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An (n, g) graph consists of n nodes and ¢ edges, i.e. g distinct unordered pairs of different
nodes, so that there are no loops or multiple edges. We write T for the number of unlabelled
(n, q) graphs and F for the number of labelled (n, q) graphs. We say that a labelled graph is
symmetric if there is a nonidentical permutation of its nodes which leaves the graph unaltered.
We write r for the order of the automorphism group of the graph, i.e. the group of all those
permutations of the nodes which leave the graph unaltered; we say that the graph is of sym-
metry order r. A graph which is not symmetric is called asymmetric and, for such a graph,
obviously r = 1. We say that an unlabelled graph is symmetric or asymmetric according as the
graph obtained by labelling its nodes is symmetric or asymmetric.

We write N = n(n—1)/2 and B(h,k) = h!/{k!(h—k)!}. ThenO < g < N and F= B(N,q).
If an (n, q) graph is symmetric of order r, then so is its complement, i.e. the (n, N—¢q) graph
which has just those edges that the original graph lacks. Hence we can take 0 < ¢ < (N/2)
without loss of generality. We write u = (2g—nlogn)/n. We write C for a positive number,
not always the same at each occurrence, independent of n and ¢q. The notations O( ) and
o( ) refer to the passage of » to infinity and each constant implied is a C. If we say that
*“ almost all ’ graphs of a particular class have property P, we mean that the ratio of the num-
ber of those which lack the property to the number of those which have the property tends to
0 as n— o0. All our statements carry the implied condition that n > C.

Erdds and Renyi [1] considered labelled asymmetric graphs and, amongst other results,
showed that almost all labelled graphs on n nodes. are asymmetric. They announced the
further result that, if 4 — oo, then almost all labelled (n, g) graphs are asymmetric.

We write T(r) for the number of unlabelled (n, ¢) graphs of symmetry order r and F(r) for
the corresponding number of labelled graphs., Clearly

n! T(r) = rF({). (¢))

We write T (resp. T®) for the number of unlabelled asymmetric (resp. symmetric) (n,q)
graphs and F® (resp. F®) for the numbers of labelled asymmetric (resp. symmetric) (n,q)
graphs, so that

F@ — F(D), F® = "z!: F(r), T® = T(1), TS = :V_‘: T(r).
r=2

r=2

Let F, be the number of labelled (n, ¢) graphs which are invariant under the permutation
n of the n labelled nodes. The identity permutation is J, so that F; = F. By the Polya-Burnside
Counting Theorem [4], we have

nT=YF,=F+S (S= Y F,),
n a#l
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where the first sum is taken over all the n! possible permutations = of the n labelled nodes.
We have '

F= "2': F@), T= "Z!: T(r)
and so, by (1), - . "~
S= %2 (r—1)F(@) =n! "Z; (r=10)T(@)/r. 2)
We require two lemmas.
Lemma 1. If p— o0, then S = o(F).
Lemma 2. If u £0, then F = o(S).

I proved Lemma 1 in [6] (in fact, I showed that S = o(F) if and only if 4 —» o). I prove
Lemma 2 later in the present paper.

THEOREM 1. If u— oo, then almost all labelled (n, q) graphs are asymmetric, i.e.,
F® = o(F), ?3)

This is the theorem announced by Erdos and Renyi [1]. It follows at once from Lemma 1,
since we have

F® = ”ZI: F(r) g i (r=1)F(r)
r=2 r=2

= S = o(F) = o(F) + F)),
THEOREM 2. If u~ o0, then almost all unlabelled (n, q) graphs are asymmetric, i.e.,

T® = o(T®). @
We have

"l T® =n! "Z!: T(r) £ 2(n!) i (r—=1)T()/r
r=2 r=2
=28 =o(F)=nlo(T)

and so (4). Since
: F(a)/F(S) = 2T@ /T(s) 5)

by (1), Theorem 2 ‘implies Theorem 1.

THEOREM 3. If u £ 0, then almost all unlabelled (n,q) graphs are symmetric; i.e.,

T@ = o(T®).
We have
. n!T@ = n! T(1) = F(1) £ F = o(S)
by Lemma 2 and

Ssn! Y T()=n!T®.
r=2
by (2). The theorem follows.
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THEOREM 4. If u < 0, then, for any fixed R, almost all unlabelled (n, q) graphs are of sym-
metry order greater than R.
For, by Lemma 2,

R R R
n! Z T(r)<R Z, n!T(r)fr=R Z F(r)

S RF =0(S)=0o(n!T).
THEOREM 5. If u— — o0 as n— oo, then almost all labelled (n,q) graphs are symmetric;
ie., F@ = o(F®),
I conjecture that the conditions in Theorems 3 and 5 are necessary as well as sufficient

but I am unable to prove this. What I can prove however is the following theorem, which
shows that the conditions of Theorems 1 and 2 are necessary as well as sufficient.

THEOREM 6. If p is bounded above as n — oo, then F®® # o(F) and T® # o(T®).
Before proving Theorem 5 it is convenient to prove Lemma 2, since a subsidiary lemma is
needed to prove both.

Proof of Lemma 2. Lemma 2 can be deduced from an asymptotic approximation to T
which I announced in [7] and indeed the result can be seen to be true under the slightly wider

condition that limu £0. Hence Theorem 3 is true under this wider condition. But the
calculations leading to this approximation are very much more elaborate than the proof of
Lemma 2 which I give here.

Let p be the number of nodes unchanged by the permutation n. Then an (n,q) graph
composed of any (p, ¢) graph on these p nodes and the other n—p isolated nodes is invariant
under . Hence

F. 2 F(p,q) = B(P, q),

where P = p(p—1)/2. The p unchanged nodes may be chosen in B(n, p) ways and, when these
are chosen, there are H,(n—p) ways of permuting the remaining n—p nodes, where H (n) is
Euler’s rencontre number, i.e. the number of ways of permuting » different objects so that none
remains unmoved. Hence there are just -

B(n, p)H,(n—p)

different = which leave just p nodes unchanged.
We have then

n=2
Sz Zo H,(n—p) B(n, p) B(P, q).
p=

It was proved by Euler [3, 5] that
H,(n) = (n—1){H,(n—1)+ H,(n—2)}
and, from this, we can prove by induction on »n that
HmzCn!) (nz22).
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Hence, if we write = n—p and

Q, = B(P, q)/p!
we have

SIF>CY Q/Q.
t=2
We write j = [n'/%[logn]. A little calculation suffices to deduce the following lemma from
Stirling’s Theorem and the Second Mean Value Theorem.
LemMAa 3. If u<Cand0 St £, then

Q~Qye™
asn-— .
If u £ 0, we deduce that

J
SIFZC)Y e >
=2
asn—oo. Thisis Lemma 2.

Proof of Theorem 5. We write L = L(n, q) for the number of labelled (1, q) graphs which
contain at least 2 isolated nodes and so are necessarily symmetric. Again f= f(n,q) is the
number of connected labelled (n,q) graphs. Clearly

F9 2 L(n, q). (6)
Next

L)z 3, B )f(n-1,9),

since the typical term on the right enumerates the number of labelled (n, 4) graphs that consist
of ¢ isolated nodes and a connected (n—1, q) graph.
Erdos and Renyi [2] showed that, for bounded u, we have
f(n,q@)[F(n,q) ~ exp(—e™¥).
Hence, if 2 £t < j, we have

f(n—1,q9) 2 F(n—1t, q){exp(—e™*)+o(1)},

2 F(n—t,q){exp(—e™*)+o(1)},

where .

W = {24/(n— 1)} ~log(n—1) >
if £ > 0. Hence

Lz FE{exp(—e *)+o0(1)},
where
i J
E =} B(n1)B(P,q)/B(N,q)~ ) e *[t!,

=2 =2

by Lemma 3. Hence
E~Y e ™t =exp(e ¥)—1—e"*

=2
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and so _
LIF 2 {1-(1+e *)exp(—e ")}{1+o0(1)}.

This is true for bounded p. But it is easy to show that L/F, the proportion of labelled
(n,q) graphs which contain at least two isolated nodes, decreases (at least non-strictly) as g
increases for fixed n. Hence, if 4 - — 00 asn — oo, we have L/F — 1. Hence, by (6), F\9/F = 1
and this is Theorem 5.

Again, if 4 — ¢, a fixed finite number, as n — o, we see that

1—(1+e ®exp(—e ™) > 1—(1+e “Yexp(e™©) > 0.

Hence F®/F does not tend to zero, nor, by (5) does T®)/T, Hence Theorem 6.
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