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The object of this note is to construct a set of real three-dimensional Lie groups such that
every real three-dimensional Lie group is locally isomorphic with some group in the set. The
construction is effected by first finding canonical forms for the constants of structure of real
three-dimensional Lie algebras ; these canonical forms give rise to certain bilinear forms, and
the Lie groups are obtained as linear groups isomorphic with groups of automorphisms which
leave these bilinear forms invariant.

In the case of complex three-dimensional Lie groups a similar construction is possible.

1. Lie algebras over a three-dimensional vector space.

Let K be a commutative field, V3(K) a three-dimensional vector space over K, and L a
Lie algebra f over V3(K) having structural constants { cjt with respect to a basis e*. Let A be
the 3 x 3 matrix (a") defined by

a" = U^ciq, (1)

where eiVQ ( = e1P0) are the usual permutation symbols. The structural constants satisfy§

Equations (2) impose no restriction on the matrix A, on account of the skew-symmetry of the
permutation symbols. Calculation shows that equations (3) are satisfied if and only if the
adjoint of A is symmetric. Conversely, given any 3 x 3 matrix A whose adjoint is symmetric,
the constants cjk defined by

satisfy (2) and (3), and hence determine a Lie algebra over V3(K). Therefore Lie algebras over
V3(K) are in one-one correspondence with 3 x 3 matrices over K whose adjoints are symmetric.

THEOREM 1. Two Lie algebras L, L* over V3(K), whose constants of structure are represented
by the matrices A, A* in terms of some basis, are isomorphic if and only if there is a non-singular
3 x 3 matrix P over K such that \\

\P\A* = P'AP (5)

It is clear that L and L* are isomorphic if and only if there are bases for V3(K) in terms of
which the constants of structure are identical. Let e,-, e* be two bases for V3(K). Then there

are elements p\ of E such that ^i^pfe*, where the matrix P=(pi) is non-singular. Suppose
that A, A* represent the constants of structure of the algebras L, L* in terms of the basis e,.
Since the structural constants of a Lie algebra transform as components of a tensor of co-
variant order two and contravariant order one, and the permutation symbols em transform as

t See, for example, C. Chevalley, " Theory of Lie groups " (Princeton University press), Chapter IV.
+ The suffixes i, j , k, p, q take the values 1, 2, 3 and the summation convention for repeated indices is

used.
§ Chevalley, loc. cit.
|| | P\ denotes the determinant ofP, and P' denotes the transpose of P.
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components of a third order contravariant tensor of weight - 1, the elements a" of the matrix
A transform as components of a second order contravariant tensor of weight - 1. Hence L
is represented by A* in terms of the basis e,- if and only if | P\ A* = P'AP. Theorem 1 is-
therefore proved.

2. Canonical forms for the constants of structure of real three-dimensional Lie algebras.
Two matrices A, A* satisfying (5) for some non-singular matrix P will be called quasi-

congruent. I t is easily shown that quasi-congruence is a proper equivalence relation, and that
it preserves rank, symmetry, skew-symmetry and symmetry of the adjoint matrix. Canonical
forms for the constants of structure of three-dimensional Lie algebras can therefore be obtained
by finding canonical forms for quasi-congruence classes of 3 x 3 matrices whose adjoints are
symmetric. This can easily be done for the real and complex fields ; in the remainder of this
paper only the real case will be considered.

LEMMA. TWO real 3 x 3 matrices A, A* are quasi-congruent if and only if either (i) A is
congruent to A* or (ii) -A is congruent to A*.

Suppose that A and A* are real 3 x 3 matrices satisfying (5) for some real non-singular
3 x 3 matrix P. If | P | >0 , put Q = PjJ\ P \ • then A* = Q'AQ and so A and A* are con-
gruent. If| P | < 0 , put Q = P/J(-\P\); then A*=-Q'AQ, and so -A and .4* are
congruent. Conversely, if A and A* satisfy A* = Q'AQ for some non-singular matrix Q,
then | P | A* — P'AP, where P = Q/\ Q |, so that A and A* are quasi-congruent. Similarly, if
-A and A* are congruent, then A and A* are quasi-congruent.

THEOREM 2. Every Lie Algebra over a real three-dimensional vector space is isomorphic with
one of the folloioing algebras :

LJoc)

/~1 — 1 r* — 1 r3 — 1
°23 — x ''SI — L U12 — A

r1 — 1 r2 — 1 r3 — - 1
°23 — x G31 — l G12 — x

C| 3 =l C|, = a C§!=1 ( a>0)
A — 1 r2 — n /-2 — — 1

23 — 23 — 31 —

43=1

ffte zero algebra

(in each case the remaining components c£- except those related by (2) are zero).
From Theorem 1 and the lemma, it follows that two Lie algebras L, L* over a real three-

dimensional vector space are isomorphic if and only if either A and A* are congruent or
-A and A* are congruent. Consequently to each set of isomorphic Lie algebras there
corresponds a class of matrices, whose adjoints are symmetric, each congruent to a given
3 x 3 matrix or its negative. Canonical forms for such classes are readily found by using the
usual elementary operations. If A is non-singular, and its adjoint is symmetric, then A
itself is symmetric. The canonical matrices in this case are therefore

If A is singular, the symmetry of the adjoint matrix does not imply that A is symmetric.
However the canonical forms can easily be found to be
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C <x)=(. 1 J (oc>0), C4(a)=Y. - 1 J (a>0),

c5=f-i • A ce=(. A c7=f. . \ca=o.

In the cases of C3(a) and C4(a), there is one canonical matrix for each non-negative value of a.
No two of the matrices in the set are quasi-congruent. The corresponding Lie algebras are
precisely those which are listed in the statement of Theorem 2, which is therefore proved.

The canonical matrices Clt ... , C8 give rise to the following bilinear forms, which corre-
spond respectively to the Lie algebras Llt ... , L8:

f3(a) = x1x2 + axiy2 + y1yi, f4(a) =

3. Real three-dimensional Lie groups.
Let L be a Lie algebra over a real three-dimensional vector space, and let A be the

corresponding matrix with respect to some basis. From equation (5) an automorphism of the
vector space, leaving this matrix unaltered, is represented by a non-singular matrix P such
that

\P\A=P'AP (6)
The set of all non-singular matrices P satisfying (6) for a fixed matrix A forms a group, which
will be denoted by G(̂ 4). A simple argument, similar to that used in proving the lemma in
section 2, shows that this group is isomorphic with the group of matrices Q such that A = Q'AQ
and | Q | >0 ; hence Qt(A) is isomorphic with a subgroup of the group of automorphisms leaving
the bilinear form a^x^j invariant.

In particular, 0(0^),'... , G(C8) are isomorphic with subgroups of the groups of auto-
morphisms leaving fj, . . . , f8 respectively invariant. The groups G ^ ) and G(C2) are in fact
the well-known " rotation groups ". Direct calculations show that the remaining groups can
be represented by matrices of the following forms :

,a -b 0\
(b a + ab 0 ),
\ c d \'
/« b 0\

(b a+ab O J ,
\ c d 1'

*a d (K
(b e 0 ), wh
\c / I'
,cf-ed 0 (K

[ a c e I,
\ b d f'
/ o 0 Ov

( 0 c 0 ) ,
\b d IV

b
G{C4(a)} by ( b a+ab 0 ) , where a 2 -b 2 + aab*0,

d 0>
G(C5) by ( b e 0 ), where

G(C6) by ( a c e ) , where cf^de,
d

G(C7) by I 0 c 0 ) , where ac*O,
\b d 1/

G(C8) bjr arbitrary non-singular 3 x 3 matrices.

https://doi.org/10.1017/S2040618500033153 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500033153


NOTE ON THREE-DIMENSIONAL LIE GROUPS 115

In passing, we observe that G{(?3(a)}, G{C4(a)} and G(C7) are all subgroups of G(C5);
also that G{C3(a)} (a J= 2) is isomorphic with a subgroup of G{C3(0)}, that G{C4(<x)} is isomorphic
with a subgroup of G{C4(0)} and that G{C3(2)} is isomorphic with a subgroup of G(C6). Most
of these relationships follow from the facts that, if P e G {A), then P e G (A + A') and P e G (A - A').

The groups GfCj), ... , G(C8) are all Lie groups ; their Lie algebras contain L1( ... , L8

respectively as sub-algebras. To find Lie groups having L1( ... , L8 as Lie algebras we therefore
find appropriate subgroups of G ^ ) , ... , G(C8). Such subgroups can be found by inspection.
The final results can be obtained in the following form :

OtiCj), G(C2) have Lie algebras L1; L2 respectively. The group H3(a) of matrices of the
form

y
f'(z)-«f(z)

x

0\
0),
1'

where f(z) =p
y"1 exp (̂ ots) sin (yz)
matrices of the form

where f(z) = 8"1 exp

z) sinh (y3z) ($ = ̂ 0.* -4 ) if <x>2, / (z)=zexp2 if a = 2 and f{z) =

= | \ / 4 -a2) if 0 < a < 2 , has L3(a) as its Lie algebra. The group H4(a) of

0v
0),
1 /

sinh (82)
y

has L4(a) as its Lie algebra. The groups
H5, H6, H7 and H8 of matrices of the forms

0
z + 1

sZ-r

( 0
\ y
, 1

( z
\ x
• 1+
( y
^ 0
r a;

( 0
\ 0

1
y

0
1
0
0
y
0

- 1 .

- 1 ,

have L6, L6, L7 and L8 respectively as their Lie algebras. Using these results and Theorem 2,
we obtain

THEOKEM 3. Every real three-dimensional Lie group is locally isomorphic ivith one of the
groujys 0,(0, G(C2), H3(a), H4(a), H5, H6, H7 and H8.
UNITED COLLEGE,

UNN'EESITY OF ST. ANDREWS.
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