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SYMMETRIES AND VARIATION OF SPECTRA 

To Sujit Kumar Mitra on his Sixtieth birthday 

R. BHATIA AND L. ELSNER 

ABSTRACT. An interesting class of matrices is shown to have the property that 
the spectrum of each of its elements is invariant under multiplication by p-ih. roots of 
unity. For this class and for a class of Hamiltonian matrices improved spectral variation 
bounds are obtained. 

1. Introduction. One of the basic facts of perturbation theory is that a perturbation 

of order e in the entries of an n x n matrix leads, in general, to a perturbation of order 

ex'n in its eigenvalues [1], [10], [13], [14]. Quantitative expressions of this phenomenon 

are found in various spectral perturbation bounds of the kind described below. 

Let Cn be the complex Euclidean space with its Euclidean norm || ||. Let A be an n x n 

matrix, identified, as usual, with a linear operator on Cn. The operator norm of A, also 

called the bound norm or the spectral norm is defined as ||A|| = sup{||Ax|| : ||x|| = 1}. 

Let A, B be two matrices with eigenvalues a\,...,an and /3\,...,/3n respectively, each 

eigenvalue being counted as often as its multiplicity. A distance between these two n-

tuples can be defined as 

( 1 ) v(A, B) = min max | at — /3CT(|-)|, 
o 1 <i<n 

where a runs over all permutations on n symbols. One wants to find bounds for this 

eigenvalue variation in terms of the variation \\A — B\\ between the matrices. 

It can be proved that 

(2) v(A,B) <c(2M)x-xln\\A-B\\{ln, 

where, M = max(||A||, \\B\\) and c is a constant. See [1, Chapter 5] and references therein; 

the quantity v(A, B) is denoted by d(EigA, Eig B) in [1]. 

As the discussion in [1, p. 98] shows, the exponent 1 jn occurring in (2) is an essential 

feature of the general spectral variation problem. Until recently the best inequality of this 

type involved a constant c that depended on and grew with the dimension n. Only recently 
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it has been established that a bound like (2) with the constant c bounded by 4 holds for 
all values of rc. See [5], [12]. 

In other words, 

(3) v(A,£) <4(2Af)1-1/n||A-JB||1/'1, 

for all matrices A, B of order n. Somewhat stronger results are known [5], [11]; however, 
we will use (3) in our discussion. 

In this paper we are concerned not with improving the constant c but with the question: 
when can the exponent 1 jn be improved? It is well-known that when the matrices A and 
B are from some special classes, then one can do better. For example, when A and B are 
normal then one can prove that 

(4) v(A,£) < 3 | | A - # | | . 

See [3], [4]. The factor 3 in the inequality (4) can be dropped when A, B are both Her-
mitian or both unitary and in some other cases. However, Holbrook has given examples 
showing that in (4) the factor 3 cannot be replaced by 1 in general. See [ 1 ] and references 
therein. 

In [2] it was shown that when the eigenvalues of A and B have a certain symmetry, 
viz., the eigenvalues occur in pairs, ±A then the exponent \ jn occurring in (2) can be 
improved. Matrices belonging to the Lie algebras of the complex, orthogonal group and 
of the complex symplectic group have this property. 

Here we will show that similar improvements can be obtained for some other classes 
of matrices whose eigenvalues are symmetrically distributed. In Section 2 we identify an 
interesting class of matrices whose eigenvalue have the following property: A is an eigen
value iff so are a;A, a;2 A,... , uf~x A for some primitive /?-th root of unity u. In Section 4 
we study the class of Hamiltonian matrices, whose eigenvalues are symmetric about the 
imaginary axis. In both cases improved spectral variation bounds are obtained. 

While the motivation for our work came from our interest in eigenvalue variation, our 
analysis leads to some other matters of general interest; these are also discussed below. 

2. Matrices with Carrollian spectra. Let rc,/?, r be positive integers, n = pr. We 
will say that an n-tuple of complex numbers is p-Carrollian if its elements can be enu
merated as 

(5) (Ai,.. . , Ar, UJXU • • •, cjAr,..., uf~lXu . . . , uf~ _1Ar), 

where UJ is a primitive p-t\\ root of unity. We will say that an n x n-matrix has a p-
Carrollian spectrum if its eigenvalues counted according to their algebraic multiplicities 
can be enumerated as above. In [2] and [1, p. 92] the special case p = 2 was examined; 
what was called Carrollian there becomes 2-Carrollian in our present terminology. 
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Let X be a matrix in a block-partitioned form having the following pattern 

0 Ai 0 0 ••• 0 
0 0 A2 

(6) X = 

0 0 

V-i 
0 

pr. Let 

0 0 0 0 
.Ap 0 0 0 

Here A\,...,AP are square matrices of order r and X is a matrix of order n 
Y = diag(/r, uln . . . , uf~lIr), then obviously YXXY = LUX, X is similar to uX. 

Thus the matrix (6) has a /7-Carrollian spectrum. (A little more generally, the same 
is true if the partitioning (6) is such that all the diagonal zero blocks are square but the 
other blocks are rectangular). 

In [7] Choi proved the following interesting proposition. Let 

R Ax' 

LA2 -R 

where A\,A2 and R are r x r matrices such that R commutes with A\. 
2-Carrollian spectrum. Notice that we can write 

(7) 

Then Z has a 

(8) 

where 

(9) 

Z = X+Y, 

R 0 
0 -R 

Choi's Proposition then says that when p = 2, the property of having a /7-Carrollian 
spectrum is preserved when we perturb a matrix of the form (6) by adding to it a matrix 
of the form (9), provided R commutes with A\. We shall prove that this phenomenon 
takes place for all values of p. 

But let us remark beforehand that, though Z in (7) has a 2-Carrollian spectrum, Z is 
not similar to —Z in general, see the example 

0 
0 

\ 0 

0 
- 1 
1 
0 

0 
1 / 

THEOREM 1. Let p be any positive integer and let R,A\ 
such that R commutes with all Ai except one. Let 

A2, ,AP be rxrmatrices 

(10) •X+Y, 

where, X is as in (6) and Y is the block-diagonal matrix 

(ID Y = 

a{R 
0 

0 
a2R 

0 • 
0 • 

• 0 
• 0 

0 0 0 • • apR 
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{oc\9... ,ap} = {l,u, ...,uf l} and where uo is the primitive p-th root of unity. Then the 
spectrum ofZ is p-Carrollian. 

The proof of Theorem 1 is delayed until the end of this section. 
We will call ap x p block matrix cyclic if it has the form displayed in (6), i.e., if all 

the blocks except those on the first super-diagonal and the one in the southwest corner 
are zero. We will denote by 

(12) D = diag(Di,D2,...,Dp), 

Sip x p block-diagonal matrix. Let 

(13) T = D + X, 

where D and X are as in (12) and (6), respectively. We call such a matrix diagonal + 
cyclic block matrix. 

Every 2 x 2 block matrix has the above form. If D\ is invertible such a matrix can be 
factor! sed as 

(14) 

Our first observation is that such a factorization can also be done for diagonal + cyclic 
block matrices of higher order. To assist the reader let us first write the 3 x 3 case: if D\ 
and £>2 are invertible we can write 

"D, A," Dx 0 1 [/ £>7'A,-
_A2 D2 .A2 D2- -A2£»r'A,J [0 / 

(15) 

where, 

(16) 

D, A, 0 
0 D2 A2 

01 

.A3 0 

0 

£>3 

0 D2 

= LU, 

0 
0 

A3 -A3DYXA{ D3+A3D71AiD^1A2 

(17) 

In general, we have: 

U • 

i Dr Ai 
/ 
0 

0 
D^XA2 

I 

THEOREM 2. Let T be a p x p diagonal + cyclic block matrix defined by (6), (12) 
and (13). Let D\, D2 , . . . ,Dp^\ be invertible. Then we canfactorize T as T = LU where 
L and U are block lower and upper triangular matrices respectively, such that 

(i) L = D + S, 
(ii) S is a p x p block matrix with all its blocks except those on the last row zero, 
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(Hi) the last row of S has entries 

bp\ = Ap, 

SP2 = -ApDYlAu 

Sp3=ApD;xAlD2
xA2l 

Spp = (-\f-xApD^xAxD2
xA2D^xA3 • • -D^Ap- i . 

(iv) U — I + W, where W is a p x p block matrix all whose blocks are zero except 
those on the first superdiagonal and these are given by 

W]2=D;lAuW23=D2-
lA2,...,Wp^p = Dp:llAp^. 

In particular 

(18) detr = det(D, • • Dp^)det(Dp + (-\y~xApD^AxD2
xA2 • • -£>;V/>-i) 

We remark that the factorization in Theorem 2 is just the block LU-decomposition 
used in many contexts in numerical linear algebra. 

PROOF OF THEOREM 1. Apply the above Theorem 2 with D = Y — XI, where Y is 
given by (11). For any A which is not an eigenvalue of R we get from (18) 

det(Z- A/) = det(H(JR - A) + (-\f-xApAx • • -Ap-i) = det(Z- uA/), 

as the product is unchanged when A is replaced by uX. 
By continuity, this holds for all A. Hence the spectrum of Z is /7-Carrollian. • 

The proof given above was inspired by the one given by Choi [7] for the case p — 2. 

3. Eigenvalue variation under Carrollian symmetry. Following the ideas in [2] 
we now obtain improved spectral variation bounds for matrices with Carrollian spectra. 
Let 

(19) f(z) = zn+alZ
n-l + -- + an, 

(20) g(z) = zn + blz
n-x+--- + bn, 

be two monic polynomials of degree n with roots a\,..., an and f3\,... ,j3n respectively. 
Let 

(21) 7 = max{a : 30 < t < 1, s.t. tf(a) + (1 - t)g(a) = 0}. 

Then the roots az and fy can be enumerated in such a way that 

(22) max ^ - # 1 a l t k - ^ T " - * ) 1 ' " . 
1 <i<n ^ — i > 
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This result proved in [5] improves earlier results of this type quoted in [1]. 
Recall that, up to a sign, the coefficient ak in (19) is the k-th elementary symmetric 

polynomial of the roots of/, i.e., 

(23) ak = (-l)ksk(au...,an) = (-1)*X) auai2-- • ak, 

where the summation is taken over all choices of indices 1 < i\ < h < • • • 4 < n. Now, 
suppose n—pr and the roots of/ constitute a /?-Carrollian n-tuple. Enumerate this as 

(a i , . . . , a r ,uxx\ , . . . ,uxxn... ,uf~la\,... ,uf~lar). 

One can check that in this case 

,~A^ , i 0 if k ^ /p, 
(24) **<«••••••««>=( *,(«?,...,a?) if k=jp, 

for j = 1,2,..., r. From (23) and (24) one concludes that a?x,..., oft are the roots of the 
polynomial 

F(z) = zr + ̂ z r _ 1 + a2pZr"2 + • • • + arp. 

We thus have: 

PROPOSITION 3. Let f, g be two monic polynomials of degree n — pr. Let the roots 
ct\,..., an and (5\,..., (3n both be p-Carrollian. Let 7 be as in (21). Then, for a suitable 
labelling of the roots, we have 

(25) max \cT. - # | < A\± \akp - ^ | ^ - * ) ) ' / r . 
\<i<n ^k~\ 

From this we can obtain a bound for the distance between a, and /?/, provided all of 
them are outside a prescribed neighbourhood of zero. 

LEMMA 4. Let x,y be complex numbers such that \x\ > p and \x? — y | < C for 
some integer p. Then for some k, 0 < k < p — 1, we have 

(26) |*-aAy| <C/ff~\ 

where UJ is the primitive p-th roots of unity. 

PROOF. Comparing the coefficients of t in the identity 

! [ [ ' - ( * - ^ ) ] = (-mix -ty- / ] , 

one sees that 

(27) fy-i(* - y,x -uy,...,x- wP~xy) = p ^ " 1 . 
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Now, the right hand side of (27) has modulus larger than/?^ -1 and the left hand side is a 
sum of p complex numbers. Hence, at least one of these summands must have modulus 
larger than ff~l. In other words, there exists k, 0 < k < p — 1, such that 

(28) U\x-Jy\>ff-]. 
rfk 
7=0 

Since n ^ J \x ~ <Jy\ = \*?-?\ < C the inequality (26) follows from (28). • 

COROLLARY 5. Assume the hypotheses of Proposition 3 and that the roots off and 
g lie outside a p-neighbourhood of the origin. Then, for a suitable labelling of the roots, 
we have 

(29) max \at -/3,-| < - ^ ( £ \akp - bkp\Y
{r-k))'A 

\<i<n ptJ l ^ = | J 

REMARK. When/7 = 2 and both |JC| and |^| are larger than p, the inequality (26) can 
be improved, leading to a similar improvement in (29). To see this note that 

\x-y\2 + \x + y\2 = 2(\x\2 + \y\2)>4p2. 

Hence, either \x — y\ or \x+y\ must be larger than 21/2p. Consequently, one of them must 
be smaller than C/2xl2p. 

Now, recall from [6], [1, p. 97] that if A and B are matrices whose characteristic poly
nomials are given by (19) and (20) then 

(30) i ^ - ^ i ^ ^ r W ^ ^ i i A - B i i , 

where M — max(||A||, ||#||). Notice that this M is an upper bound for the quantity 7 
defined by (21). 

So, if n = pr and A, B have Carrollian spectra, we obtain from (25) and (30) 

(31) max | o f - # | ^Aj^kplf)] MP~xlr\\A- B\\llr. 
\<i<n l l l^r} \kp 

We thus have 

THEOREM 6. Let n = pr and let A, B be two n x n matrices whose spectra are 
p-Carrollian. Then 

(32) v(Ap,Bp) <AcnpM
p-xlr\\A-B\\xl\ 

where M — max(||A||, \\B\\) and 

*,-(£<]'"' 
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If the eigenvalues of A and B are outside a p-neighbourhoodofO then 

(34) v(A,B) < ^Cr,pM"-{lr\\A - B\\''r. 

REMARK. If n = rp and LJ is the primitive p-th root of 1 we can write 

P 7=0 y=0 

Here, in the first step we used the fact that YfjZo ^ = /? if & is an integral multiple of/?, 
and is 0 otherwise. In the third step we have used the identity E£=0 £(*)•** — nx( 1 +-*")"" ' • 

For p — 2 the above identity reduces to the better known identity 

while the case p = 3, n — 3r yields 

£3<(iH2""+<~' , ' ) 

(as pointed out by the referee). While for small p one can certainly get a closed form, a 
general simple formula seems not to be known. 

The above identity however reduces the computation of cKiP to that of a trigonometric 
sum. 

The following lemma gives a circumstance under which the eigenvalues of a cyclic 
matrix are outside a neighbourhood of zero. 

LEMMA 7. Let X be a cyclic matrix given by (6). If all the Aj, 1 < j < p, are 
invertible, then the eigenvalues ofX satisfy the inequality 

(35) |A| > [f[ ||A 7 - 1 | H 

7=1 

PROOF. Let X\(T),..., \r(T) denote the eigenvalues of an r x r matrix T arranged 
in decreasing order of modulus. Then 

(36) Ar(A,A2 • • .A,) = Ai((A|A2
1.A)-1) > K A2-V--K-|r 

Since X? is block diagonal whose diagonal blocks are A^DA^) • • • Aa(P), where a varies 
over cyclic permutations of {1,2,...,/?}, the eigenvalues of Xp are the eigenvalues of 
A\A2 - - -Ap, each repeated p times. The inequality (35), therefore, is a consequence of 
(36). 
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4. A class of Hamiltonian matrices. Let Ir denote the identity matrix of size r and 
let 

0 Ir 

-Ir 0 

A matrix A of order n — 2r is called Hamiltonian if 

(37) 

Since 

(38) 

A is Hamiltonian iff 

(39) 

J A = (JAf. 

JAJ-

•J*, 

-A*. 

If a matrix of order 2r is partitioned into blocks of order r as 

A Ax A2 

A3 A4 

then it follows from (39) that A is Hamiltonian iff A\ = —A4, A3 = A3, A\ — A2. Thus, 
Hamiltonian matrices can be characterized as those for which 

(40) A = 
A3 

A2 •AX,A^ = AÎ. 

We will denote the class of these matrices by M (r). It follows from (39) that À is an 
eigenvalue of A iff so is —A. Thus the spectrum of a Hamiltonian matrix is symmetric 
about the imaginary axis. 

Let fW (̂r) denote the subclass of fyf(r) consisting of those matrices A in whose block 
decomposition (4) the matrices A2 and A3 are both positive definite. For such a matrix 
define 

(41) PA = min(Amin(A2), Amin(A3)), 

where Amin denotes the smallest eigenvalue. 

PROPOSITION 8. IfAe M+{r) then all its eigenvalues are outside the strip {z : 
|Rez| < P A } . 

PROOF. Let A = a + ib be an eigenvalue of A with a > 0. Let u — (w, v) be the 
corresponding normalized eigenvector, where w, v G Cr. Then 

(42) 

(43) 

A\u + A2v — (a + ib)u, 

A3W — A\ v — (a + ib)v. 
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Take the inner product of (42) with v, of (43) with u and then the complex conjugate of 
the second resulting equation. This gives the pair of equations 

(A\u9v) + (A2v, v) = (a + ib)(u,v), 

(A3M, u) — (A\u,v) — (a — ib)(u,v), 

which, in turn, lead to the equation 

(44) (A2v, v) + (A3M, u) = 2a(u, v). 

Since UJ has norm one we have 

2(w, v) <2||w|| ||v|| < ||w | |2+||v||2 = | |w||2= 1. 

So, (44) implies 

(45) a > (A2v, v) + (A3M, u). 

The righthand side of (45) is a positive number lying in the numerical range of the matrix 

A , and hence is larger than the minimum eigenvalue of this matrix. So a > PA . 
[ vJ A3 J 
Since the spectrum of A is symmetric about the imaginary axis the proposition follows. • 

Notice that the class 9\4+(r) is closed under convex combinations. Further, if A, B G 
!K(r)andO <t < l,then 

(46) P{\-t)A+tB > min(pA, pB). 

This is a consequence of the concavity of the function Amin on the class of positive definite 
matrices. 

Our next result is an improved spectral variation bound for matrices in the class fA _̂(r). 
The improvement is of the same kind as in Section 3. The bound involves the power \jr 
of \\A - B\\ rather than \/n. 

THEOREM 9. Let A, B be matrices of size n = 2r, and let A, B e M+(r). Then 

(47) v(A,fl) < 21-1Amin(p/,,pfi)~
1(||A|| + \\B\\f-x I r\\A - B\\x I \ 

(48) v(A,fl) <22-xlr(pA + pB)-\2Mf-xlr\\A-B\\xlr, 

where, M = max(||A||, ||fl||). 

PROOF. We shall follow the argument in [5]. Let A{t) = (1 - t)A + tB,0 < t < 1. 
Each matrix in this family is in 9rf+(r) and hence has no purely imaginary eigenvalue. As 
t varies from 0 to 1 the eigenvalues of A(t) trace out 2r curves, r of which lie in the right 
half plane and the other r are their reflections in the imaginary axis. An upper bound for 
the diameters of these curves will be an upper bound for v(A, B). 

Let r be one such curve in the right half plane. Let À G T. Let p = min(pA, pB). By 
(46) pA(t) > p and hence, by Proposition 8, Re A > p. 
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To prove (47) we may assume, without loss of generality, that ||A|| < ||#||. If A has 
eigenvalues A/, we have 

|det(A-A/)| = niA-A*l 

(49) = IT |A - A,| - IT | A - A , | 
ReA,<0 ReA,>0 

>(2p)r n |A-A,-|, 
ReA,>0 

because Re A > p and Re A/ < p for all those A/ which are in the left half plane. 
Now if a, b are any two points on T and A/, / = 1, . . . , r are any r points in the plane 

then there exists a point A on T between a and b such that 

n i A - A , , > ^ . 
i=\ Z 

See [5, Lemma 1]. So, from (49) we obtain that between any two points a, b on Y there 
exists a point A on T such that 

or\a — b\r 

(50) | d e t ( A - A / ) | > ^ _ _ L . 

On the other hand, we have from [8] 

(51) IdeKA-A/^l lA-BlKllAll + HBll)2'-1. 

It follows from (50) and (51) that \a — b\ is bounded by the righthandside of (47). As 
remarked earlier, this proves (47). 

To prove (48) assume, without loss of generality, that PA > PB- (This fixes A and B 
and we will now not be able to assume ||A|| < ||Z?|| as done in proving (47)). Instead of 
(49) we can write, with the same notations, 

(52) |det(A-A/) |>(pA+P*) r jQ |A — Ai|. 
ReA|>0 

because Re A > PB and Re A, < PA for all A; in the left half plane. Instead of (50) and 
(51) we now have 

(53) det(A-Xl)>^+fr\r
h^ 

and 

(54) det(A - XI) < \\A - 5||(2M)2r"1. 

The inequalities (53) and (54) lead to (48) as before. • 
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