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An («, q) graph consists of n nodes and q edges, i.e. q distinct unordered pairs of different
nodes, so that there are no loops or multiple edges. We write T for the number of unlabelled
(«, q) graphs and F for the number of labelled (n, q) graphs. We say that a labelled graph is
symmetric if there is a nonidentical permutation of its nodes which leaves the graph unaltered.
We write r for the order of the automorphism group of the graph, i.e. the group of all those
permutations of the nodes which leave the graph unaltered; we say that the graph is of sym-
metry order r. A graph which is not symmetric is called asymmetric and, for such a graph,
obviously r = 1. We say that an unlabelled graph is symmetric or asymmetric according as the
graph obtained by labelling its nodes is symmetric or asymmetric.

We write N = n(n-1)/2 and B(h,k) = h\l{k\(h-k)\). Then 0 g, q ^ Nand F = B(N,q).
If an (n,q) graph is symmetric of order r, then so is its complement, i.e. the (n,N—q) graph
which has just those edges that the original graph lacks. Hence we can take 0 ^ q ^ (N/2)
without loss of generality. We write fi = (2q—nlogri)ln. We write C for a positive number,
not always the same at each occurrence, independent of n and q. The notations O( ) and
o( ) refer to the passage of n to infinity and each constant implied is a C. If we say that
" almost all " graphs of a particular class have property P, we mean that the ratio of the num-
ber of those which lack the property to the number of those which have the property tends to
0 as n -> oo. All our statements carry the implied condition that n> C.

Erdos and Renyi [1] considered labelled asymmetric graphs and, amongst other results,
showed that almost all labelled graphs on n nodes are asymmetric. They announced the
further result that, if \i -*• oo, then almost all labelled («, q) graphs are asymmetric.

We write T(r) for the number of unlabelled («, q) graphs of symmetry order r and F(r) for
the corresponding number of labelled graphs. Clearly

n\T(r) = rF(r). (1)

We write T(fl) (resp. J(s)) for the number of unlabelled asymmetric (resp. symmetric) («, q)
graphs and ir(a) (resp. Fw) for the numbers of labelled asymmetric (resp. symmetric) («, q)
graphs, so that

F(fl) = F(l), FM=nYF(r), r(fl) = T(l), T(3) = Y T(r).
r=2 r=2

Let Fn be the number of labelled (n, q) graphs which are invariant under the permutation
n of the n labelled nodes. The identity permutation is /, so that F{ = F. By the Polya-Burnside
Counting Theorem [4], we have
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where the first sum is taken over all the «! possible permutations n of the n labelled nodes.
We have

F= "tF(r), T= £T(r)
r = l r = l

and so, by (1),
S = "i (r-l)F(r) = n! £ (r-1)T(r)/r. (2)

r=2 r=2

We require two lemmas.

LEMMA 1. # > -> oo, then S = o{F).
LEMMA 2. Ifn^O, then F = o(S).

I proved Lemma 1 in [6] (in fact, I showed that 5 = o(F) if and only if p -* oo). I prove
Lemma 2 later in the present paper.

THEOREM 1. If n -> oo, then almost all labelled (n, q) graphs are asymmetric; i.e.,

F<" = o(F(0)). (3)

This is the theorem announced by Erdos and Renyi [1]. It follows at once from Lemma 1,
since we have

lF(r)£ I(r
r=2 r=l

THEOREM 2. 7/"^ -> oo, then almost all unlabelled («, q) graphs are asymmetric; i.e.,

T(s) = o(T(a)). (4)
We have

n!T<S» = 4 T ( r ) ^ 2(n!) ^ (r-1)T(r)/r
r=2 r=2

and so (4). Since
pWipU) ^ 2T(a)/T(s) (5)

by (1), Theorem 2 implies Theorem 1.

THEOREM 3. Ifn ^ 0, then almost all unlabelled («, q) graphs are symmetric; i.e.,

We have
n! T(a) = n! T(l) = F(l) ^ F = o(S)

by Lemma 2 and

Sg«! I) T(r) = n!T(s).
r=2

by (2). The theorem follows.
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THEOREM 4. Ifn^O, then, for any fixed R, almost all unlabelled («, q) graphs are of sym-
metry order greater than R.

For, by Lemma 2,

n! f T{r) S R f n! T(r)/r = K £ F(r)
r = l r = l r = l

THEOREM 5. If \x-* — co as n-* ao, then almost all labelled (n, q) graphs are symmetric;
i.e., F(o> = o(F(s)).

I conjecture that the conditions in Theorems 3 and 5 are necessary as well as sufficient
but I am unable to prove this. What I can prove however is the following theorem, which
shows that the conditions of Theorems 1 and 2 are necessary as well as sufficient.

THEOREM 6. If > is bounded above asn-*ao, then F(s) # o(Fw) and T(s) ^ o(T(fl)).
Before proving Theorem 5 it is convenient to prove Lemma 2, since a subsidiary lemma is

needed to prove both.

Proof of Lemma 2. Lemma 2 can be deduced from an asymptotic approximation to T
which I announced in [7] and indeed the result can be seen to be true under the slightly wider
condition that lim/i g 0. Hence Theorem 3 is true under this wider condition. But the
calculations leading to this approximation are very much more elaborate than the proof of
Lemma 2 which I give here.

Let p be the number of nodes unchanged by the permutation n. Then an (n, q) graph
composed of any (/>, q) graph on these p nodes and the other n —p isolated nodes is invariant
under n. Hence

where P = p(p—1)/2. The/> unchanged nodes may be chosen in B(n,p) ways and, when these
are chosen, there are H^n—p) ways of permuting the remaining n—p nodes, where H^ri) is
Euler's rencontre number, i.e. the number of ways of permuting n different objects so that none
remains unmoved. Hence there are just

B(n,p)H1(n-p)

different n which leave just p nodes unchanged.
We have then

p = 0

It was proved by Euler [3, 5] that

H1(n) = (n-1){H1(«-!) + «!(!!-2)}

and, from this, we can prove by induction on « that

£ C(n!) (n£2) .
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Hence, if we write t = n—p and

we have

s/f>ctn,/n0.

We writey = [/i1/2/log «]. A little calculation suffices to deduce the following lemma from
Stirling's Theorem and the Second Mean Value Theorem.

LEMMA 3. If n< C and 0 ^ t ̂ j, then

as /I-> oo.

If \x ^ 0, we deduce that

S/F ^ C ^ e~ul —• oo

as n -> oo. This is Lemma 2.
Proof of Theorem 5. We write £ = Z.(n, 9) for the number of labelled (n, q) graphs which

contain at least 2 isolated nodes and so are necessarily symmetric. Again / = / ( « , q) is the
number of connected labelled («, q) graphs. Clearly

Fi3) ^ L(n, q). (6)
Next

^n,«)^ E*(M)/(»-*,g),
1=2

since the typical term on the right enumerates the number of labelled (n, q) graphs that consist
of / isolated nodes and a connected (« — /, q) graph.

ErdSs and Renyi [2] showed that, for bounded /i, we have

f(n,q)IF(n>q)~cxp(-e-").

Hence, if 2 ^ t g j , we have

f(n-t,q)ZF(n-t,

where
H' = {2q/(n-t)}-\og(n-

if / > 0. Hence

where

E=t B{n,f)B{P,q)IB(N,q)~t
t = 2 r = 2

by Lemma 3. Hence

( = 2
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and so

This is true for bounded \i- But it is easy to show that L\F, the proportion of labelled
(n, q) graphs which contain at least two isolated nodes, decreases (at least non-strictly) as q
increases for fixed n. Hence, if ft -* — oo as n -> oo, we have L/F-* 1. Hence, by (6),
and this is Theorem 5.

Again, if (i -*• c, a fixed finite number, as n -* oo, we see that

e-'I)-f l - ( l + e~c)/exp(e~c) > 0.

Hence F(5)/F does not tend to zero, nor, by (5) does TM/TM. Hence Theorem 6.
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