasts may affect the estimated parameters in
the first and second levels. Section 6 explains how expert opinions are used to estimate the third
level of parameters. Section 7 discusses how the uncertainty entailed in the external forecasts may
be incorporated into the simulation of mortality scenarios. Finally, section 8 concludes.

2. The Proposed Model
2.1. Overview
The proposed model comprises three parameter levels. The first-level parameters capture the
long-term pattern of mortality and include the age, period, and cohort components that are
also seen in many existing stochastic mortality models including the Lee-Carter model (Lee &
Carter, 1992) and the Cairns-Blake-Dowd model (Cairns et al. 2006). The first-level parameters
are informed by historical mortality data, capturing the dynamics of mortality in the absence of
a pandemic like COVID. The second-level parameters gauge the short-term age-specific excess
mortality caused by COVID and are calibrated using external forecasts of COVID deaths made
in infectious disease studies. Since external forecasts utilise the most recent development of
the disease, the second-level parameters update the mortality model with the newest informa-
tion. The third-level parameters draw on expert opinions concerning the long-term impact of

https://doi.org/10.1017/S1748499522000033 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499522000033


456 Rui Zhou and Johnny Siu-Hang Li

COVID, including experts’ views on how the excess mortality due to COVID may reduce over
time, whether COVID will induce positive long-term impact on the society, and how likely a
COVID-alike pandemic will occur in the future.

The proposed model, developed for use amid a pandemic, aims at updating mortality models
with the newest development in infectious disease studies and enabling users to incorporate the
short-term and long-term impact of COVID-alike events into their mortality scenarios. It can
also be used post-pandemic, when calibrated to the realised excess mortality. In this paper, we
illustrate the proposed model under the assumption that the pandemic is still unfolding and there
is significant uncertainty associated with the pandemic impact.

2.2. The long-termmortality pattern without the impact of COVID
We decompose the long-term mortality pattern into age and period effects in the same way as
the Lee-Carter model. Historical mortality data in the sample age range of [x0, x1] and the sample
period of [t0, t1] are used to estimate the Lee-Carter components. Let Dx,t , Ex,t , and mx,t be the
number of deaths, the number of exposures-at-risk, and the central death rate at age x in year
t, respectively. We assume that Dx,t follows a Poisson distribution with a mean of Ex,tmx,t . The
long-term pattern for lnmx,t is expressed as follows:

ax + bxkt
where ax represents the average log mortality at age x, kt is the period effect driving long-term
mortality improvements over time, and bx measures the sensitivity of the long-term mortality at
age x to changes in kt . To stipulate parameter uniqueness, we impose the following identifiability
constraints:

∑
x bx = 1, and kt0 = 0. Although other constraints for the period effects may be used,

we choose kt0 = 0 to facilitate the one-stage PQL estimation method. This constraint is further
discussed in section 4.3.

We assume that {kt} follows a random walk of drift:
kt = kt−1 +μ+ εt

where μ is the drift and {εt} is a sequence of i.i.d. normal random variables with a mean of 0
and a standard deviation of σ . Other processes such as autoregressive integrated moving average
(ARIMA) can also be used if necessary.

The first parameter level contains all of the parameters that are related to long-term mortality
dynamics, including ax, bx, kt , μ, and σ . It should be noted that the first-level parameter level
may be built on other models such as the Cairns-Blake-Dowd (CBD) model. We choose to use the
Lee-Carter structure due to its simplicity.

2.3. Excess age-specific mortality due to COVID
Before the end of a pandemic, it is difficult to predict how long the excessive mortality caused
by the pandemic will last. In an early study on COVID mortality, Ferguson et al. (2020) argued
that COVID-related deaths will mostly occur in 2020 with a large peak if no measure is taken
to suppress the transmission of the disease, but spread across two years with smaller peaks if
suppression strategies are enforced. In this regard, we believe that it is important to allow for both
single-year and multi-year impacts of COVID in the modelling work.

The impact of a pandemic on mortality depends heavily on age. Half of the deaths caused
by the 1918 flu pandemic occurred among 20- to 40-year-olds, but older people are the most
vulnerable to COVID as shown by various studies (Ferguson et al., 2020; O’Driscoll et al., 2021).
The dependence on age is taken into account in our modelling work through a set of age-specific
parameters that are reserved for the excess mortality due to COVID.

Assume that the pandemic begins in year T and its impact on mortality lasts for n years.
We extend the Lee-Carter structure to capture age-specific excess mortality caused by COVID

https://doi.org/10.1017/S1748499522000033 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499522000033


Annals of Actuarial Science 457

as follows:

lnmx,t = ax + bxkt + cx,tπt1{T≤t≤T+n} (1)

where πt represents the overall severity of the pandemic in year t, and cx,t captures the age pattern
of the pandemic impact in year t. The proposed model assumes that COVID increases central
death rates by the multiplicative factor ecx,tπt1{T≤t≤T+n} . The assumption of a multiplicative impact
of COVID on mortality is justified by the apparent proportional relationship between COVID
mortality and non-COVID mortality at adult ages, as demonstrated by Cairns et al. (2020). By
letting cx,t depend on t, we allow the age pattern of the impact of COVID on mortality to change
throughout the course of the pandemic. If the user expects that the age pattern should remain
unchanged over time, then cx,t can be replaced by cx.

Theoretically, we can use cx,t instead of cx,tπt to represent the age-specific excess mortality
caused by COVID. We choose to use cx,tπt since it shares a similar structure with the long-term
mortality improvement term bxkt and thus facilitates the comparison between the long-termmor-
tality change and the pandemic impact. This multiplicative structure introduces an identification
problem, because given a set of estimates ĉx,t and π̂t , we can construct another set of estimates
c∗x,t = ĉx,t × u and π∗

t = π̂t/u, the product of which is ĉx,tπ̂t . To ensure parameter uniqueness, we
impose three constraint

∑
x bx = 1, kt0 = 0, and

∑
x cx,t = 1. Since bx and cx,t are subject to the

same constraint, their estimated values are on the same scale. As a result, the estimate of πt is
comparable to that of kt and provides a clear indication of the pandemic severity.

The second-level parameters include cx,t and πt . The value of these parameters is determined
by considering external forecasts of excess deaths from infectious disease studies. Forecasts from
infectious disease studies are often built on both data collected during the current pandemic and
relevant past pandemic experiences. By estimating the second-level parameters using the external
forecasts, we inform the model with the new development of the pandemic and also implicitly
incorporate information learned from past experience.

2.4. Expert opinions on the long-term impact of COVID
The parameters in the third level gauge the long-term impacts of pandemics, which include the
following: excess mortality over an extended period, potential positive impact due to behavioural
changes and improved healthcare practice, and possible occurrence of pandemics similar to
COVID in the future. Adding the third-level parameters, our proposed model becomes

lnmx,t = ax + bxkt +
∑
i

(
c(i)x,tπ

(i)
t 1{Ti≤t≤Ti+ni})+ d(i)x,tψ

(i)
t 1{t≥Ti+1}

)

where Ti represents the arrival year of the ith pandemic, ni is the duration of excess mortality
due to the ith pandemic, c(i)x,t and π

(i)
t capture the age pattern and size of the excess mortality

due to the ith pandemic in year t, and d(i)x,t and ψ
(i)
t are the age pattern and size of the positive

impact induced by the ith pandemic. We assume that the positive impact emerges one year after
a pandemic occurs. If expert opinions suggest that the positive impact begins m years after, we
can simply set ψ (i)

t to 0 for Ti + 1≤ t< Ti +m. To ensure parameter uniqueness, we impose the
following constraints:

∑
x bx = 1, kt0 = 0,

∑
x c

(i)
x,t = 1, and

∑
x d

(i)
x,t = 1.

External forecasts of the impact of a pandemic typically focus on short-term excess mortal-
ity and are performed using infectious disease models. The long-term impact of the pandemic
may not be effectively predicted in the same manner, for reasons including but not limited
to virus mutations, policy changes, and medical breakthroughs. We therefore believe that it is
more appropriate to estimate the third-level parameters using expert opinions instead of external
forecasts.
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Some believe that COVID will end with the rollout of the vaccine and the establishment of
herd immunity, while others may think that the virus will never be completely eradicated but
become a seasonal flu. We do not side with any opinion, but offer an approach to incorporate
such opinions into the mortality model. To model how the excess mortality tapers off, we may
use a power function or exponential function for πt . If the expert believes that the pandemic will
become a seasonal flu over time, we may change c(i)x,t to match the age pattern of excess mortality
caused by a flu.

Noymer (2011) reveals that the 1918 influenza pandemic reduced tuberculosis mortality and
transmission since many with tuberculosis were killed in 1918. Cairns et al. (2020) argue that
COVID accelerates the death of the unhealthy and results in a modest increase of life expectancy
among the survivors. While these positive impacts seem temporary, a pandemic may also lead to
permanent improvements in mortality due to, for example, behavioural changes and improved
health care. Medical research may also be accelerated due to additional investments triggered by
the pandemic. We may let ψ (i)

t take a functional form to capture the variation of the positive
impact of the ith pandemic over time. The function can be chosen on the basis of expert opinions.

We assume that the arrival of pandemics follows a Poisson process. Equivalently speaking,
the interarrival time, i.e., the time between successive pandemics, is exponentially distributed.
Assuming that pandemics occur once per λ years on average, the mean interarrival time is λ years
and the exponential distribution has a parameter of 1/λ. The distribution of the interarrival time
can be written as follows:

Ti − Ti−1 ∼ Exponential(1/λ)

The value of λ is not easy to determine as pandemics are of a low-frequency nature. We therefore
choose λ on the basis of expert opinions. Some scientists including Ross et al. (2015) believe that
the potential for diseases to spread and the risk of pandemics are increasing due to deepening
globalisation and human impact on the environment. To accommodate such opinions, we can
adopt a non-homogeneous Poisson process for the arrival of pandemics by letting λ to be time-
dependent.

3. Data
Historical USmortality data, including the number of deaths and the number of exposures-at-risk
in the period of 1970–2019 and the age range of 20–100, as well as the population size in 2020,
are obtained from The HumanMortality Database (2021). Estimated infection fatality ratios (IFR;
defined as the number of deaths per infection) are collected from the following three studies.

• The work of Ferguson et al. (2020):
This report is produced by the Imperial College COVID-19 Response Team inMarch 2020. It
provides early estimates of COVID IFRs and forecasted number of COVID deaths based on
different suppression strategy assumptions.

• The report by the Centres for Disease Control and Prevention (2020):
This report provides five scenarios, which respectively represent different levels of disease
transmission, in an effort to advance public health preparedness and planning. The scenarios
were first published in March 2020 and are updated every two months since then. We use the
set of scenarios published in September 2020.

• The study of O’Driscoll et al. (2021):
This study performs a systematic review andmeta-analysis of published evidence on COVID-
19 mortality until July 2020. Based on the analysis, 15,000 scenarios of IFRs are generated.

The estimates of IFR are derived from best available information at the time of each study.
However, due to the evolving nature of COVID, studies performed a few months apart might
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Figure 1. Best estimates of infection fatality ratios (IFRs) produced from three different studies.

result in very different estimates. Biggs & Littlejohn (2020) compare the predicted number of
COVID deaths based on the IFR estimates provided by the three studies. The comparison reveals
striking differences between the predictions made by Ferguson et al. (2020) and those produced
by the other two studies, demonstrating how new knowledge may affect the estimate of COVID’s
impact. In this paper, we consider the three sets of IFR estimates to illustrate the importance of
updating mortality models and scenarios with the newest information.

We plot the best estimates of age-specific IFRs from the three studies in their original scale and
log scale in Figure 1. All three sets of estimates exhibit an increasing trend with age. The log IFR is
approximately a linear function of age, except that for the IFR estimates produced by O’Driscoll
et al. (2021), the values for the 0–4 age group are higher than those for the 5–9 age group. Since
the youngest age group has a very low number of deaths and is generally not covered by insurance
or annuities, this exception does not concern us.

We also note that the three studies use different age groupings. To make the three sets of esti-
mates comparable, we interpolate the log scaled IFR using cubic splines. Let us take age groups
0–9 and 10–19 from the Imperial Study as an example. For this study, the estimated log IFRs for
the two age groups are 0.002 and 0.006, respectively. We first set the log IFRs of age 5 and age
15 to 0.002 and 0.006, respectively; then for ages between 5 and 15, the estimated log IFRs are
obtained by interpolating between 0.002 and 0.006 with a cubic spline. As shown in Figure 2, the
interpolated IFRs and log IFRs preserve the increasing pattern in the original values. The estimates
from Ferguson et al. (2020) are significantly higher than those from the other two studies for the
age range of 10-80. The estimates from Centres for Disease Control and Prevention (2020) and
O’Driscoll et al. (2021) are very close for the age range of 20–80.

We obtain the predicted number of deaths by multiplying the population size of each age at
the beginning of 2020, the estimated IFR, and the predicted infection percentage. Ferguson et al.
(2020) predict an infection percentage of 81% and 510,000 COVID deaths in Great Britain and 2.2
million COVID deaths in the United States in the worst case scenario where no measure is taken
against the spread of the virus. The authors also show that the total number of deaths in Great
Britain can be reduced to fewer than 10,000 under some suppression strategies. To cover a range
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Figure 2. Interpolated infection fatality ratios (IFRs) for individual ages.

of suppression policies, we consider infection percentages ranging from 10% to 80%. We rely on
expert opinions to determine which suppression strategy is likely to be used and the resulting
infection percentage.

4. Estimating the First Two Levels of Parameters
4.1. Missing data and imputation
In the literature, parameters in the Lee-Carter model are often estimated by a two-stage proce-
dure. In the first stage, parameters representing age and period effects are estimated by methods
such as least squares or maximum likelihood. In the second stage, a time-series process is cali-
brated for the period effects. When applied to our proposed model, the procedure requires the
total number of deaths, including both COVID and non-COVID deaths. While we have COVID
death estimates from the three studies mentioned in section 3, the total number of non-COVID
deaths is still unknown at the time of writing (when our proposed model is estimated). To address
this problem, we use multiple imputation to obtain a set of non-COVID death estimates. This
method incorporates the uncertainty arising from the missing data by considering a large number
of plausible imputed data sets.

Assume that log central death rates in 2020 and onward when COVID is hypothetically absent
can be expressed as follows:

lnmx,t = ax + bxkt

For simplicity, we assume that the number of deaths due to other causes is not affected by COVID.
The following steps are taken to obtain multiple imputed values of Dx,t for t ≥ 2020:

1. Fit the original Lee-Carter model to the 1970–2019 mortality data and obtain estimates of ax,
bx, and kt .

2. Estimate a random walk with drift for kt .
3. Simulate one path for kt , where t = 2020, 2021, . . ., using the estimated random walk with

drift.
4. Calculate the corresponding simulated path of mx,t , where t = 2020, 2021, . . ., using the

relationmx,t = eax+bxkt , the simulated path of kt , and the estimates of ax and bx.
5. Calculate simulated values for qx,t , where t = 2020, 2021, . . ., using the approximation qx,t ≈

1− emx,t .
6. Given the simulated value of qx,t , simulate the number of non-COVID deaths for age x and

year t, dx,t , by generating a random number from a binomial distribution with parameters lx,t
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and qx,t , where lx,t is the population size for age x at the beginning of year t. Then, calculate
the population size at the beginning of the following year, using the relation lx,t+1 = lx,t − dx,t .

7. Repeat the previous step for year t + 1, t + 2, . . .
8. Calculate the imputed total number of deaths for each year t, where t = 2020, 2021, . . ., as

the sum of the simulated number of non-COVID deaths and the number COVID deaths
(obtained from one of the three mentioned external forecasts).

9. To obtain N sets of imputed death counts, repeat Steps 3–8 N times.

For each set of imputed death counts, we estimate the first and second level of parameters in
the mortality model. We will examine the variability of the estimated parameters arising from
multiple imputation in section 4.

4.2. A two-stagemaximum likelihood estimationmethod
We first attempt to estimate the model shown in (1) using a two-stage procedure. Assuming
that Dx,t follows Poisson distribution with a mean of Ex,tmx,t , the likelihood function can be
expressed as

∏
t,x

(Ex,tmx,t)Dx,t e−Ex,tmx,t

Dx,t! ∝ e
∑

t,x [Dx,t lnmx,t−Ex,tmx,t]

In the first stage, the estimates of ax, bx, kt , cx,t , and πt are obtained by maximising the
loglikelihood function

ll=
∑
t,x

[Dx,t lnmx,t − Ex,tmx,t] (2)

Details of this approach can be found in Brouhns et al. (2002). In the second stage, we estimate a
random walk with drift for kt .

We illustrate the estimation using the observed numbers of deaths and exposures-at-risk in
1970–2019 and a set of imputed numbers of deaths in 2020. Only the age range of 20–100 is
considered in the estimation. The numbers of COVID deaths used in the imputation are based on
the scenario with a 80% infection percentage in 2020 and the best IFR estimates from Ferguson
et al. (2020).We assume that all COVID deaths occur in 2020. The number of exposures-at-risk in
2020, Ex,2020, is approximated by lx,2020 − 0.5Dx,2020. The set of imputed numbers of non-COVID
deaths and total number of deaths are shown in Figure 3.

Figure 4 presents two sets of parameter estimates obtained from the two-stage estimation pro-
cedure. The black lines represent the estimates of ax, bx, and kt in the original Lee-Carter model
when the model is fitted the 1970–2019 mortality data. The black dots represent the estimates
of ax, bx, kt , and cx in model (1) when the model is fitted to the 1970–2020 data, in which the
age-specific death counts for 2020 are imputed.

Despite the differences in the estimates of ax, bx, and kt obtained from the two sets of data, the
2019 mortality rates implied by the two estimated models are very close to each other for all ages.
However, the small difference in the slope of kt may lead to a large difference in predicted future
mortality rates over the long run.

When fitting model (1) to the 1970–2020 data, the estimated series of kt dips at t = 2020. Since
kt represents the mortality level in year t without the influence of the pandemic, we expect the
series of kt to be relatively smooth and follow the downward trend observed in previous periods.
The large dip in 2020 is due to the fact that there is no constraint in the optimisation to ensure that
k2020 would follow the typical pattern of kt and cx,2020π2020 would capture the pandemic impact. In
particular, the impact of COVID on the 2020 mortality is split between two components, bxk2020
and cx,2020π2020, both of which capture the interaction of age and period effects, in a way that
maximises likelihood.
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best IFR estimates from Ferguson et al. (2020).
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Figure 4. Estimates of ax , bx , kt , and cx,2020 obtained from the two-stage estimation procedure.

4.3. Penalised quasi-likelihood estimation
To address the erratic behaviour of k2020, we propose to use a single-stage estimation procedure
which simultaneously estimates all first- and second-level parameters, including μ and σ in the
random walk with drift for kt . This procedure is developed to estimate parameters for generalised
linear mixed models by Breslow & Clayton (1993). In fact, our model can be written in the form
of a generalised linear mixed model (GLMM) with a Poisson distribution for the response vari-
able and a logarithm link function. Although our model differs from a common GLMM in that
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we impose parameter constraints on both fixed and random effects, the single-stage estimation
procedure can still apply.

Breslow & Clayton (1993) show that the approximation of the marginal quasi-likelihood using
Laplace’s method leads to estimating a GLMM based on PQL for the mean parameters. The mean
parameters in our model include ax, bx, kt , μ, cx,t, and πt . Since kt0 is constrained to 0, we do not
need to estimate it. Let us denote [kt0+1, kt0+2, . . . , kt1 ]′ by k. Assuming a random walk with drift
for the series of {kt}, k simply follows a multivariate normal distribution with a mean vectorµ and
a variance-covariance matrix V . It is easy to show that

µ = [μ, 2μ, . . . , (t1 − t0)μ]′, and
V ij = (min(i, j)− 1)σ 2

where V ij is the (i, j)-th entry of V . The joint pdf of the vector k is denoted by f (k) and can be
expressed as

f (k)= 2π− t1−t0
2 |V|− 1

2 e−
1
2 (k−µ)′V−1(k−µ)

where |V| is the determinant of the matrix V . The constraint kt0 = 0 not only ensures parameter
uniqueness but also initialises the time-series of kt . Given kt0 = 0, it is straightforward to calculate
the joint pdf of k. Although setting kt1 = 0 or

∑
t kt = 0 would also lead to unique parameter

estimates, the calculation of the joint pdf under such constraints is much more complex.
The integrated (quasi-) likelihood function of our model can be written as∫

k

∏
t,x

(Ex,tmx,t)Dx,t e−Ex,tmx,t

Dx,t! f (k)dk

∝ |V|−1/2
∫
k
e
∑

x,t [Dx,t lnmx,t−Ex,tmx,t]− 1
2 (k−µ)′V−1(k−µ)dk

= |V|−1/2
∫
k
e−g(k)dk

where −g(k) is the PQL function and

−g(k)=
∑
x,t

(Dx,t lnmx,t − Ex,tmx,t)− 1
2
(k− µ)′V−1(k− µ) (3)

When a Poisson distribution is used for the response variable, the quasi-likelihood is equivalent
to the true likelihood1 . The PQL differs from the loglikelihood functions shown in (2) only by the
penalty term − 1

2 (k− µ)′V−1(k− µ).
Breslow & Clayton (1993) show that the estimates of the mean parameters in a GLMM can

be obtained by maximising the PQL and the obtained estimates approximately maximise the
integrated quasi-likelihood. With the mean parameters substituted by their estimated values, the
variance parameter σ can be obtained by maximising the approximate profile quasi-likelihood
function which is expressed as follows:

−1
2
ln |V| − 1

2
ln |g′′(k̃)| − g(k̃)

1Assume that the ith observation of a random variable Y is yi. The expectation and variance of yi is E[yi]=μi and
Var(yi)= φaiv(μi), where v(.) is a specified variance function, ai is a known constant, and φ is a dispersion parameter that may
ormay not be known. Given thatY follows a Poisson distribution, we have φ = ai = 1 and v(μi)=μi. The quasi-loglikelihood
for the i-th observation is defined as

Q(μi|yi)=
∫ μi

yi

yi − u
aiv(u)

du=
∫ μi

yi

yi − u
u

du= yi lnμi −μi − yi ln yi + yi

This is equivalent to the true loglikelihood for yi. Given that yi follows a Poisson distribution with a probability mass function
μ
yi
i e−μi/yi!, the true loglikelihood is yi lnμi −μi − ln (yi!). The quasi and true loglikelihood only differ by a constant.
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Figure 5. Comparison between the estimates of ax , bx , kt , and cx,2020 obtained from the two-stage estimation method and
the single-stage PQL approach.

where k̃ is the estimated value of k. The following iterative procedure is taken to obtain the final
estimates:

1. Set initial values for ax, bx, kt , cx,t , πt , μ, and σ .
2. Estimate ax, bx, kt , cx,t , πt and μ by maximising the PQL. The optimum is obtained using an

iterative Newton’s method with a tolerance level of 0.0001.
3. Take a Newton step towards a new value of σ with the objective of maximising the

approximate profile quasi-likelihood function.
4. Repeat steps 2 and 3 until the change of the profile likelihood is smaller than a tolerance value,

which we set to 0.0001.

The iterative procedure is implemented with the authors’ own codes. Although the MASS
(Venables & Ripley 2002) package can perform the PQL estimation for a GLMM, it cannot han-
dle our parameter constraints and thus is not suitable for estimating the proposed model. The
parameter estimates obtained from the two-stage procedure and the PQL method are compared
in Figure 5. The estimated series of kt exhibits no visible dip in year 2020 when the PQL approach
is used, suggesting that the one-stage estimation approach is capable of disentangling the impact
of COVID and long-term mortality improvements. The two procedures lead to similar estimates
for ax, bx, and cx,2020. However, the estimated value of πt obtained from the one-stage procedure is
45.62, while that obtained from the two-stage procedure is 60.74. Since πt represents the severity
of the pandemic, the two-stage procedure seems to overestimate the impact of the pandemic and
simultaneously underestimate the value of kt in 2020.

We also observe from Figure 5 that the estimates of cx,2020 do not always increase with age. Our
model assumes a multiplicative impact of COVID on mortality. The multiplicative factor ecx,tπt
is the ratio of the mortality rate with the impact of COVID to that without. Although both rates
increase with age, the ratio of the two rates does not necessarily increase with age.
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The PQL estimation procedure can also be used to calibrate the realised impact of COVID
when the total number of deaths are fully observed. Its advantage of disentangling the impact of
COVID and long-term mortality improvements remains in this situation.

The PQL method is similar to the penalised likelihood estimation approach proposed by
Delwarde et al. (2007). Both approaches add a penalty term to the likelihood function shown in
(2). Delwarde et al. (2007) achieve smoothed age-specific patterns bx at the expense of likelihood.
The approach of Delwarde et al. (2007) has been applied to smooth other parameters, including
ax and kt in mortality models by Li et al. (2020). Although we may use penalised likelihood esti-
mation to smooth the estimates of kt and avoid the dip at t = 2020, the volatility of the estimated
kt would be significantly reduced in this way. Consequently, future mortality scenarios simulated
from the estimated model would understate the true volatility in mortality improvements as well
as the longevity risk inherited in pension and annuity portfolios. In contrast, the PQL approach
considers how closely the vector k follows a multivariate Gaussian distribution, so it preserves
the variability in the estimated kt . The PQL approach is therefore more suitable for estimating
our model, which is developed for users to gauge the range of possible mortality outcomes in the
future.

We note that penalising the deviation from a multivariate normal distribution does not guar-
antee that the estimated kt follows a multivariate normal distribution. We may consider a stiffer
penalty, − 1

2ρ(k− µ)′V−1(k− µ), where ρ is a tuning parameter and ρ ≥ 1. The estimated kt will
be more likely to follow a multivariate normal distribution as ρ increases. However, this comes at
the cost of the goodness-of-fit and the theoretical foundation of the PQL approach. How to choose
the tuning parameter is also a challenging question. Since ρ = 1 works well for our dataset, we do
not consider other values of ρ.

McCulloch & Neuhaus (2011) examine the estimation robustness to the assumed distribu-
tion for a random effect when using maximum likelihood methods for fitting a GLMM. They
find that the empirical probability density of the estimated random effects can be quite sen-
sitive to the assumed distribution. Since maximising PQL approximates maximising the true
likelihood, we expect that the assumed distribution for kt will also have a significant impact on
the distribution of the estimated kt . Therefore, it is important to assume a suitable distribution
for kt .

Normal distribution is often assumed for the period effect kt in existing literature. To justify the
normal assumption, we first fit a Lee-Carter model to the 1970–2019 mortality data with the two-
stage estimation approach and then perform the Shapiro–Wilk normality test to the difference
of the estimated kt . Since the estimation of kt with the two-stage approach does not require any
distribution assumption for kt and no pandemic occurred during 1970–2019, the distribution
of the estimated kt should be close to the true distribution of kt . The Shapiro–Wilk test returns a
p-value of 0.44 which indicates that we cannot reject normality. Therefore, the normal assumption
for kt seems reasonable.

Alternative to the PQL approach, we may consider a Bayesian approach and view the proposed
model as a Bayesian hierarchical model. To implement the Bayesian estimation for our model, we
should assume a normal prior for kt with parameters μ and σ treated as hyperparameters. The
hyperparameters are assumed to be random variables with their own prior distributions. Prior
distributions are also required for ax, bx, and pandemic-related parameters. Inferences are then
drawn from the derived posterior distributions. Since a posterior distribution is influenced by the
assumed prior distribution to some extent, the normal prior plays a similar role with the penalty
term in PQL in separating the changes in the long-term mortality improvement from the pan-
demic shock. A prior sensitivity analysis is necessary to examine the impact of the normal prior
on the posterior. It would be interesting in the future research to carry out a Bayesian estimation
of our model and compare the estimates obtained from the two approaches.
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Figure 6. Estimates of ax , bx , kt , cx,2020, and π2020 obtained using 100 sets of imputed non-COVID death counts in 2020.

4.4. Combining estimates frommultiple imputations
Using the multiple imputation procedure described earlier, we obtain 100 sets of imputed age-
specific death counts in 2020. The variability of the imputed values arises from the randomness
in k2020 and Dx,2020. To examine how imputation affects the estimated parameters, we repeat the
one-stage estimation procedure for each set of imputed values and plot the estimated parameters
in Figure 6.

Figure 6 shows that different sets of imputed values result in similar estimates of ax, bx, and
kt . Therefore, the variability in the imputed values has a minimal impact on the estimates of the
first-level parameters. However, the values of cx,2020 for young ages and very high ages somewhat
vary across different sets of imputed values, because at these ages COVID-related deaths are small
so that the impact of the COVID on mortality is more difficult to quantify.

The uncertainty arising from the imputation can be viewed as parameter risk. We can incor-
porate this piece of uncertainty into simulated future mortality paths by taking the following
steps:
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Figure 7. Estimates of ax , bx , kt , cx,2020, and π2020, obtained using the IFR estimates provided by Ferguson et al. (2020),
Centres for Disease Control and Prevention (2020), and O’Driscoll et al. (2021).

1. Obtain a set of imputed non-COVID death counts.
2. Estimate the mortality model based on the set of imputed values.
3. Simulate 100 mortality paths using the estimated parameters in Step 2.
4. Repeat steps 1–3 for 100 sets of imputed values.

We find that the randomness in simulated kt dominates the uncertainty in the simulated mortality
paths. Incorporating the uncertainty from the imputed value in the simulation does not lead to
any visible change in the resulting prediction intervals.

5. Choice of External Forecasts
We observe significant differences in the estimated IFRs from the three studies in Figure 2. In this
section, we examine how the estimates of cx,t and πt are affected by the source of IFRs. We use
the same set of imputed non-COVID deaths in 2020 but three different sets of estimated COVID
deaths which are derived from an assumed infection percentage of 80% and the best IFR estimates
from the three studies. Figure 7 shows, for each source of IFRs, the estimated values of the first
and second levels of parameters (including the estimated value of π2020 that is displayed in the
legend of the bottom-right panel). Although the three sets of IFRs result in small differences in the
estimated first-level parameters, the fitted non-COVID morality in 2020, expressed as eax+bxk2020 ,
resulting from the three sets of IFRs are very close to one another. Therefore, the difference in the
first-level parameters does not affect the comparability of the second-level parameters obtained
using different IFR estimates.

The severity of the impact of COVID, represented by π2020, is the highest when model is cali-
brated using the IFR estimates from Ferguson et al. (2020). On the other hand, the values of π2020
derived from the IFR estimates provided by Centres for Disease Control and Prevention (2020)
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Figure 8. Log IFRs and estimates of cx,2020 when three different cubic spline specifications are used.

and O’Driscoll et al. (2021) are similar. These estimation results are consistent with the observa-
tion of the interpolated IFRs shown in Figure 2. For all three sets of IFR estimates, the resulting
estimates of cx,2020 generally increase with age first and decrease after a certain age. The three sets
of estimated cx,2020 differ the most at high ages.

We find that the estimates of cx,2020 at high ages are sensitive to the way in which we obtain the
cubic spline. For example, the best IFR estimates of Ferguson et al. (2020) are 2.5% and 9.3% for
the age ranges of 70–79 and 80+, respectively. When implementing the cubic spline method, the
IFRs at individual ages are required. For the age range of 70–79, it is reasonable to assign the 2.5%
IFR to age 74.5, which is the mid-point of the age range.

However, for the 80+ age range, it is not so clear as to which age should be used as the last knot
and assigned the 9.3% IFR. As shown in Figure 8, switching the last knot from 85 to 95 would
lead to significant changes in the smoothed log IFRs and the estimates of cx,2020 for ages 80 and
above. In addition, when the degrees of freedom of the cubic spline are reduced from 9 to 4, the
values of the smoothed log IFR would change slightly but the estimates of cx,2020 would exhibit
significantly less curvature. If possible, we suggest using IFRs for finer age groups to reduce the
needs for interpolation and resulting errors.

The estimates of cx,2020 aremore jagged in the age range of 20–40. This observation is consistent
with the larger fluctuation in cx,2020 at younger ages, as shown in Figure 6. We believe that the
jaggedness is caused by the small number of COVID deaths at these ages, so that it is more difficult
to distinguish between the impact of COVID and variation in long-termmortality improvements.

It is evident that the choice of external forecasts matters. A single source of external forecasts
may under- or overestimate the impact of COVID and hence future mortality. Combining the
information from multiple sets of external forecasts may alleviate the problem. A similar method,
which makes use of predictions from 32 models, has been used by the CDC during the pandemic
to create short-term projections of COVID cases and deaths. We will further discuss the incorpo-
ration of multiple external forecasts into the simulation of future mortality paths in section 7.

6. Using Expert Opinions to Determine the Third-Level Parameters
6.1. Infection percentage
The results presented in the previous sections are obtained using an assumed infection percentage
of 80%. The infection percentage may change significantly, if different suppression strategies are
adopted. As policy changes cannot be statistically modelled, we consider a number of possible
infection percentages and examine the resulting parameter estimates for each. The specific choice
of the assumed infection percentage is a subjective judgement, which may be informed by expert
opinions.
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Figure 9. Estimates of cx,2020 and π2020 obtained using the best IFR estimates from Ferguson et al. (2020) and various
assumed infection percentages.
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Figure 10. Estimates of cx,2020 and π2020 obtained using the best IFR estimates from the Centres for Disease Control and
Prevention (2020) and various infection percentages.

The left panel of Figure 9 presents the estimates of cx,2020 and π2020 obtained using the best
IFR estimates from Ferguson et al. (2020) and various assumed infection percentages. We observe
that the estimates of cx,2020 only change slightly as the assumed infection percentage increases.
The right panel of Figure 9 plots the estimate of π2020 against the assumed infection percent-
age. The estimate of π2020 increases with the assumed infection percentage in a close to linear
fashion. Similar observations can be made when considering IFR estimates from Centres for
Disease Control and Prevention (2020) and O’Driscoll et al. (2021), as shown in Figures 10 and 11.
These observations can be accounted for as follows. If the infection percentage increases while the
age-specific IFRs remain unchanged, then the projected overall severity of the pandemic would
increase but the distribution of the impact across ages would not be affected. As a consequence,
parameter π2020, which measures the overall fatality level and infectiousness of COVID in 2020,
increases with the assumed infection percentage, but the pattern of cx,2020, which can be viewed as
the standardised age-specific pattern of the impact of COVID, remains largely unchanged.

Figures 9, 10, and 11 also suggest a simple method to adjust the estimated model when the
infection percentage changes while IFRs remain the same. Let us suppose that expert opinions
suggest that the infection percentage would be reduced to 25% due to new restrictions. The new
value of π2020 can be approximated by a linear interpolation between the values of π2020 corre-
sponding to infection percentages of 20% and 30%. The approximation yields 18.50 as an estimate
for π2020, while re-estimating the model completely produces an estimate of 18.58. The approx-
imation method appears to be sufficiently accurate and may be used to save the computational
burden of a complete re-estimation.
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Figure 11. Estimates of cx,2020 and π2020 obtained using the best IFR estimates from O’Driscoll et al. (2021) and various
infection percentages.

Although we assume in this paper that the infection percentage is age invariant, we are aware
that researchers such as Davies et al. (2020) have demonstrated age-dependent effects in the trans-
mission and control of COVID. Should age-specific infection percentages are available and used
as an input of our proposed model, the dependence between age and infection percentage would
be reflected in the series of cx,t .

6.2. Long-term impact of COVID
It is very challenging to predict the long-term impact of COVID due to the uncertainty concerning
vaccination, virus mutation, and government policies. In what follows, we present three possible
scenarios of the long-term impact of COVID, taking into account of a range of assumed expert
opinions. In these scenarios, we assume that IFRs do not change over time but the infection rate
decreases gradually. Each scenario is illustrated by a simulated path of m70,t for t beyond 2020.
The model used in the simulation is estimated based on the best IFR estimates from Ferguson et
al. (2020) and a 40% infection rate in 2020.

Scenario 1: Excess mortality tapers off and mortality dynamics revert back to the long-term
COVID-free trend

Let Ft be the infection rate in year t. We use a function of time to describe the reduction in
infection rate over time. A possible choice is a power function expressed as Ft = F2020δt−2020,
where 0< δ < 1. The value of πt for t> 2020 can be approximated by the linear interpolation
described in section 6.1. When such a power function is used, Ft approaches to 0 as t increases, so
that the impact of COVID will not completely disappear but will reduce to a negligible level.

In the top left panel of Figure 12, we show simulated paths of m70,t beyond t = 2020, for dif-
ferent values of δ in the power function for Ft . For comparison, we also plot a simulated path
that is not subject to any COVID impact. As the value of δ increases, it takes longer for the mor-
tality dynamics to revert to the long-term COVID-free trend. Using δ = 0.1, reversion is almost
complete in 4 years; but with δ set to 0.9, the impact of COVID is still visible in 30 years.

Scenario 2: Excess mortality reduces for several years and then remains constant

In this scenario, the impact of COVID is long-lasting, but will become much lighter com-
pared to the 2020 level due to, for example, vaccination. This scenario echoes the view of Oliver
(2020), who asserts that COVIDmay have long-term health effects that survivors may suffer from.
Assuming that the excess mortality caused by COVID reduces for n years and then remains level,
a suitable function for modelling the residual effect of COVID is Ft = F2020δmin (t−2020,n).
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Figure 12. Simulated paths ofm70,t for 2021 and beyond in the three scenarios of long-term COVID impact under considera-
tion.

In the top right panel of Figure 12, we plot a simulated path of m70,t with δ = 0.5 and n set to
various values. When n is set to 3, excess mortality ceases to reduce in year 3 and significant excess
mortality remains afterwards. When n is raised to 5, the reduction in excess mortality lasts longer
and the residual excess mortality after the cessation of reduction in year 6 is smaller.

Scenario 3: Excess mortality gradually reduces and a permanent downward shift in mortality
occurs due to positive behavioural changes and improved healthcare practice

This scenario combines the wear-off of excess mortality and a permanent downward shift in
mortality. The downward shift is represented by d(i)x,tψ

(i)
t 1{t≥Ti+1} in themortality model. The pos-

itive impact may be driven by behavioural changes and changes in health care system (Edwards,
2020). The positive impact induced by COVID is very difficult to be modelled statistically, so
expert opinions are sought to determine the relevant parameters.

We illustrate this scenario by assuming that expert opinions indicate a positive impact of
COVID will begin from 2021 and will be uniform across all ages. Accordingly, we set d(i)x,tψ

(i)
t =

−0.05 and δ = 0.5. A simulated path of m70.t obtained from this setting is shown in the bottom
panel of Figure 12.We observe that the death rate reduces continuously and its trajectory becomes
lower than the long-term COVID-free pattern in 4 years. The positive impact is permanent,
affecting all death rates starting from 2021.

6.3. COVID-alike pandemics in the future
As pandemics are very rare events, a reliable statistical estimation of the expected inter-arrival time
of pandemics is not possible. To illustrate the impact of possible COVID-alike pandemics in the
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Figure 13. A simulated path ofm70,t beyond 2021, under the assumption that COVID-alike pandemics will occur at a rate of
λ= 1/100.

future, let us suppose that expert opinions indicate that pandemics like COVID are 1-in-100-years
events. Accordingly, we set λ to 1/100.

Figure 13 presents a simulated path of m70,t , which is perturbed by not only COVID but also
a COVID-alike pandemic that occurs in 2029. In the simulation, the wear-off parameter δ is set
to 0.5. Although the same values of cx,t and πt are used for the 2020 and 2029 pandemics, the
size of jump in m70,t is much lower for 2029 than 2020. This outcome is due to the fact that our
model implies a multiplicative pandemic effect, as discussed in section 2.4. Specifically, our model
implies that a mortality rate that incorporates pandemic impacts is the product of the correspond-
ing mortality rate that is not subject to any pandemic impact and a multiplicative factor of ecx,tπt .
As the pandemic-free mortalitym70,t in 2029 is lower than that in 2020 due to long-termmortality
improvements, the absolute value of excess mortality in 2029 is lower than that in 2020.

We further present the fanplot for 10,000 simulated paths of m70,t in Figure 14. The paths
shown in the left panel incorporate the possibility that COVID-alike pandemics will occur in the
future, while those shown in the right panel do not. The median, 80th percentile, and 90th per-
centile appear to be very similar between the two panels. However, the 95th and 99th percentiles in
the left panel are very spiky due to the possible future pandemics. As the frequency of pandemics
is very low, only the sample paths corresponding to the worst scenarios are affected.

7. Incorporating Parameter Uncertainty into the Simulation of Future Mortality
In section 4, we observe that the IFR estimates from the three different studies under consider-
ation result in significantly different estimates of cx,2020 and π2020. It should be noted that the
IFRs provided by the three studies are subject to estimation uncertainty, an issue that we now
investigate.

In the report of the Centres for Disease Control and Prevention (2020), lower and higher esti-
mates of IFRs are provided. We use them to approximate 95% confidence intervals for the IFR
estimates of the Centres for Disease Control and Prevention (2020).

O’Driscoll et al. (2021) generate 15,000 simulated IFR values for each age range. We approx-
imate confidence intervals for the IFR estimates of O’Driscoll et al. (2021) using the 2.5th and
97.5th percentiles of the 15,000 simulated IFRs.

Ferguson et al. (2020) provide only best IFR estimates, which are obtained by adjusting the
values in the work of Verity et al. (2020), but not any measure of uncertainty surrounding
the IFR estimates. We approximate 95% confidence intervals for the IFR estimates of Ferguson
et al. (2020) by making a proportional adjustment to the 95% confidence intervals of the IFRs
provided by Verity et al. (2020). The proportion is calculated as the ratio of the best IFR estimates
of Ferguson et al. (2020) to those of Verity et al. (2020).
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Figure 14. Simulated paths of m70,t under the assumptions that COVID-alike pandemics will occur (left panel) and will not
occur (right panel) in the future.
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Figure 15. Best estimates and 95% confidence intervals of IFRs from the three studies under consideration.
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Figure 16. Impact of the uncertainty in the IFR on simulated mortality.

In Figure 15, we plot the best estimates and 95% confidence intervals of IFRs after interpolation
from the three studies. The confidence intervals for the IFR estimates of Ferguson et al. (2020)
and the Centres for Disease Control and Prevention (2020) are significantly wider than that of
O’Driscoll et al. (2021).

We now examine how the uncertainty surrounding the estimated IFRs may affect simulated
long-term mortality. In Figure 16, we compare the simulated paths of m70,t that are obtained
using the values of cx,2020 and π2020 calibrated to IFRs at their best estimate levels, and upper and
lower limits in their respective confidence intervals. In the simulation, it is assumed that the excess
mortality caused by COVID wears off at a rate of δ= 0.5 and that COVID-alike pandemics will
not occur in the future. Also, to focus on the uncertainty surrounding the IFR estimates, we use
the same simulated path of kt for all calculations.

Let us compare the top left panel in Figure 16 and the right panel in Figure 14. The sample
paths in both diagrams are obtained using the IFRs of Ferguson et al. (2020). In the absence of the
uncertainty arising from the IFR estimates, the variation inmx,t comes solely from the randomness
of kt , and as shown in the fanplot in right panel of Figure 14, the confidence interval of mx,t for
the first few years after the commencement of COVID is narrow. The result shown in Figure 16
suggests that if the uncertainty arising from the IFR estimates is incorporated, then the uncertainty
arising from the IFR estimates would be the primary source of forecast uncertainty for the first few
years after COVID; however, as the excess mortality due to COVID wears off, the randomness of
kt would take over as the major source of forecast uncertainty.

Similar arguments can be made for the IFR estimates of the Centres for Disease Control and
Prevention (2020). However, as the confidence intervals for the IFR estimates of O’Driscoll et al.
(2021) are very narrow, we expect that the randomness of kt would always be the major source
of forecast uncertainty when these IFR estimates and their measures of uncertainty are taken as
input.
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We can also use simulation to incorporate all sources of uncertainty: kt , possibility of COVID-
alike pandemics in the future, imputation, and IFR estimates by taking the following steps:

1. Select a set of simulated IFR estimates and obtain projections of COVID death counts.
2. Obtain a set of imputed total death counts for each age in the current year.
3. Using this set of imputed values, estimate the first and second levels of parameters in the

mortality model by maximising PQL.
4. Determine the remaining parameters on the basis of expert opinions.
5. Simulate Nk paths of kt , the occurrence times of COVID-alike pandemics and their impacts

over a specific forecast horizon on the basis of the parameters estimated and determined in
the previous steps.

6. Calculate simulated paths of future mortality.
7. Repeat steps 2–5 for Np set of imputed values.
8. Repeat steps 1–6 for Nf set of IFR estimates.

8. Conclusion
In this paper, we contribute a stochastic mortality model that uses three levels of parameters to
incorporate information from historical mortality data, external forecasts, and expert opinions,
respectively. While historical mortality data inform the model about long-term mortality dynam-
ics, external forecasts and expert opinions, which continuously evolve with the pandemic, train
the model with the newest knowledge acquired about the pandemic. From the model, insurers
and pension plan sponsors can obtain mortality scenarios which would aid them in assessing their
mortality/longevity risk exposures.

We find that the commonly used two-stage method for estimating stochastic mortality models
cannot disentangle the impact of COVID and fluctuation in long-term mortality improvements.
We address this problem with a one-stage estimation method, which simultaneously decomposes
mortality into age and period effects and estimates the process for the period effect dynamics.

Historical mortality data and three different sets of external forecasts are collected to esti-
mate the first two levels of parameters. We use multiple imputation to generate age-specific
non-COVID death counts in 2020, which are required for parameter estimation but are not
yet available as of this writing. Parameter estimates are subject to uncertainty, due to potential
errors in the multiple imputation, uncertainty surrounding the external forecasts, and the differ-
ences among different available external forecasts.We illustrate how parameter uncertainty can be
incorporated into the simulation of mortality paths and demonstrated that the latter two sources
contribute the most to the overall parameter uncertainty. If the practitioners ignore the parameter
uncertainty in the simulation of future mortality scenarios, they may severely underestimate the
risk of their portfolio.

The estimates of the first-level parameters, which intend to capture long-term mortality
dynamics, change slightly when different imputed age-specific total death counts in 2020 are
used as input; however, given their purpose, the first-level parameters should be insensitive to
the imputed 2020 death counts. In future research, one may investigate how this problem may be
ameliorated by considering other model structures such as those developed from the CBDmodel.

The third-level parameters in the model are designated to incorporate expert opinions on the
long-term impact of COVID and the possibility of COVID-alike pandemics in the future. In our
illustration, we demonstrate how the third-level parameters may turn out to be when different
expert opinions are adopted. In the current version of the model, only one set of expert opinions
can be incorporated at a time. A possible direction of future research is to elicit opinions from
multiple experts and incorporate these opinions into the mortality model simultaneously using a
Bayesian approach.
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Our study examines the pandemic impact on all-cause mortality.While an analysis of mortality
by cause of death may be more informative, it requires more granular data which are difficult to
obtain at the early days of a pandemic. Most early epidemiological studies on COVID mortality
forecast the number of COVID deaths only, but not the number of deaths by other causes, due
to limited data availability. As the pandemic evolves and mortality data by cause of death become
available, it is warranted to analyse and model the pandemic impact on mortality by cause of
death.
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