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Abstract

In this paper we study the best constant in the Sobolev trace embedding H' (Q.) «
in a bounded smooth domain for 1 < q < 2, = 2(N - \)/(N - 2), that is, critical or
subcritical q. First, we consider a domain with periodically distributed holes inside which
we impose that the involved functions vanish. There exists a critical size of the holes for
which the limit problem has an extra term. For sizes larger than critical the best trace
constant diverges to infinity and for sizes smaller than critical it converges to the best
constant in the domain without holes. Also, we study the problem with the holes located on
the boundary of the domain. In this case another critical exists and its extra term appears
on the boundary.

2000 Mathematics subject classification: primary 35B27, 35J65; secondary 46E35.
Keywords and phrases: homogenization, nonlinear boundary conditions, Sobolev trace
embedding.

1. Introduction

Sobolev inequalities have been studied by many authors and are by now a classical
subject. Their study at least goes back to [2], for more references see [15]. The
Sobolev trace inequality is relevant for the study of boundary value problems for
differential operators and has been intensively studied, see for example, [4-6,16] and
their references. Given a bounded smooth domain flcK",we deal here with the best
constant of the Sobolev trace embedding H\Q) <-»• Lq{dSl) for critical or subcritical
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214 J. Fernandez Bonder, R. Orive and J. D. Rossi [2]

exponents, 1 < q < 2. := 2(N-l)/(N-2). Whenq = 2 this leads to an eigenvalue
problem of the Steklov type (see [22]). When q = 2« this problem is related to the so
called Yamabe problem for manifolds with boundaries, see [1,4,9,16].

For subcritical q, 1 < q < 2,, the embedding is compact and hence there exist
extremals [8]. When q is critical, q = 2,, the embedding is continuous but no longer
compact, so the existence of extremals is more involved. In [1] it is proved that if the
boundary of the domain contains a point with positive mean curvature then there is an
extremal for the embedding. Hence, for any bounded smooth domain there exists an
extremal even in the critical case, q = 2», see also [6].

Homogenization theory was created to model and predict the behaviour of in-
homogeneous materials where inhomogeneities take places on a small scale. The
homogenization of solutions of boundary-value problems in perforated domains has
attracted a lot of attention since the pioneering work of Cioranescu and Murat [10,12].
In this paper we consider homogenization problems for the best Sobolev trace constant
in perforated domains, following the approach developed in [10] and [12].

First, we consider a domain with holes periodically distributed inside the domain.
That is, a bounded smooth domain Q c ^N, N > 3, perturbed periodically with
holes located at the interior that decrease in size and increase in number as the
homogenization parameter s goes to zero. We find that there exists a critical size of
the holes for which the limit problem has an extra term. For sizes above critical the
best trace constant diverges to infinity and for sizes smaller than critical it converges
to the best constant in the domain without holes. When we deal with a subcritical
exponent we have compactness of the embedding Hl(Q) <-» Lq(dQ), however to
prove our result for q — 2t we need to impose a restriction on the involved domains
in order to recover some compactness, in the spirit of [2] (see also [1,6], etc.).

Next, we prove some homogenization results when the semi-holes are located on
the boundary of the domain. In this case the critical size of the holes is different from
the critical size for holes inside the domain and moreover for the critical size an extra
term appears on the boundary.

1.1. Holes in the interior The Sobolev trace constant in domains with a hole (a
subdomain of £1 where the functions are forced to vanish) was first studied in [8] where
the authors show that there exists an optimal hole that minimizes the best constant
among sets with given volume, in the class of measurable sets. On the other hand, it
is also proved that a set A that maximizes S does not exist. In a subsequent paper, [7],
the interior regularity of these optimal holes was studied.

For the study of the behaviour of solutions of boundary value problems in do-
mains perturbed periodically with holes complemented with homogeneous boundary
conditions (either Dirichlet or Neumann) we refer, for example, to [10,11,13].

Let us first describe the domains that we are considering. Let B(0, r(e)) c ^N be
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the ball of radius r(e), centred at 0. We assume that r(e) < s for any e < 1. For
each e and for any integer vector n 6 2", we shall denote by Be

n the translated image
of B(0, r(e)) by the vector 2/ie, that is, Be

n = fi(0, r(e)) + 2ne. Also, let us denote
by B£ the set of all the holes strictly contained in £2, that is,

BB = { J { B e
n | d i s t ( 2 n e , dQ) > e , n e l N } ,

and we set

Qc = Q \ B£.

Hence, Qe is a periodically perforated domain with holes of size r(e). All holes
have the same shape, the distance between two adjacent holes is of order s and they
do not overlap. Also, let us remark that the holes are located at a distance of at
least e from the boundary, dQ. When the holes are allowed to touch the boundary the
situation is different; see below and Section 3. Let us consider the space of functions,
H}(Q) = {u e H](Q) : u |B«s 0}. The best Sobolev trace constant of the Sobolev
embedding H^(Q) *-> Lq(dQ) is then given by

L (1.1)

The extremals, normalized by

r
|«p a5 = 1, (1.2)

Ian

are positive in Q£ and weak solutions to

A«£

3«£

M£ =

= ue

= X(s)\ue\
q-2ue

0

in

on

in

Q£,

3fi,

B£.

(1.3)

Our result for interior holes reads:

THEOREM 1.1. Let £2e be a perforated domain with periodic interior holes of radius
r(e) = coe

a, c0 > 0. Let q be subcritical, 1 < q < 2, := 2(N - 1)/(JV - 2), or
critical, q = 2». In the critical case we also assume that

J 5 L ^ (..4)

where K(N) is given by K(N) := ((N - 2)/2)(ov)1/(A'-1) and coN is the volume of
the unit sphere in RN. Then,
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(1) If a = N/(N — 2), then there exists a constant \x > 0 (strange term) such that
the function k(e) converges as s -> 0 to k^ given by

L
dS

(1-5)

with n = coN(N — 2)CQ 2/2N. Moreover, the normalized extremals ue converge
weakly along subsequences to a normalized extremal of the limit problem (1.5).
(2) If a > N/(N — 2), the function k(s) converges, as s -> 0, to k0, the best Sobolev

trace constant in the domain without holes, that is,

in

GL"
vzdx

inf . i S - — . (1.6)

\v\"dS

Moreover, the normalized extremals, ue, converge weakly along subsequences to a
normalized extremal of the limit problem (1.6).
(3) If a < N/(N — 2), there holds A.(e) -> +oo as s —> 0. Moreover, we get a

bound for the speed at which X(s) goes to +oo,

A(e) < Cea(N-2)-N. (1.7)

REMARK 1. The constant K{N) is the best Sobolev trace constant in the half-space,

\Vw\2dx

• d.8)
K ( N ) - — • '

\wr dx

The constant K(N) is computed in [16].

REMARK 2. From the proof of Theorem 1.1, it can be checked that in the critical
case, what is needed is that the best Sobolev trace constants, ke, for the perforated
domains, QE, be bounded by l/K(N) uniformly in e, that is,

limA(e) < . (1.9)
«-o K(N) V '

Condition (1.4) is the simplest condition that assures (1.9).
We note that for every e > 0 it holds that k{e) < \/K{N) for every smooth

bounded domain of RN by [1]. However, from their arguments, it is not obvious that
this inequality can be made uniformly strict.
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REMARK 3. The extremals of (1.5) are weak solutions of

AM = (1 + /M)U in ft,

T ^ = AM|M|*~2K on 3ft.

av
REMARK 4. In the two-dimensional case, that is, ft c R2, we have an analogous

result. The critical radius is now

Thus, for any radius larger than critical, the best Sobolev constant goes to oo, for any
radius smaller than critical it goes to the best constant of the domain without holes
and for the critical radius a strange term, fi, appears with fx = n/(2c0). The proof of
this fact is completely analogous to the case N > 3 with the choice of an appropriate
test function, see [10,12].

REMARK 5. Theorem 1.1 can be generalized to other configuration of the holes.
For example, we can consider non-spherical holes, cylinders and trusses, see [10,12],

1.2. Holes on the boundary We prove some homogenization results when the holes
are located on the boundary of the domain. This problem is related to the study of the
behaviour of solutions of periodic mixed conditions on the boundary, Dirichlet and
Neumann (see for example [14,20]), and also, with vibration problems of systems
with concentrated masses on the boundary (see for example [18,19]).

To simplify the exposition we consider holes that are placed on a flat part of the
boundary. That is, say, Q. c [xN < 0}, T, := d£2 D {xN — 0} is the closure of a
(nonempty) smooth open subset of RN~l. We consider periodically distributed semi-
holes of size r(e) = coe* located only on IY Assume that Pi is divided by a reticula of
sizee, n£ = {(2ms, 0) e F,| with m e 2N~X). At each point of the reticula, xt e n£,
we take a semi-ball of size r{e),

S (xh r(e)) = B (*,, r{e)) n {xN < 0} C 01",

and consider

S£ = ( J S(x,, /"(£)) such that S(xit r(e)) n (3ft \ T,) = 0,
xen,

and ft£ = ft \ SE. Thus, ft£ is a periodically perforated domain with holes of size r (e),
the distance between two adjacent holes is of order e and they do not overlap with
3ft \ T|. The holes are located on the boundary but they are "solid" since the semi-balls
are considered in RN. We denote f£ = f, n S£. As above, we consider the space
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= {w e //'(ft) : M |s'= 0} and the best Sobolev trace constant associated to
this space given by (1.1). The extremals normalized by (1.2) are weak solutions of

Aw£ = ue in ft£,

-^ = X(e)\uE\"-2ue on3ft\r£,
dv

uc=0 inS£.

In this case we prove that the critical size is different from the critical size for holes
inside the domain and for the critical size an extra term appears on the homogenized
part of the boundary, V\.

THEOREM 1.2. Let q be subcritical, 1 < q < 2*, or critical, q = 2*. Let ft£ be a
perforated domain with periodic boundary holes of radius r(s) = cos

b.
(1) Ifb = (N - l)/(/V - 2), the function X(e) converges as e -» 0 to XMl, the best

Sobolev trace constant in the domain with a weight on the boundary,

f
Jn

v'dS
/ ' ' ' ' I

inf

( f \v\qds]
Van /

where /xi = <oN(N — 2)CQ 2/2N. Moreover, the normalized extremals uE converge
weakly along subsequences to a normalized extremal of the limit problem (1.10).
(2) If b > (N - 1)/(N - 2), the function X(s) converges as s -> 0 to Xo, the

best Sobolev trace constant in the domain without holes defined in (1.6). Moreover,
the normalized extremals uc converge weakly along subsequences to a normalized
extremal of the limit problem (1.6).
(3) Ifb<(N- l)/(N - 2), the function X{s) converges as s ->• 0 to Xh the best

Sobolev trace constant in the ft among functions that vanish on V],

f
V , = inf ^ —• (LID

\v\"dS
\Jan

Moreover, the normalized extremals uE converge weakly along subsequences to a
normalized extremal of the limit problem (1.11).

REMARK 6. For the existence of extremals in the problem of the critical exponent,
we need that X(s) is uniformly bounded by \/K(N) with respect to e. However, under
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our geometric hypothesis, we always have a fixed point on 3£2 — F\ (included in the
boundary of Qe) with positive main curvature and the distance to the holes is uniform
(since we place the holes on a flat part of the boundary). So the result of [1] is applied
and we have that (1.9) holds. Therefore, in Theorem 1.2, we do not need to impose
any extra condition on the domain £2 for the critical case.

REMARK 7. The extremals of (1.10) are weak solutions to

AM = u in Q,

d u , •
+ M i X r , M ^ > r M on

du
where ^r, is the characteristic function of IV

REMARK 8. If Q c R2, we have an analogous result. The critical radius is now

/•(£) = exp(— - j . .

Thus, for the critical radius a strange term, //, appears with /j,\ = n/(2cQ).

The rest of the paper is organized as follows: in Section 2 we deal with perforated
domains with interior holes and finally in Section 3 we consider holes on the boundary.

2. Interior holes

In this section we prove that if we remove from Q a periodic set of holes (where we
impose that the considered functions vanish) there exists a limit of the best Sobolev
trace constant if the size of the holes is not too large. We consider holes which are
balls of radius r(s) = coe" (see Section 1.1).

First, we construct a sequence of appropriate test functions. Next, we prove
Theorem 1.1's distinguishing three cases: a = N/(N — 2), a > N/(N — 2)- and
1 < a < N/(N - 2).

2.1. Construction of we In this subsection, following [10,12], we show that there
exists a sequence wE that verifies the following assumptions:

(HI) wc -^ 1 weakly in//1 ($2).
(H2) wc == 0 on the holes Bc

n.
(H3) There exists a distribution fi e W~l00(Q) such that for every sequence ve that

vanishes on the holes and converges weakly in H\Q) to a limit v, one has

(-Awc,(pvc) ->• (n,<pv), forall<p e C°°(fi), (2.1)

where (,) is the duality pairing.
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As in [10,12], the function we is defined on each cube Pf

n e 1N, by setting

[8]

2ne + (-e, e)*.

we = 0 in Be
n,

Awe = 0 in Tf-
(2.2)

wc continuous at the interfaces,

where 7*n
£ = 2ne + 5(0, e), with B(0, e) the ball with radius e and centre 0. Now it

is easy to compute we in polar coordinates in the annulus Tn
£ — Bc

n. One has

Tn'-fln'= \-(Af-2) -(N-2) l f ^ ^ 3 ' V2-3)

where r = \x - 2ne\. The result in [10,12] says:

LEMMA 2.1. If we choose r(e) = c0s
N/N~2for N > 3 vv/f/i c0 a positive constant,

then wc defined by (2.2) satisfies hypotheses (H1)-(H3) wi7/z

- 2 ) w_2

: cn

w/iere o)w I'J f/ie surface of the unit sphere in RN.

In order to prove Theorem 1.1, we compute the L2—norm of Viue. As the number

n(s) of cubes Pn
£ with holes is about \Q\/(2e)N, we get

\Q.\ C

\2.£) J pE

Thanks to (2.3) and r(e) < e, we obtain

{2e)N r{e).{N.2)
Considering that r(e) = cos

a, we have

w(yv - 2) ( f )W

, (2.4)

On the other hand, by the definition of Be, we have that every hole is contained in

and the distance to the boundary is larger than e. Thus, we get

1 A dw' r>
io£ = 1 and —— = 0

Hence,

/ \w£\
qdS=\dQ\.

(2.5)

(2.6)
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2.2. Case a = N/(N — 2) Let us observe that, under the assumptions of Theo-
rem 1.1, the best Sobolev trace constants of the perforated domains, X(e), are bounded
independently of e. To this end, let us use w£ as a test function in the infimum that
defines A.(e). We get, using the estimates on we (2.4) and (2.6) proved in the previous
subsection,

a 7 )

Hence, the extremals ue, the weak solutions of (1.3), are bounded in //'(£2) and we

have, for a subsequence,

ue-^u>0 weakly in / / ' ( f t ) .

As the extremals, w£, are weak solutions of (1.3) and since w£ vanishes on the holes,
\jf = wccp with <p e C°°(£2) is an admissible test function for the weak formulation of
(1.3) and satisfies

I \Vw£\
2 + w\dx (V^N _ 2) ( ! )" \Q\ + {) \Q\

itt V7 »
\Jan

/ VipVuewedx+ / (pVueVwedx+ / ue<pwedx = X(e) / uq
e~

l(pwedS. (2.8)
Jn Ju Jn JdQ

Now we observe that, since ue -> u, we -> 1 strongly in L2(dQ), we have

f uq-x<pw£dS^ f u"
Jsn Jan

f
Jsn Jan

Similarly, as u£ -> u, we -*• 1 strongly in L2(Q),

I ue<pwEdx —> / u(pdx.
Jn Jn

Moreover, since VM£ -»- VM weakly in L2(ft) and we -» 1 strongly in L2(ft) we have

/ S/(pVuewEdx -> /
Jn Jn

To deal with the last term, we integrate by parts using that u£ vanishes on B£ and

obtain

f f f f d w e
I <pVucVw£dx = - I V(pVweuedx — I cpueAw£dx + I <pu£——dS.

Jnc Jn, Jne Jon °v
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We have, by the properties (HI) and (H3) of w£,

I V<pVw£u£ dx ->• 0 and — / (pu£Awedx -* I (iu<pdx.
Ja Jn Jn

Also, by (2.5),

f dWF

<pu£ —-dS = 0.
f
/

Jan

/
Jan dv

Now, if we assume that k(s) -> k, we have

/ V<pVudx+ / ixucpdx+ u<pdx = k uq~lcpdS.
Jn Jn Jn Jdn

(2.9)

Let us prove that A. = XM defined in (1.5). We now distinguish between the
subcritical and the critical cases.

Subcritical case, 1 < q < 2t. In this case, since the immersion //'(£2) °-> Lq(dQ)
is compact and ||K£||i.«on) = 1, we have that ||M||i.«on) = 1- Hence, taking <p = u in
(2.9) we get

A= / |VH|' + (1 +ix)uldx > V
Jn

Now, to prove k < k^, let u^ be an extremal of (1.5) and using u^Wc as atest function
in (1.1), we get

k(s) < J-±—_ —q . (2.10)

wA"dS
\Jan

By the results of [3] we obtain that u^ e Ca(Q,) and from the maximum principle and
Hopf's Lemma we get that MM is strictly positive in Q. Therefore the regularity results
of [9] are applicable and we obtain that MM e C°°(£2). Thus, by hypothesis (HI), we
get

f(u^w£)
2dx^ I u\dx and f |MMUJ£|«</5 ^ f \u^dS.

Jn Jn Jan Jan

On the other hand, we integrate by parts to obtain

f 2 _ f 2 2 [
Jn Jn Jn

- / w£d\\(ulVwE)dx+ / w£ul—dS
Jn Jan °v

= j w]\Vurfdx- I ulwEkw£dx+ J u\w£-^dS.
Jn Jn Jan °v
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Thus, by the properties (HI) and (H3) of we and as MM € C°°(£2), we have

I w2
t\Vull\

1dx-> I \Vurfdx and - / u2weAwEdx -*• f /j,u2dx.
Jn Jn Jn Jn

Also, by (2.5),

[ lp
an M 3^

Finally, passing to the limit in (2.10), we get X < A.M and we conclude the proof of the
case a = N/(N — 2) for subcritical q.

Critical case, q = 2». The existence of extremals uE for (1.1) was proved in [1]
(see also [6]). Let us prove that the weak limit of the extremals verifies u ^ 0. To this
end we use the following theorem due to [17].

THEOREM 2.2. There exists a constant B > 0 such that

0^
an

v2'ds) < K(N) [ \Vv\2dx + B [ v2dx
) Jo. Jnan

for every v e / / ' (Q). Here K(N) is given by (1.8) and it is sharp.

Now, as ut > 0, it follows that u > 0 and, by classical regularity theory, u is
smooth up to the boundary. By the strong maximum principle and Hopf's lemma, it
follows that either ;• > 0 or u = 0. In order to prove our claim, we have to rule out
the possibility of u = 0. To do this, we adapt the argument given in [6] (see also [2])
to show that |Mli.j(n) 5̂  0. In fact, by Theorem 2.2, as ue are normalized such that
llMtllzxan) = 1, we have

u]'d\
an

and hence

u]'da\ <K(N) f \Vu£\
2dx + B f u]dx

/ Jn Jn

f u\
Jn

u\dx. (2.11)

From the estimate (2.7) and the hypothesis (1.4), we get (1.9). Passing to the limit
e -*• 0 in (2.11) we arrive by (1.9) to

(B- K(N)) I u2dx >0,
Jn

and the claim follows.
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As before, the limit of the extremals ue, weak solutions of (1.3), satisfies (we
assume, as before, that k(s) -> k)

I V<pVudx+ I ixu<pdx+ I u<pdx = X u^cpdS. (2.12)
Jn Jn Jn Jdn

Taking <p = u in (2.12), we arrive at

[ \Vu\2 + (l + fj,)u2dx = k f u2-dS.
Jn Jan

As u ^ 0, we have that k > 0 and ||«|k2.on) ^ 0. Therefore

u2'ds)

The reverse inequality follows exactly as in the subcritical case. •

2.3. Case a > N/(N — 2) Again, using as test functions we, we get that the best
Sobolev trace constants of the perforated domains, k(e), are bounded independently
of e. In fact, by (2.4) and (2.6) we obtain

Thus, the extremals ue are weak solutions of (1.3) and are bounded in //'(£2). We
consider a subsequence such that A(e) -» k and ue -*• u weakly in H\Q).

As in the previous subsection, let us take wE(p with cp e C°°(fi) as a test function
and we get the weak formulation (2.8). We pass to the limit in this weak formulation
and obtain

f VipVudx + f i«pdx = k I \u\q-2u<pdS, (2.13)
Jn Jn Jan

since w£ converges strongly to 1 in / / ' (ft) thanks to (2.4) in the case a > N/(N - 2).
Now, as in the previous subsection, we divide the proof according to whether the

exponent q is subcritical or critical.
Subcritical case, 1 < q < 2*. In this case, as ||M£Ili.*on) = 1 and as the embedding

Hl(Q) °-> Lq(dQ) is compact, we conclude that ||M|U?on) = 1. Hence, taking cp = u
in (2.13), we get that k > k0 by the definition of k0 in (1.6).

To conclude the proof in this case let us prove that A. < A.o. Let «0 be an extremal
of (1.6) and let us use uowe as a test function in (1.1). Thus,

f uowEVuoVw£dx./ |V( M o iy e ) | 2 ^ = / u2
0\Vw£\

2dx+ / iy£
2 |V«0|2^ + 2 f

Jn Jn Jn Jn
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As u0 6 C°°(fi) (see [9]), and Vwe -» 0 strongly in L2(Q) (by (2.4)), we get

f \V(u0we)\
2dx^ f \Vuo\

2dx.
Jn Jn

Now, we pass to the limit in (2.10) to obtain

(f \uo\
qds)

Van )

This finishes the proof.
Critical case, q = 2». In this case, we need to check that u ^ 0, but this follows as

in the previous subsection. In fact, by Theorem 2.2 we have

<K(N) [ \Vue\
2dx + B [ \ue\

2dx
J J

) [ [
an J Jn Jn

= K(N)k(s) + (B- K(N)) I \ue\
2dx

Jn

-»• K(N)k + (B- K(N)) f \u\2dx
Jn

and, as from (1.9) it holds that K(N)X < 1, the claim follows.
Finally, arguing exactly as before, we conclude that k = k0 and that u is an extremal

for k0. This finishes the proof. D

2.4. Case 1 < a < N/(N — 2) In this case we have to prove k(s) -> oo as
s -> 0. Suppose, contrary to our claim, that there exists a sequence of e -> 0 such
that k(e) < C. Then, there exists a sequence of normalized functions {ue} in the
space Hi {Q.) and satisfying

L + u]dx<C. (2.14)
in

Considering n(s), the number of cubes with holes Pl
n contained in Q, we get

C
\
Jn Ji*in

Let k\ be the Poincare constant of the Sobolev space

H :={ue Hl(B(0,s)- B(0,r(e)))\u=OondB(0,r(e))}.

It is shown in [21] that

r(s)N~2

k\ > C N for N > 3. (2.15)
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Thus, we obtain

n(e)

and, since r(s) = s" with 1 < a < N/(N — 2), we obtain by (2.14) and passing to

the limit

n(£) »

V / \uE\2dx = 0.

Therefore, ue converges to 0 in L2(Q). This contradicts the normalization condition
(1.2) of the sequence u£. Hence we obtain that X(e) -> oo.

On the other hand, using we as a test function in (1.1) we get, using (2.4), that
w£ ->• w in L2(Q) and (2.6),

tan

Thus, with these estimates we conclude (1.7). D

3. Holes on the boundary

In this section we consider holes on the boundary. Recall that we assume that we
are dealing with holes on a flat part of the boundary. We distinguish three cases:
b > (N - \)/(N - 2), b = (N - \)/(N - 2) and 1 < b < (N - l)/(N - 2). The
proof of the critical exponent 2, is the same as that in the case of interior holes. Here,
with our geometric hypothesis of the domain, (1.9) holds (see Remark 6).

3.1. Case b > (N — V)/(N — 2) Using the same test function w£ extended by

we = 1 to the whole Q we have

Hence we -> 1 strongly in / / ' ( f t ) . Using w£ as a test function in the definition of

Ai(e) we obtain that there exists C independent of e such that A|(s) < C. From

this point the proof follows exactly the same lines as the case a > N/(N — 2) in

Section 2.3. However, since the holes are located on the boundary of the domain,
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(2.5) and (2.6) are not satisfied. We know that wE converges to 1 in L2(dQ). Now, we
show that

dw,e = 0 on 3ft. (3.1)

This clearly holds on dQ \ V\ by the definition of coe. Now, for any (p e L2(Fi), we have

/ ,
where m(e) ~ e1 N is the number of holes placed on T\. Let us consider a single cell
such that we may assume that the centre of the cell is centred at x = 0. Since V\ is
considered flat, the normal unit vector is —eN = (0, . . . , 0, - 1 ) . Therefore, when we

is considered, we get (—eN, Vu>£) = 0, and conclude (3.1).

3.2. Case b = (N — 1)/(N — 2) As in the case of holes in the interior of £2, the
strange term comes from the term that involves Au>£.

We have that Awe vanishes except on the spheres dTf and dBf. From the explicit
form of u>£ we obtain

-Awe = [ME - y£.

The function ye is supported on the spherical boundary of the semi-ball Sf. We observe
that, since uc = 0 on this region,

(ye,uE)=0.

For the other side, we know by [10,12] that in this case

m(c) -2

' ! ~uu gT. i — uQ c , = |

where Sf are the Dirac masses supported by dTf for i = 1 , . . . , m{s). Hence, we have

m(£)

<pucAwcdx =f

Thanks to the strong convergence of u£ to u we can pass to the limit and obtain it since
as in [10,12]

lim I <pueAwcdx = — / <pudS = fM\ I <puaS.

This case is analogous to that of spherical holes periodically distributed on a hyperplane
of \SiN of [10,12]. We note that the capacity of a semi-sphere is a half of the one for
the sphere. The rest of the terms can be handled as in the previous section.
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3.3. Case 1 < b < (N — 1)/(N — 2) Assume that there exists a sequence s. ->• 0
with normalized extremals {M£} in the space H*(£2). By the definitions of A.(e)
and X0,r,, we have k(e) < A0,r, • Therefore

limsupX(e) < A.0,r,, (3.2)

and the extremals satisfy

I \Vut\
2'+u\dx<C. (3.3)

Jn

Considering m(e) ~ e1"*, the number of cells Pf placed on Fi, we get

/ ——T \uE\2dx, (3.4)
n J £ J

Eb(N-2) m<£) [•

«£|2^>C——T \uE\2dx,
£
 l = 1 Jp?nn

by the Poincare constant (2.15). Thus, we obtain

T \ue\
qdx>C / \us\

2dxNdSx,.
i=\ JPfnn Jr, Jo

Considering the following change of variable xN = syN, we have

/ / " W dxNdx' = e I I \us(x\eyN)\2dyNdSx,
Jr, Jo Jrt Jo

Going back to (3.4), we get by (3.3) that
£HN-2) /• /-I

C>——-\ I \uE(x',eyN)\2dyNdSx..
eN~l Jr, Jo

We pass to the limit as e -> 0. Using that 1 < b < (N - \)/(N - 2), we obtain

l i ra / f \ue(x',e-° Jr, Jo
l ira/ f \ue(x',eyN)\2dyNdSx.=0.
e ° Jr, J

Hence, using the regularity of the extremals,

lim [ \uE\2dS = 0.£-*° Jr,

Therefore u£ converges to 0 strongly in L2(Vi). This shows that every weak limit, «,
of ue in H1 (Q) verifies u = 0 on Fi. Therefore

< Hminf ||M£||^,(n) = limjnf k(e). (3.5)

From (3.2) and (3.5) we obtain lim^o A.(e) = A.0,r,- Moreover the above arguments
show that the limit u is an extremal of (1.11). This finishes the proof. D
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