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ABSTRACT. To create a reliable radiocarbon calibration curve, one needs not only high-quality data but also a robust
statistical methodology. The unique aspects of much of the calibration data provide considerable modeling challenges
and require a made-to-measure approach to curve construction that accurately represents and adapts to these
individualities, bringing the data together into a single curve. For IntCal20, the statistical methodology has
undergone a complete redesign, from the random walk used in IntCal04, IntCal09 and IntCal13, to an approach
based upon Bayesian splines with errors-in-variables. The new spline approach is still fitted using Markov Chain
Monte Carlo (MCMC) but offers considerable advantages over the previous random walk, including faster and
more reliable curve construction together with greatly increased flexibility and detail in modeling choices. This
paper describes the new methodology together with the tailored modifications required to integrate the various
datasets. For an end-user, the key changes include the recognition and estimation of potential over-dispersion in
14C determinations, and its consequences on calibration which we address through the provision of predictive
intervals on the curve; improvements to the modeling of rapid 14C excursions and reservoir ages/dead carbon
fractions; and modifications made to, hopefully, ensure better mixing of the MCMC which consequently increase
confidence in the estimated curve.

1 INTRODUCTION

One of the core challenges in creating a reliable radiocarbon (14C) calibration curve is
ensuring that the statistical approach used for the curve’s production is able to
accurately synthesize the various datasets which make up the curve, specifically
recognizing and incorporating their diverse and unique aspects in doing so. This is
particularly critical in light of the recent increase in the availability of high-precision
radiocarbon determinations, and the consequent demand by users for ever more precise
and accurate calibration. For IntCal20, not only is the underlying data available for use
in curve construction considerably more numerous and detailed than in previous curves
but, due to the advances in our wider understanding of the Earth’s systems, our insight
into the specific and individual characteristics of much of that data has also improved. If
we are able to harness and more accurately represent these specific features within our
curve construction then this will hopefully improve the resultant calibration. To achieve
this, for the new calibration curve we have completely revised the statistical
methodology from a random walk to a Bayesian spline based approach. This new
approach allows us to take better advantage of the underlying data and also to provide
output which is more useful and relevant for calibration users.

Over the years, the IntCal statistical methodology has developed and improved alongside our
understanding of the constituent data and as we gain more knowledge of the underlying Earth
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Systems processes. For IntCal98 (Stuiver et al. 1998), the curve was produced via a
combination of linear interpolation of windowed tree-ring averages and frequentist splines.
In 2004, the approach was updated to a random walk model (Buck and Blackwell 2004)
which introduced an approximate Bayesian method, and began to incorporate some of the
important additional aspects of the constituent data such as potential uncertainty in the
calendar ages for the older determinations, and that many tree-ring observations related to
multiple years of metabolization. This random walk was developed further for IntCal09
(Blackwell and Buck 2008; Heaton et al. 2009) and IntCal13 (Niu et al. 2013) into a fully
Bayesian MCMC approach that enabled the inclusion of more of the unique structures in
the calibration datasets such as floating sequences of tree rings and more complex
covariances in the calendar age estimates provided by wiggle-matching or palaeoclimate
tie-pointing.

The random walk approach however had several disadvantages. While in principle, it allowed
for modeling flexibility, the details of the implementation required a very large number of
parameters that, despite being highly dependent, were predominantly updated individually.
This made it extremely slow to run; difficult to ensure it explored the full space of possible
curves; and also hard to assess whether the MCMC had reached its equilibrium
distribution. Furthermore, this restricted the ability to explore the impact of specific
modeling assumptions or individual data on the final curve. As the volume of the data used
to generate IntCal has increased, alongside the need for further bespoke modeling of key
data structures, this random walk approach to curve creation has consequently become
computationally impractical for further use.

For the updated IntCal20 curve, the IntCal working group therefore requested a new approach
to curve creation be developed. This new approach needed to be equally rigorous, from a
statistical perspective, as the previous methodology; to incorporate the advances in both
geoscientific understanding and radiocarbon precision that have occurred since 2013; and
yet overcome the implementational difficulties of the previous random walk approach.
Specifically, to increase confidence in the curve’s robustness and reliability the new
approach needed to run at a speed which allowed investigation of the effect of key
modeling choices not possible with the previous methodology. The new approach is based
upon Bayesian splines with errors-in-variables as introduced by Berry et al. (2002) but
requires multiple bespoke innovations to accurately adapt to the specific data complexities.
We believe it offers a significant improvement over previous approaches not just in the
modeling but also the additional output it can provide for both calibration users and
geoscientific users more widely.

The paper is set out as follows. In Section 2 we list the main advances made in the statistical
methodology, data understanding and modeling since the last set of IntCal curves (Reimer
et al. 2013; Hogg et al. 2013). We then provide, in Section 3, a short non-technical
introduction to three key practical ideas for calibration users: an explanation of Bayesian
splines; the importance of recognizing potential calendar age uncertainty in curve
construction; and the modeling of potential over-dispersion in the data. Section 4 then
describes the main technical details of curve construction. The IntCal20 curve is created in
two sections with somewhat different statistical concerns. The more recent part of the
curve, back to approximately 14 cal kBP, is based entirely upon tree-ring determinations,
that are predominantly dendrodated with exact, known calendar ages. Here the main
challenges are to incorporate the large amount of data, provide high resolution in the curve
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with appropriate uncertainties, and accurately incorporate blocked determinations that
represent the measurement of multiple years. This is described in Section 4.3. Further
back in time, the curve is based upon a wider range of 14C material where, as well as
tree rings, we use direct and indirect records of atmospheric 14C in the form of corals,
macrofossils, forams and speleothems. We describe the modifications required to
incorporate these kinds of data in Section 4.4. This being a Bayesian approach we are
able to incorporate prior information into our model and also provide posterior
information on particular outputs of independent interest. In Section 5 we provide an
indication of the kind of additional output the new methodology is able to provide. In
particular the new approach generates not only pointwise means and variances for the
calibration curve but, for the first time, sets of complete posterior realizations from 0–55
cal kBP which also allow access to covariance information. This covariance has the
potential to improve future calibration of multiple radiocarbon determinations, for
example in wiggle matches or more complex modeling. We also gain information on the
level of additional variation (beyond laboratory reported uncertainty) present in tree-ring
14C determinations arising from the same calendar year. Finally, we discuss potential
future work in Section 6 along with areas we have identified for further improvement for
the next IntCal iteration. Note that the statistical approaches to the creation of SHCal20
(Hogg et al. 2020 in this issue) and Marine20 (Heaton et al. 2020 in this issue) are
presented within those papers and not discussed in detail here.

Notation

All ages in this paper and the database are reported relative to mid-1950 AD (= 0 BP, before
present). Conventional, pre-calibration, 14C ages are given in units “14C yrs BP.” Calendar, or
calibrated, ages are denoted as “cal BP” or “cal kBP” (thousands of calibrated years before
present).

Data and Code

As in previous updates to the curve, the constituent data is available from the IntCal database
http://www.intcal.org/. Other inputs are available on request, for example covariance matrices
for the calendar ages of the tie-pointed records of the Cariaco Basin (Hughen and Heaton 2020
in this issue), Pakistan and Iberian margin (Bard et al. 2013); and Lake Suigetsu (Bronk
Ramsey et al. 2020 in this issue). Coding was performed in R (R Core Team 2019), using
the fda (Ramsay et al. 2018), mvtnorm (Genz et al. 2019), mvnfast (Fasiolo 2016) and
Matrix (Bates and Maechler 2019) packages to efficiently create and fit the spline bases;
and doParallel (Corporation and Weston 2019) to implement parallelization for the
MCMC tempering. This code is available on request from the first author.

2 DEVELOPMENTS IN THE INTCAL20 STATISTICAL METHODOLOGY

The main differences/improvements in the updated IntCal20 methodology over the previous
random walk can be split into three broad categories: those relating to improvements in the
statistical implementation itself; progress in the detailed modeling of unique data aspects
that are enabled by the updated methodology; and finally, advances in the curve output
that are both relevant to users of the calibration curve and of potential interest in their
own right.
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Improvements in Statistical Implementation

1. Bayesian Splines—the change from the random walk of Niu et al. (2013) to splines allows a
much more computationally feasible fitting algorithm. We retain the Bayesian aspect since
it allows us to incorporate the various unique aspects of the calibration data; provides useful
posterior information, e.g. the posterior calendar ages of the constituent data; and maintains
consistency with calibration itself which is now universally implemented under that
paradigm. This Bayesian spline approach is equally conceptually rigorous as the random
walk but considerably more flexible and can be run much more quickly.

2. Change in modeling and fitting domain—function estimation via splines is based on a
trade-off between creating a curve that passes close to the observed data yet is not too
rough. Previously all aspects of the curve’s construction occurred in the radiocarbon
age domain. However, this is not the natural space in which to either model the curve
roughness or decide on fidelity of the data to the curve. In the older section of the 14C
record, the measurement uncertainties on the radiocarbon age scale become non-
symmetric. This causes difficulties in fairly assessing the fit of a model to observed
data if we judge it in this radiocarbon age domain. Instead, it is more natural to
assess model fit in F14C where measurement uncertainty remains symmetric. Similarly,
a more natural domain in which to model the curve roughness is in Δ

14C space. We
therefore change our modeling domain to Δ14C and our fitting domain to F14C when
creating the curve. See Section 3.1.2 for definitions of the radiocarbon age, F14C and
Δ14C domains.

3. Over-dispersion in dendrodated trees—as the volume of data entering IntCal increases, it is
key to make sure we do not produce a curve which is over-precise as this would give
inaccurate calibration for a user. While laboratories attempt to quantify all 14C
uncertainty in their measurements, including through intercomparison exercises such as
Scott et al. (2017), there remain some sources of additional 14C variation which are
difficult for any laboratory to capture. For tree rings, potential examples include
variation between local region, species, or growing season. Consequently, when we bring
together 14C measurements from the same calendar year, they may potentially be over-
dispersed, i.e. more widely spread than would be expected given their laboratory quoted
uncertainty. The new approach incorporates a term allowing for potential over-
dispersion within 14C determinations of the tree rings so that, if additional variability is
seen in the underlying IntCal data, the method will account for it and prevent excessive
confidence in the resultant curve.

4. Heavy tailed errors—in the older portion of the curve, where data come from a range of
different 14C reservoirs, we aim to reduce the influence of potential outliers by
permitting each dataset to have heavier tailed errors. These tails are adaptively
estimated during curve construction.

5. Improved model mixing and parallel tempering—when using any MCMC method, it is
crucial to ensure that the chain has reached its equilibrium distribution and that it is not
stuck in one part of the model space. This was a significant concern with the previous
random walk approach since the curve was updated one calendar year at a time.
Conversely, Bayesian splines enable updates of the complete curve simultaneously via
Gibbs sampling. To address any additional concerns about mixing of the new MCMC
and to ensure we explore the space of possible curves more freely, we also implement
parallel tempering whereby we run multiple modified/tempered chains simultaneously in
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such a way that some can move around the space more easily. By appropriate switching
between these tempered chains we can further improve model mixing.

Improvements in Data Modeling

These steps forward in the statistical implementation, while still maintaining computational
feasibility, also enable us both to incorporate new data structures and to advance our
modeling of the processes from which the data arise:

1. Large increase in volume of data throughout the curve—the new IntCal20 is based upon a
much greater number of 14C determinations. These include many annual tree-ring
determinations such as remeasurement within various laboratories of data from the
period of Thera (e.g. Pearson et al. 2018); new wiggle-matched and floating sequences of
late-glacial tree rings (e.g. Capano et al. 2020 in this issue); and new measurements of
Hulu Cave extending further back in time (Cheng et al. 2018). In total, the new
IntCal20 curve is based upon 12,904 raw 14C measurements compared to the 7019 used
for IntCal13 (Reimer et al. 2013). This rapid increase means a faster curve construction
method is essential.

2. Blocking in dendrodated trees—with the new radiocarbon revolution providing an
increased ability to measure annual tree rings, there has been a concern that the
inclusion within IntCal of determinations relating to decadal or bi-decadal averages
alongside these new annual measurements could mean we lose critical information on
short-term variation in atmospheric radiocarbon levels. Our approach fully recognizes
the number of years each determination represents, meaning there is no loss of
information as a result of such blocked determinations.

3. Variable marine reservoir ages—IntCal09 (Reimer et al. 2009) and IntCal13 (Reimer et al.
2013) modeled marine reservoir ages beyond the Holocene as constant over time. For
IntCal20, we incorporate time-varying marine reservoir ages using the LSG model of
Butzin et al. (2020 in this issue) and a separate adaptive spline for the Cariaco Basin.

4. Inclusion of new floating tree-ring sequences—the new curve includes several new late-
glacial trees which have calendar age estimates obtained via wiggle matching (Reinig
et al. 2018; Capano et al. 2020 in this issue), as well as three entirely floating tree
chronologies around the time of the Bølling-Allerød1 (Adolphi et al. 2017) and two
older Southern Hemisphere floating kauri tree-ring sequences (Turney et al. 2010, 2017)
on which we have no absolute dating information and which need to be placed
accurately amongst the other data.

5. Rapid 14C excursions—there are several specific times when the level of atmospheric 14C is
known to vary extremely rapidly. For IntCal20 we have identified three such events around
774–5 AD, 993–4 AD and �660 BC (Miyake et al. 2012, 2013; O’Hare et al. 2019). Such
rapid 14C changes will typically not be modeled well by standard regression which will tend
to smooth them out. However, by increasing the density of knots forming our spline basis in
the vicinity of these rapid excursions we can better represent these significant features.

1While Adolphi et al. (2017) do provide potential age estimates for their Bølling-Allerød trees obtained by comparison
to ice-core 10Be, to maintain independence between the ice-core and radiocarbon timescales these calendar age
estimates are not used for IntCal20.
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Improvements in Output

The statistical innovations also mean that we can now provide several new facets to our output:

1. Annualized output—we are able to provide curve estimates on an annual grid enabling
more detailed calibration. This will be needed in light of the increased demand to
calibrate annual radiocarbon determinations. While we do not discuss the implications
for calibration itself in this paper, such a detailed annual calibration curve will likely
increase the potential for multimodal calendar age estimates which require significant
care in interpretation, especially during periods of plateaus in the calibration curve. See
the IntCal20 companion paper (van der Plicht et al. 2020 in this issue) for more details
and an illustrative example with the calibration of the Minoan Santorini/Thera eruption.

2. Predictive intervals—if the IntCal20 14C data contain additional sources of variation
beyond their laboratory quantified uncertainties (due to potential regional, species or
growing season differences), i.e. they appear more widely spread around the calibration
curve than can be explained by their quoted uncertainties, we will need to take this into
account for calibration of new determinations too. Specifically, any 14C determination a
user calibrates against the curve is likely to contain similar levels of unseen additional
variation. If we can assess the level of additional variation seen within the IntCal20
data, then we can incorporate this into calibration for a user by providing a predictive
interval on the curve. Intuitively this predictive interval aims to incorporate both
uncertainty in the value of the curve itself and potential additional uncertainty sources
such as regional, species or growing season effects beyond the laboratory quoted
uncertainty. These predictive intervals are therefore more relevant for calibration than
curve intervals which do not incorporate or adapt to potential additional sources of
variability.

3. Posterior information arising from curve construction—the Bayesian implementation
allows us to provide posterior estimates for many aspects of interest. For example, all of
the records with uncertainties in their calendar timescales (the various floating tree-ring
sequences, marine sediments, Lake Suigetsu and the speleothems) will be calibrated
during the curve’s construction. We can provide these posterior calibrated age estimates
along with other information such as the level of over-dispersion seen in the data, and
posterior estimates of marine reservoir ages and dead carbon fractions.

4. Complete realizations of the curve from 0–55 cal kBP—historically IntCal output has
consisted of pointwise posterior means and variances. However, the Bayesian approach
provides a set of underlying curve realizations which provide covariance information on
the value of the curve at any two calendar ages. When calibrating single determinations,
this covariance does not affect the calendar age estimates obtained, i.e. calibrating
against the pointwise posterior means and variances provides the same inference as
calibrating against the set of individual curve realizations. However, when calibrating
multiple determinations simultaneously, for example if we are seeking to determine the
length of time elapsed between two determinations or fit a more complex model, use of
these complete realizations in consequent calibration offers potential to improve insight.
Work is planned by the group to explore how this may be best incorporated into
existing calibration software.

We discuss some of these aspects in more detail, and present some of the output available, in
Section 5 and the Supplementary Information.
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3 A BRIEF SUMMARY OF BAYESIAN SPLINES, ERRORS-IN-VARIABLES
AND PREDICTIVE INTERVALS

For a typical calibration user the key elements of the new methodology consist of the change to
Bayesian splines with the accompanying shift in the modeling and fitting domains; the
continued recognition that many of the data have uncertainties in their calendar ages and
the significant effect that has on curve estimation; and the use of predictive intervals on the
published curve for calibration. We therefore commence with an intuitive explanation of
these three elements. The technical details can be found later in Section 4. We note that, in
our intuitive descriptions, the observational model may be further complicated by 14C
determinations representing multiple, as opposed to single, calendar years and the inclusion
of a reservoir age or dead carbon fraction for those observations which are not directly
atmospheric. However, for clarity of exposition, we do not consider either of these factors
here, and refer to Section 4 for details on how these additions can be incorporated.

3.1 Bayesian Splines and Choice of Modeling Domain

3.1.1 Frequentist Ideas
Suppose that we observe a function f , subject to noise, at a series of times �i, i � 1; . . . ; n,

Yi � f ��i� � "i i � 1; . . . ; n;

where, for the time being, we assume that the times �i are known absolutely. To obtain a
spline estimate for the unknown function we seek to find a function that provides a
satisfactory compromise between going close to the data but yet does not overfit. This
can be done by choosing the estimate f̂ that minimizes, over a suitable set of functions,

S� f � � FIT� f ;Y� � �PEN� f �;
where FIT� f ;Y�measures the lack of agreement between a potential f and the observed Y ; and
PEN� f � represents a penalty for functions that might be overfitting. Typically, FIT� f ;Y�
consists of the sum-of-squares difference between f ��i� and Yi, while PEN� f � assesses the
roughness of a proposed f ensuring that the more variable f the larger the penalty given to
it with the aim of preventing the spline estimate from overfitting the data. The parameter �
determines the relative trade-off between how one values fidelity to the observed data, i.e.
FIT� f ;Y�, compared with function roughness, PEN� f �. A large � will heavily penalize
roughness and typically results in a smooth curve that is less close to the data; while a
small � will mean the spline goes closer to the data but at the expense of being more variable.

3.1.2 Selection of Appropriate Fitting and Modeling Domains for Radiocarbon
Within the radiocarbon community there are three commonly used domains2: Δ14C, F14C and
the radiocarbon age. Given g���, the historical level of Δ14C in year � cal BP, we can freely
convert between the domains as follows:

• F14C domain: f ��� � 1
1000 g��� � 1
� �

e��=8267: The value of F14C, or fraction modern (Reimer
et al. 2004b), denotes the relative proportion of radiocarbon to stable carbon in a sample
compared to that of a sample with a conventional radiocarbon age of 0 14C yrs BP
(i.e. mid-1950 AD) after accounting for isotopic fractionation. It is a largely linear
calculation from the instrumental measurements meaning its uncertainties are
approximately normal.

2We use the age-corrected Δ
14C as described in Stuiver and Polach (1977).
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• Radiocarbon age domain: h��� � �8033 ln f ���: The radiocarbon age, in 14C yrs BP, is
obtained from the fraction modern using Libby’s original half-life and without any
calibration. Since this is a non-linear mapping of F14C, the uncertainties are no longer
even approximately normally distributed as we approach the limit of the technique.

When fitting a smoothing spline, we have some flexibility in the precise choice of FIT� f ;Y�, our
assessment of fit, and our roughness penalty PEN� f �. For radiocarbon purposes, the natural
domain to assess the quality of fit of a proposed calibration curve to observations is the F14C
domain, the raw scale on which the determinations are obtained. In this F14C domain, our
measurement uncertainties are symmetric. Conversely, in the radiocarbon age domain these
uncertainties become asymmetric as we progress back in time. We therefore choose

FIT�f;F� �
Xn
i�1

1
�2i

f ��i� � Fi
� �

2;

where Fi are the observed F14C values of the determinations and �i their associated uncertainties in
the F14C domain.

F14C is not however the most appropriate domain in which to assess roughness since it exhibits
exponential decay over time making equitable penalization of potential calibration curves
more difficult. Instead a more natural choice is the Δ14C domain where, a priori, one might
expect a calibration curve to display approximately equal roughness over its length. For
our penalty function we therefore choose

PEN� f � �
Z

g 00���� �
2d�;

where g 00��� is the second derivative of the proposed level of Δ14C, a standard penalty for
function roughness.

We summarize this by saying that we perform modeling in the Δ
14C domain as it is here we

penalize roughness; while we perform fitting in the F14C domain since it is here we assess
fidelity of the curve to the raw observations. Since, given �, the transformation from F14C
to Δ14C is affine we can utilize these different modeling and fitting domains while still
maintaining a practical spline estimation approach.

3.1.3 Bayesian Reframing
To reinterpret the above idea in a Bayesian framework we can split our functional

S� f � �
Xn
i�1

1
�2i

f ��i� � Fi
� �

2 �
Z

g 00���� �
2d�

into two distinct parts. The penalty component
R

g 00���� �
2d� can be considered as specifying the

prior distribution on the space of calibration curves; more precisely, it gives the negative log
density of the prior. Intuitively this summarizes our prior beliefs about the form of the
calibration curve before we observe any actual data. We then wish to update this prior
belief, in light of the observed data, to obtain our posterior. This updating is achieved via
the fitting component

P
n
i�1

1
�2i

f ��i� � Fi
� �

2 which represents the negative log-likelihood of
the observed data under an assumption that each Fi � N� f ��i�; �2i �. The value of S� f � then
represents the negative posterior log-density for a potential calibration curve f .

828 T J Heaton et al.

https://doi.org/10.1017/RDC.2020.46 Published online by Cambridge University Press

https://doi.org/10.1017/RDC.2020.46


This idea is illustrated in Figure 1. In panel (a) we present three potential calibration curves in
the Δ14C domain. Using just our prior, we give each curve an initial weight corresponding to
their roughness. The black curve is the least rough and so would be given highest prior weight
as a plausible potential calibration curve. The green curve is the roughest and so has least
weight according to our prior. Each of these Δ14C curves is then converted into the
symmetric F14C space and compared with our observations as shown in panel (b). The
plausibility of each curve is then updated to incorporate the fit to this data. Based upon
this, the red curve would have a higher posterior density as it fits relatively closely while
not being overly rough. Both the green and black curves would have a low posterior
density and so be considered highly implausible as they do not pass near the data. Use of
MCMC allows us to generate any number of plausible calibration curves drawn from the
posterior that provide a satisfactory trade-off between the roughness prior and fidelity to
the observations. Some such realizations are shown in panels (c) and (d) in both the Δ14C
and F14C domains respectively. These realizations are then summarized to produce the final
IntCal20 curve.

3.1.4 Variable Smoothing and Knot Selection
A further choice to be made when spline smoothing is the set of functions (or potential
calibration curves) to search over for our functional S� f �. This set is called a basis. We use
cubic splines where this basis is determined by specifying what are known as knots at
distinct calendar times. The more knots one has in a particular time period, the more the
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Figure 1 An illustration of Bayesian splines. Panel (a) shows some potential calibration curves in the Δ14C domain
drawn from the prior. These are then compared with the observed data in the F14C domain as shown in panel (b) to
form our Bayesian posterior. The bottom two panels (c) and (d) show posterior realizations of potential curves (shown
in Δ

14C and F14C space respectively) obtained via MCMC that provide a satisfactory trade-off between agreement
with our prior penalizing over-roughness and the fit to our observed data.
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spline can vary. One common option, known as a smoothing spline, is to place a knot at every
calendar age �i for i � 1; . . . ; n. However, since we have a very large number of observations n
this is computationally impractical. Instead we use P-splines (see Berry et al. 2002, for details)
where we select a smaller number of knots; this is equivalent to restricting the potential
calibration curves to a somewhat smaller subspace of functions.

In implementing P-splines we need to make sure that the curves we consider are still able to
provide sufficient detail for a calibration user and identify fine scale features such as solar cycles
where we have the ability to do so. The data on which we base our curve have highly variable
density. In some periods, such as recent dendrodated trees, we have a great density of
determinations while in others the underlying data is more sparse. To adapt to this and
keep required detail, we choose a large number of knots and place them at calendar age
quantiles of the data to provide variable smoothing. This approach of locating the knots at
observed quantiles is standard in the regression literature (e.g. Harrell 2001). Where our
data is dense, we can pick out the required fine detail but where the data is more sparse we
smooth more significantly. An example can be seen in Figure 2. This figure also highlights
how we pack additional knots around known Miyake-type events, narrow spikes
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Figure 2 Variable smoothing and knot selection. Shown as a rug of tick marks along the
bottom are the locations of the knots for the cubic spline. These are placed at quantiles of
the observed calendar ages to provide variable smoothing. In dense regions, we can
identify more detail in the calibration curve; while where the underlying data is less dense
we perform more smoothing. In particular, note the additional knots placed around the
two Miyake-type events (i.e. 957 and 1176 cal BP) which allow the curve to vary much
more rapidly at these times. The points from different datasets within the IntCal database
are shown in different colors to distinguish them.
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(sub-annual) of increased 14C production, to enable us to better retain these events in the final
curve. For more details on choice of knots and placement see Sections 4.3.4 and 4.4.3.

3.2 Errors-in-Variables Regression

3.2.1 Calendar Age Uncertainty
Within the IntCal database (http://www.intcal.org/), many of the determinations have calendar
ages which are not known absolutely. This is particularly the case as we progress further back in
time and calendar age estimates are constructed from uranium thorium (U-Th) dating, e.g.
speleothems (Southon et al. 2012; Cheng et al. 2018; Beck et al. 2001; Hoffmann et al. 2010)
and corals (Bard et al. 1990, 1998, 2004; Cutler et al. 2004; Durand et al. 2013; Fairbanks
et al. 2005; Edwards et al. 1993; Burr et al. 1998, 2004); varve counting, e.g. parts of Cariaco
Basin (Hughen et al. 2004) and Lake Suigetsu (Bronk Ramsey et al. 2020 in this issue); and
palaeoclimate tuning/tie-pointing, e.g. other parts of Cariaco Basin (Hughen and Heaton
2020 in this issue), and the Pakistan and Iberian Margins (Bard et al. 2013). Furthermore, in
the case of several of the floating tree-ring sequences, we have only a relative set of calendar
ages and no absolute age estimate. Regression in this situation is called errors-in-variables
since we have errors/uncertainties in both the calendar age and radiocarbon determination
variables. For these observations we therefore observe pairs �Fi;Ti�f gi2I where:

Fi � f ��i� � "i;

Ti � �i �  i:

Here f ��� is our calibration curve of interest in the F14C domain; "i � N�0; �2i � independently;
and  i describes the uncertainty in our calendar age estimate. The form of this calendar age
uncertainty varies between the datasets. While there is no restriction on the distribution of  i

for our Bayesian spline approach, we model all these calendar age uncertainties as normally
distributed but with appropriate covariances. For some sets they are considered independent,
e.g. corals dated by U-Th; while for others, e.g. floating tree-ring sequences and those records
dated by varve counting or palaeoclimate tie-pointing (Heaton et al. 2013), there is
considerable dependence between the observations. For more detail on the various
covariance structures in the calendar age uncertainties see Niu et al. (2013).

3.2.2 Importance of Recognizing Calendar Age Uncertainty
Incorporation of calendar age uncertainty in the construction of the IntCal calibration curves
has occurred since IntCal04 (Reimer et al. 2004a) and is key for reliable curve construction. It
was therefore crucial to retain within the new methodology. A range of statistical methods have
been developed to deal with errors-in-variables regression. From the frequentist, non-Bayesian,
perspective Fan and Truong (1993) introduced a kernel-based approach which achieves global
consistency; Cook and Stefanski (1994) proposed a more general approach known as SIMEX.
These approaches were not however considered suitable for our application due to the genuine
prior information we have on certain aspects of the data; the wider, almost universal, use of
Bayesian methodology within radiocarbon calibration; and the independent interest in several
aspects of the calibration data which could be provided more simply through a Bayesian
method. We therefore began the development of our method using the Bayesian splines of
Berry et al. (2002).

The effect of not recognizing calendar age uncertainty, where it is present, in regression is quite
varied. In the case that the calendar age uncertainties are entirely independent of one another,
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such as U-Th dating, not recognizing calendar age uncertainty will typically result in curve
estimates that are overly smooth and do not attain the peaks and troughs of the true
underlying function. See Samworth and Poore (2005) for an illustrative case study. However,
in the case of IntCal, the situation is made more complicated by the shared dependence of the
calendar age estimates within particular datasets. Specifically, the entire timescale for, e.g.
Hulu Cave, is not the same as the Suigetsu or Cariaco timescale. As a consequence, all of
these individual datasets may show the same overall features but at slightly different times.
We require our method to recognize that these different timescales may need to be aligned,
within their respective uncertainties, to keep these shared features. This requires us to shift
multiple ages jointly by stretching/squashing the timescales accordingly. A failure to adapt to
this joint calendar age uncertainty can give curve estimates which either introduce spurious
wiggles as the curve flips between the different datasets or lose major features entirely.

Illustration
We provide in Figure 3 an illustrative example of the need to incorporate calendar age
uncertainty. For simplicity, in this example, we fit and model our spline in the same

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

True function and calendar age θ of observations

Calendar Age

y

(a)

Dataset 1
Dataset 2

True Function

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Observed noisy ages T of observations

Calendar Age

y

(b)

Dataset 1
Dataset 2

True Function

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Estimated function if do not recognize calendar age uncertainty

Calendar Age

y

Dataset 1
Dataset 2

True Function
Estimate (no errors−in−variables)

(c)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Estimated function if do recognize calendar age uncertainty

Calendar Age

y

Dataset 1
Dataset 2

True Function
Estimate (with errors−in−variables)

(d)

Figure 3 The importance of recognizing calendar age uncertainty (and correctly representing covariance within that
uncertainty) when constructing a curve based on data arising from records with different observed timescales. Panel
(a) shows the true, underlying, calendar ages of the data in two different records; while panel (b) shows a joint shift in
the observed calendar ages within record 2. In such a case that observed timescales in two records are offset from one
another, if we ignore this calendar age uncertainty then our spline estimate will introduce spurious variation as it flips
between the records as in panel (c). Conversely if we incorporate such calendar age uncertainty and accurately
represent it then we can still recover the underlying function accurately, as shown in (d).
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domain. We consider a straightforward underlying function which we wish to reconstruct from
100 noisy observations �Yi;Ti�f g100i�1

f ��� � e�� sin�4��� � cos�2����;
where our underlying �i � Beta�1:1; 1:1� and observed Yi � N� f ��i�; 0:052� for i � 1; . . . ; 100.
Further, let us assume that these observations arise from two different sediment cores, 50
from core 1 (shown as black triangles) and 50 from core 2 (shown as red dots) as seen in
panel (a). Within core 1, the calendar ages are known absolutely. However, within core 2
the observed timescale is somewhat shifted/biased so that when we observe the calendar
ages T in this core they all share the same joint shift from their true values, i.e.

Ti � �i if i is in core 1;

Ti � �i �  if i is in core 2;

where  � N�0; 0:12�. The observed pairs �Yi;Ti�f g100i�1 are presented in panel (b) showing the
shift in timescale within core 2. If we attempt to reconstruct the function using splines based
upon our observed �Yi;Ti�f g100i�1 without recognizing the calendar age uncertainty, i.e. assuming
both cores are on the same timescale, then we obtain the estimate in the panel (c). The estimate
is spuriously variable as the spline will try to pass near all of the data on their non-comparable
timescales. Conversely, if we recognize that the timescale in core 2 may need to be shifted onto
the timescale of core 1, we obtain the estimate shown in panel (d). If we inform our Bayesian
method that the calendar age observations in core 2 are subject to uncertainty, it will estimate
the size of the joint shift needed to register core 2 onto the true timescale of core 1 and
simultaneously reconstruct the true underlying function.

Implications for Visually Assessing Curve Fit
While it is important to incorporate errors-in-variables in curve construction, and accurately
represent any dependence in the calendar age uncertainties, this does cause some difficulty in
visually assessing the quality of fit between the raw constituent data and the final IntCal curve.
Since the proposed method can shift the calendar ages of the observed data left and right within
their uncertainties as described, one cannot estimate the final curve’s goodness-of-fit by eye
using only the radiocarbon age axis if the raw data are only plotted at their initial,
observed calendar ages. The method will have tried to align shared features even if they
occur at somewhat different observed times within the different sets. This should be taken
into consideration when viewing the final curve against the raw data. We provide the
posterior calendar age estimates for the true calendar ages �i for all the data. The difficulty
of assessing the fit of the curve by eye is further compounded by the offsets in 14C
described in Section 4.4, in particular the marine reservoir ages which vary significantly
over time and so will change as the MCMC updates the calendar ages of the data.

3.3 Predictive Intervals and Over-Dispersion

3.3.1 Background and Motivation
As well as creating a curve which has the correct posterior mean, it is key to make sure we provide
appropriate intervals on the curve to ensure that, when used for calibration, the calendar age
estimates produced are not over- or under-precise. This becomes particularly relevant for
IntCal20 due to the large increase in data available to create the curve, and also the increased
measurement precision provided by current laboratories. In addition to the laboratory
reported uncertainty, there are a wide range of possible further sources of variation in the
recorded 14C within objects of the same age, for example determinations come from different
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locations; have different local environments; tree rings may be of different species; and have
different periods of growth due to local weather and so may have differing elements of wood
from late/early growth. Even when the same sample is measured in different laboratories, we
have evidence of a greater level of observation spread (i.e. over-dispersion) in the 14C
measurements within objects from the same calendar year than the laboratory reported
uncertainties would support (see e.g. Scott et al. 2017). Recognizing this potential over-
dispersion, whatever its cause, is important both for curve estimation and resultant calibration
for IntCal20. Specifically, if there is more variation in determinations from the same calendar
year than the uncertainties reported by the laboratory, we need to make sure we incorporate
that in our modeling, and also recognize its existence in the objects users will then calibrate
against the IntCal20 curve.

We achieve this through the inclusion of a term to quantify the level of over-dispersion which
we adaptively estimate, based on the high-quality and dense IntCal data, within our curve
construction. This ensures that our IntCal20 curve does not become over-precise as an
estimate of the Northern Hemispheric average. However, this alone is not sufficient for
calibration since any additional sources of variation seen within the IntCal data are also
likely to be present in uncalibrated determinations. We must therefore propagate this over-
dispersion through to the calibration process itself. This is achieved using predictive curve
intervals which incorporate not only uncertainty in the Northern Hemispheric average
atmospheric curve but also the potential additional sources of variation seen in individual
14C determinations. Importantly, if no such additional variability exists then our model will
estimate this appropriately, however if such additional sources of variability do seem
present in the calibration data, our method will also recognize this and adapt accordingly.
Without such an over-dispersion term then, as we get more data, the calibration curve will
have intervals that become narrower and narrower even if the underlying data suggests
considerably higher variability. Eventually, this would mean that the data entering the
curve itself would potentially not calibrate to their known ages.

Such an idea of irreducible uncertainty was introduced in Niu et al. (2013) but here we extend
the idea further and generate predictive curve intervals which are more relevant for calibration
users. Importantly, this does not however mean that we produce a calibration tool that any
measurement (no matter its quality) can be calibrated against—we wish to maintain a
calibration curve which has basic minima for data quality for both what goes into its
construction and also what can be reliably calibrated using it.

3.3.2 The Over-Dispersion Model: Additive Errors Scaling with
�����������
F14C

p
The basic tree-ring model for an annual measurement assumes that a determination of calendar
age � arises from a hemispherically uniform atmospheric level of 14C shared by all
determinations of the same calendar age. Under this model, the only uncertainty is that
reported by the laboratory so that, in the F14C domain, the observed value is

Fi � f ��i� � "i;

where �i is the year the determination represents; and "i � N�0; �2i � with �i the uncertainty
reported by the laboratory. The function f ��� is our unique estimate of the hemispheric
level of F14C present in the atmosphere at calendar age �.

Currently it is not feasible to identify the specific sources that may potentially contribute extra
variability beyond that reported by the laboratory (e.g. regional, species, growing season
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differences) and so we aim to cover them all in a unified approach. We therefore modify the
above model to allow any determination to have an additional and independent source of
potential variability �i beyond that reported by the laboratory, i.e.

Fi � f ��i� � "i � �i for i � 1; . . . ; n

where �i � N�0; �2i � are independent random effects with unknown variance �2i . To create the
curve we simultaneously estimate both �i, the level of over-dispersion, and the calibration
curve f ���.
After investigation of several options, see Section 5.1 and the Supplementary Information, we
model the level of over-dispersion (i.e. the level of any additional variability) to scale
proportionally with the underlying value of

���������
f ���p

i.e. �i � �
����������
f ��i�

p
so that

�i � N�0; �2f ����. We choose a prior for the constant of proportionality � based upon data
taken from the SIRI inter-comparison project (Scott et al. 2017), and update this prior
within curve construction based upon the IntCal data. The information provided by the
very large volume of IntCal data dominates the SIRI prior and so the posterior estimate
for the level of over-dispersion is primarily based upon the high-quality IntCal data.

3.3.3 Implications for Calibration
A user seeking to calibrate a high-quality 14C determination against the IntCal20 curve is likely to
have a measurement that has been subject to similar additional sources of potential variation to
whatever is seen in the IntCal data, and so have a similar level of over-dispersion. However, such a
user typically has no way of assessing this over-dispersion themselves. Consequently, they should
calibrate their determination using predictive curve estimates which additionally account for
potential over-dispersion in their own determination. These predictive estimates are based
upon the posterior of

f ��� � ����;
where ���� � N�0; �2f ���� and � is the posterior estimate of over-dispersion based upon the IntCal
data. For IntCal20 we therefore report this predictive interval since it is more relevant for
calibration. It is slightly wider than the corresponding credible interval for f but more likely
to give accurate calibrated dates.

Note that the level of over-dispersion, and hence the predictive intervals, we incorporate into
the IntCal20 curve is based upon the high-quality, and screened, IntCal database. If a new
uncalibrated 14C determination has additional sources of variability beyond those present in
the IntCal tree-ring database (e.g. tree-ring species or locations not represented in IntCal,
or a non-tree-ring sample) then this may mean that the level of over-dispersion for that
uncalibrated determination is higher than that incorporated within the IntCal prediction
intervals. This would result in a potentially over-precise calibrated age estimate. Users are
advised to be cautious in such circumstances.

4 CREATING THE CURVE

As in previous versions of IntCal, the IntCal20 curve itself is created in two linked sections.
Firstly we create the more recent part of the curve (extending from 0 cal kBP back to
approximately 14 cal kBP) which is predominantly based upon dendrodated tree-ring
determinations. Secondly we create the older part of the curve (from approximately 14 cal
kBP back to 55 cal kBP) which is based upon a wider range of material, e.g. corals,
macrofossils, forams, speleothems as well as five floating tree-ring chronologies, that are of
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uncertain calendar ages. Furthermore, these older 14C determinations are often not direct
atmospheric measurements and hence have marine reservoir ages or dead carbon fractions.
We therefore split our technical description of the approach accordingly. The two curve
sections are stitched together to ensure smoothness and continuity through appropriate
design of spline basis and conditioning the older part of the curve on the, already
estimated, more recent section. This means that we can still produce sets of complete curve
realizations from 0–55 cal kBP. Future work will aim to adapt the approach into a single
step, updating the entire 0–55 cal kBP range as one.

4.1 Notation

Calibration Curve by Domain
We can represent the atmospheric history of 14C, as a function of calendar age �, in three
domains equivalently: Δ14C, F14C, and radiocarbon age. For any proposed history, i.e.
calibration curve, we switch between these domains as appropriate within our statistical
methodology. Let us denote:

• g���—the 14C calibration curve represented inΔ
14C space, i.e. the level of Δ14C at � cal BP.

We model g��� in our spline basis and penalize roughness of the curve in this domain.

• f ���—the 14C calibration curve represented in F14C space. Given g��� then

f ��� � 1
1000

g��� � 1

� �
e��=8267:

It is this F14C domain that is used to assess goodness-of-fit to the observed data.
• h���—the 14C calibration curve represented in radiocarbon age:

h��� � �8033 ln f ���:
This is the domain in which the calibration curve is plotted in the main IntCal20 paper
(Reimer et al. 2020 in this issue).

Observed Data
We consider all of our observations in F14C since, as explained in Section 3.1, in this domain
our 14C measurement uncertainties are symmetric. We define:

• Fi—the observed F14C value of the data used to create the IntCal20 curve.

• �i—the laboratory-reported uncertainty on the observed F14C.

• mi—the number of annual years of metabolization that a determination represents. The
determination is considered to represent the mean of this block.

• Ti—the observed calendar age of a determination, which could either be the true calendar
age (in the case of absolutely dendrodated determinations) or an estimate with uncertainty
(in the case of e.g. corals, varves, speleothems).

Model Parameters
Within the model we update:

• �j—the spline coefficients which describe the calibration curve.

• �—the smoothing parameter for the spline estimate.
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• �i—the true calendar age of a determination or, in the case of a block-average
determination, the most recent year of metabolization included in the block.

• �—the level of over-dispersion in the observed F14C under a model whereby the potential
additional variability for determination Fi is �i � N�0; �2f ��i��.

• rK���—the offset measured in terms of radiocarbon age, either due to dead carbon fraction
(dcf) or marine reservoir age (MRA), between a determination from setK and the atmosphere
at time � cal BP. These will be specified either by 	K, the mean dcf offset/coastal MRA shift
for a particular dataset; or further spline coefficients �C in the case of the Cariaco unvarved
record. These are only needed when estimating the older part of the curve.

• 
i and %K—adaptive error multipliers for data arising from the older time period to enable
heavier tailed errors and the down-weighting of outliers. Also only included when
estimating the older part of the curve.

4.2 Basic Model for Observed Data and Curve

As described in Section 3.1, we fit our curve to the data in the F14C domain while the curve
modeling is performed in the Δ14C domain. Specifically, for a single-year determination of the
direct atmosphere with no offset and no over-dispersion, we observe pairs �Fi;Ti�ni�1 where

Fi � f ��i� � "i;

� g��i�
1000

� 1

� �
e��=8267 � "i;

Ti � �i �  i:

Here g���, the value of Δ14C over time, is modeled as

g��� �
XK
j�1

�jBj���

� B���Tβ;
where B��� � �B1���; . . . ;BK����T and the Bj��� are cubic B-splines (Green and Silverman 1993)
at a chosen fixed set of knots. To maintain computational feasibility, we consider K 	 n so
that the number of splines in our basis is considerably smaller than the total number of
observations in the IntCal database. Knot number and placement is discussed in Sections
4.3.4 and 4.4.3.

Prior on β
The Bayesian spline approach, equivalent to penalizing roughness in Δ14C by �

R
b
a g 00���� �

2d�,
is obtained by placing a “partially improper” Gaussian process on the spline coefficients β:

��βj�� � �

2�

� �
rank�D�=2

�jDj?�1=2 exp ��
2
βTDβ

	 

;

where D is a penalty matrix which penalizes the integrated squared second derivative and jDj?
its generalized determinant (see Green and Silverman 1993, for details). For splines of degreem
(cubic splines have degree 3) then rank�D� � K � �m � 1�.
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Prior on �
As standard within Bayesian splines (e.g. Berry et al. 2002), we place a hyperprior on the
smoothing parameter � � Ga�A;B�:

���� � 1
Γ�A�BA �

A�1 exp ��
B

� �
�for � > 0�:

We select an uninformative prior on � with A � 1 and B � 50000.

4.3 Creating the Predominantly Dendrodated Part of the Curve Back to Approximately
14 cal kBP

Back to approximately 14 cal kBP, we have a sufficient density of tree-ring determinations that
we can estimate the curve based solely upon these direct atmospheric observations3. The main
challenges in creating this more recent section of the curve are:

• High density and volume of data—there are 10,713 14C measurements in this,
predominantly dendrodated, section. Such a large volume of data makes a
computationally efficient algorithm essential.

• Consequent demand for high level of detail in calibration curve—this, more recent, period
of the calibration curve is the most heavily interrogated by archaeologists who require high
precision, not just for individual calibration but also for modeling of multiple dates. This
increases the user demand for fine detail in the calibration curve, e.g. incorporating solar
cycles.

• Blocking within the data—many of the 14C determinations do not relate to the
measurement of the atmospheric 14C in a single year but rather averages of multiple
tree rings and so represent multiple years.

• Floating tree-ring sequences around 12:7 cal kBP—several late glacial trees have their
chronologies estimated by wiggle matching and so while their internal chronology is
known absolutely, their absolute ages are not. Otherwise, the true calendar ages of all
determinations are known absolutely for this section of curve.

4.3.1 Modifications to Basic Model
Blocking and Additive Errors
Our model for the tree-ring determinations, taking account of blocking, considers the observed
Fi as

Fi �
1
mi

Xmi�1

j�0

f ��i � j�
( )

� "i � �i for i � 1; . . . ; n

wheremi is the number of annual rings in the block for that determination; �i is the most recent year
(start ring) of the block; and "i � N�0; �2i � where �i is the uncertainty reported by the laboratory.
This implicitly assumes that the tree rings over the section of mi rings are approximately equal in
width, so that approximately equal annual amounts of wood were deposited and have ended up in

3The IntCal database contains tree-ring determinations extending back to 14,189 cal BP all of which are used to create a
predominantly dendrodated tree-ring-only curve from 0–14,189 cal BP. However, beyond 13,913 cal BP the density of
this data was not sufficient to estimate the curve precisely. Hence, we merge the predominantly dendrodated curve
section with the older section at 13,913 cal BP.
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the final measured sample. The �i � N�0; �2i � are independent random effects, with �i unknown,
that represent potential over-dispersion in the 14C determinations.

Additive Errors Model
As described in Section 5.1 we model �i, the standard deviation of the additive over-dispersion
on the ith determination, as proportional to the square-root of the underlying F14C, i.e.

�2i � �2
1
mi

Xmi�1

j�0

f ��i � j�:

The individual values of �i are not of interest and so we integrate them out, updating only the
overall constant of proportionality � . Formally, a structure where �i depends upon the
underlying curve means this term should be incorporated in the update to β within our
sampler—a change to the curve (via its spline coefficients β) would mean a change to the
additive uncertainty �i on all observations. However, this would make the β update no longer
a Gibbs step. Since, given the overall multiplier � , the change in �i between two potential
curves is minimal, when updating β we consider �i as fixed; see Section 4.3.3 for more details.

Floating Tree-Ring Sequences
Several late-glacial tree sequences measured by Aix, ETH and Heidelberg (Reinig et al. 2018;
Capano et al. 2020 in this issue) were dated by wiggle-matching so, while their internal relative
chronologies were known precisely, their absolute calendar ages were somewhat uncertain. For
such a floating tree-ring sequence, the true calendar ages are:

�floatj � �� �j for j in floating sequence:

where � is the unknown start date (i.e. most recent year) of the floating sequence and �j is the
precisely-known internal ring-count chronology. We place a discretized (integer) normal prior
on � � N�M;N2�. Here, the prior mean M and variance N2 for the start date of each such tree-
ring sequence were provided. All of the other dendrodated determinations were assumed to
have their calendar age �i known absolutely.

4.3.2 Efficient Incorporation of Blocking
To incorporate blocking exactly, at each iteration of our MCMC we need to evaluate the level of
F14C at every year represented within a block, and then average over them appropriately for each
of our n determinations. One might think this additional calculation will make the method much
slower as it requires the evaluation of the curve at many more than n calendar years. However, in
the predominantly dendrodated part of the curve, it is possible to exactly incorporate blocking
without any compromise on the speed of the estimation procedure. Since the vast majority of
the data in this period have exactly known calendar ages (only the floating tree-ring sequences
have uncertain ages) we can calculate an initial matrix that relates, for each blocked
determination, the necessary averaged F14C to the underlying spline coefficients. This matrix
then remains fixed throughout estimation. Further it has the same dimensions as if blocking
had been ignored and hence does not significantly alter the speed of the MCMC updates.

Finding Values of F14C at Each Year Represented in a Block
We begin by describing how we can relate each blocked determination to the spline coefficients
β. Let θA � ��1; �1 � 1; . . . ; �1 �m1 � 1; �2; . . . ; �2 �m2 � 1; . . . ; �n �mn � 1�T be a vector
concatenating every calendar year, including any potential blocking, represented in all n
determinations. Also, define vectors cAθ and eAθ so that
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cA�;l �
1

1000
e��

A
l =8267 and eA�;l � e��

A
l =8267:

Then, create the matrix BA
θ containing the spline bases evaluated at each value in θA:

BA
θ �

B1��1� . . . BK��1�
B1��1 � 1� . . . BK��1 � 1�

..

. ..
.

B1��n �mn � 1� . . . BK��n �mn � 1�

0
BBB@

1
CCCA;

so that, at the calendar years θA, the modeled value of Δ14C is gA � BA
θ β where β represents the

spline coefficients. The modeled value of F14C at an individual calendar age �Al then becomes
f Al � cA�;lg

A
l � eA�;l and at the full θA, fA � By

θβ� eθ where B
y
θ is formed by multiplying each row

in BA
θ by the corresponding element in cAθ .

A Blocking Matrix
For each blocked determination, we now wish to average the values of F14C according to the
multiple years represented in that block. Consider an averaging matrix M corresponding to
averaging the individual values in fA:

M �
1=m1 . . . 1=m1 0 . . . 0 . . . . . .
0 0 0 1=m2 . . . 1=m2 0 . . .

..

.

0
B@

1
CA:

Our observed vector of F14C measurements F thus becomes

F � MBy
θβ�Meθ � ε� η;

� B?θβ� e?θ � ε� η:

Note that both the matrix B?θ and e?θ depend upon the true calendar ages. However, since for the
vast majority of the tree-rings, the calendar ages are known exactly, one only has to calculate B?θ
and e?θ once as it is then fixed. The final B?θ has dimension K × n and hence the Gibbs updating of
β is the same speed as if one had no blocking. To incorporate the floating tree-ring sequences, for
any potential sequence start date � we only need update a small submatrix of B?θ and e?θ
corresponding to these observations. The required updates for all sequence start dates �
covering the prior range can be calculated and stored before commencing curve estimation.

4.3.3 Details of MCMC Algorithm
Posterior
Using the above hierarchical structure, the joint posterior is proportional to


�; β; �; � jF; θ�∝ 
Fjβ; θ; �; � �
βj��
��
� �
��

∝ det �W� �12 exp � 1
2

�F� e?θ � B?θβ�TW� �F � e?θ � B?θβ�
� �� �� �M�2

N2 � �βTDβ

� �	 


× �A�rank�D�=2�1 × exp ��
B

� �
;

where W� � diag��21 � �21 ; . . . ; �
2
n � �2n��1 includes the additive error representing the over-

dispersion. We can sample from this using Metropolis-within-Gibbs but where most of the
updates can be performed directly via Gibbs and only a few require Metropolis-Hastings (MH).
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Gibbs Updating βjF; λ; ξ; τ

��βjF; �; ��∝ exp � 1
2

�F � e?θ � B?θβ�TW� �F � e?θ � B?θβ�
� �� �βTDβ

 �	 


For the purposes of maintaining a Gibbs update here, we treatW� � diag��21 � �21 ; . . . ; �
2
n � �2n��1

as fixed and independent of β, i.e. we ignore the dependence of the individual over-dispersion �i
on the curve. With this minor approximation, algebra gives a direct complete conditional

βjF; � � MVN QB?Tθ W� �F � e?θ�;Q
� �

;

where

Q � �B?Tθ W�B? � �D��1:

Here large computational savings can be made if we calculate Q�B?Tθ W�F� rather than
�QB?Tθ �W�F since Q is K × K while B?Tθ is K × n (and n � K).

Gibbs Updating λjβ;A;B
Due to conjugacy of the � prior:

���jβ�∝�A�rank�D�=2�1 exp �� βTDβ
2

� 1
B

� �	 

;

i.e. �jβ � Ga�A0;B0� where A0 � A� rank�D�=2 and B0 � βTDβ
2 � 1

B

� ��1
.

MH Updating ξjF; λ; β; τ
To update the start of our floating tree-ring sequences, we use an MH step:

• Propose �0 � MVN��; �prop�;
• Calculate B?θ and B?θ0 where θ0 are the calendar ages of the floating sequence with the

proposed new start date �0. Similarly calculate e?θ and e?θ0 . Accept �0 according to
Hastings Ratio:

HR � min 1;
���0jF; β; ��
���jF; β; ��

	 

;

where

���jF; β; �� � exp � 1
2

�F � e?θ � B?θβ�TW� �F � e?θ � B?θβ�
� �� �� �M�2

N2

� �	 

:

MH Updating τjF; λ; β
This also requires an MH update step. Let the residuals between the observed F and fitted
values F̂ � B?θβ� e?θ be

R � F � B?θβ � e?θ:

Then, we have independently Ri � N�0; �2i � �2i � where �i � �
�����
F̂i

p
. With our prior � � ���� we

update:
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• Sample � 0 � N���; �2�;
• Accept according to Hastings Ratio:

HR � min 1;
f �R; � 0���� 0�Φ��=��
f �R; ������Φ�� 0=��

	 

;

where f �R; �� �Q
n
i�1 
�Ri; 0; �2i � �2i � and �i � �

�����
F̂i

p
. Note the asymmetric proposal

adjustment.

4.3.4 Additional Considerations
Choice of Splines
For the portion of the curve from 0 cal kBP back to approximately 14 cal kBP, we placed 2000
knots at the unique calendar age quantiles of the constituent determinations (each blocked
determination was represented by its midpoint) to permit variable smoothing dependent
upon data density. In regions where there were more data this allowed us to pick out finer
scale variation. Such a selection enabled close to annual resolution in the detail of the final
curve while still maintaining computational feasibility in curve construction. We also placed
additional knots in the vicinity of the known Miyake-type events at 774–5 AD, 993–4 AD
and �660 BC (Miyake et al. 2012, 2013; O’Hare et al. 2019) to enable us to capture more
rapid variation at these times. Around the calendar age of each such event, we added an
extra 4 jittered knots, i.e. after addition of small amounts of random noise—for the �660 BC
event we used a slightly larger jitter due to its slightly less certain timing. If there is no
event at these times then the curve will not introduce one but, if there is, then these
additional knots will allow it to be picked up more clearly. All knot locations then
remained fixed throughout the sampler.

Outlier Screening
In order to identify potential outliers, after fitting a preliminary curve, scaled residuals
(incorporating potential blocking) were calculated for each datum, i.e. for an annual
measurement

ri �
Fi � f̂ ��i�������������������������
�2i � ���i�2

p ;

where ���i� is the posterior standard deviation on the calibration curve at �i cal BP, the calendar
age of that datum. These residuals were then combined for each datasetK into a scaled deviance,
ZK �P

i2K r2i , and compared with a �2
nK where nK are the number of determinations in that set.

The mean offset of each dataset from the preliminary curve was also calculated

	K � 1
nK

P
i2K Fi � f̂ ��i�
n o

. Sets which had low p-values for their deviance and high mean

offsets were then discussed with the data set providers as to whether they should be included
in the final IntCal or not (see Bayliss et al. 2020 in this issue, for more details).

Run Length
TheMCMCwas run for 50,000 iterations. The first 25,000 of these iterations were discarded as
burn-in. The remaining 25,000 were used to create the final curve (thinned to every 10th) and
passed to the older part of the curve to create a seamless merging between the curve sections as
discussed in Section 4.4.1. Since the main update steps (i.e. β and �) are Gibbs this was felt to be
sufficient although convergence was further assessed by initializing the sampler at different
values and comparing the resultant curve estimates visually.

842 T J Heaton et al.

https://doi.org/10.1017/RDC.2020.46 Published online by Cambridge University Press

https://doi.org/10.1017/RDC.2020.46


4.4 Creating the Older Part of the Curve

Beyond approximately 14 cal kBP, the number of tree-ring determinations decreases and they
are not sufficient to create a precise calibration curve. We therefore merge the predominantly
dendrodated curve with the older section of curve, which is estimated from a wider range of 14C
material, at 13,913 cal BP. In this older period, the underlying data used to construct the curve
incorporates corals, foraminifera, macrofossils and speleothems, in addition to a small number
of floating tree-ring sequences. These alternative sources of data are typically not direct
measurements of the atmosphere but instead are offset due to marine reservoir effects and
dead carbon fractions. Further, their true calendar ages are quite uncertain and can only be
estimated. They therefore present several further challenges for construction of an
atmospheric curve.

4.4.1 Modifications to Basic Model
Uncertain Calendar Ages
All our data in the older part of the curve have estimates (either in the form of noisy
observations or priors) for their calendar ages rather than absolutely known values. For the
corals and speleothems these estimates are obtained via U-Th dating and are considered
independent; for the Cariaco Basin they are either provided by varve counting or elastic
palaeoclimate tie-pointing (Heaton et al. 2013); similar elastic palaeoclimate tie-pointing
provides the ages for the Pakistan and Iberian margins; for Lake Suigetsu they are
provided by wiggle matching; while the floating tree-ring sequences have internally known
chronologies but no absolute age estimates. We assume all our calendar age estimates are
(potentially multivariate) normal. For a dataset K on which we have noisy observations TK

of its calendar ages e.g. U-Th dated corals and the varve counted section of Cariaco, we
model:

TK � MVN�θK;ΨK;T� so that 
TKjθK�∝ exp � 1
2

�TK � θK�TΨ�1
K;T�TK � θK�

n o	 

:

Here ΨK;T is the pre-specified and fixed covariance matrix that encodes the dependence within
the calendar age observations for that dataset. For such datasets we place an uninformative
prior on θK. For Lake Suigetsu and the datasets where calendar age estimates are obtained
via palaeoclimate tie-pointing, no actual calendar ages were observed but rather we have a
prior on their true values:


θK�∝ exp � 1
2

�TK � θK�TΨ�1
K;T�TK � θK�

n o	 

;

and the TK andΨK;T now represent our prior mean and covariance for the calendar ages. As we
have no datasets on which we have both priors and noisy calendar age observations, these two
types of calendar age estimate become equivalent for the purposes of updating. Details of how
to construct the various covariance matrices for the case of varve counting and wiggle matching
can be found in Niu et al. (2013); for the datasets with priors obtained by tie-pointing in Heaton
et al. (2013); and for Lake Suigetsu in Bronk Ramsey et al. (2020 in this issue).

Offsets: Reservoir Ages and Dead Carbon Fractions
Several of our datasets do not provide direct measurements of the atmosphere but are instead
offset. The speleothem records contain carbon obtained from dripwater which has passed
through old limestone and so is a mixture of atmospheric CO2 and dissolved old (dead)
carbon that has no 14C activity. The offset in radiocarbon age this creates is called a dead
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carbon fraction (dcf) and is specific to the speleothem. Similarly the marine records have an
atmospheric offset called a marine reservoir age (MRA) that arises due to both the limited gas
exchange with the atmosphere and ocean circulation drawing up deep old carbon. These
MRAs are location specific and vary over time. For both of these types of data we can
incorporate the offset (either dcf or MRA) in the radiocarbon age domain as:

hoffset��� � hatmos��� � rK���;
where hoffset��� is the radiocarbon age at time � cal BP in the offset environment; hatmos��� our
atmospheric calibration curve in the radiocarbon age domain; and rK��� our offset. This alters
our observational model so that, in the F14C domain, for determinations from dataset K and
with F14C domain calibration curve f ���, the offset becomes a multiplier,

Fi � e�rK��i�=8033f ��i� � "i:

These offsets must be estimated within curve construction to adaptively synchronize the
different records. For IntCal20, speleothem dcfs were considered to be approximately
constant over time but with an unknown level. MRAs were modeled as time-varying,
providing a step forward from IntCal09 and IntCal13. Initial MRA estimates for each of
our locations were obtained by creating a preliminary atmospheric calibration curve using
the same Bayesian spline methodology but based only on the Hulu Cave record (Southon
et al. 2012; Cheng et al. 2018). This Hulu-based curve was then used as a forcing for an
enhanced Hamburg Large Scale Geostrophic (LSG) ocean general circulation model to
provide estimates �K��� of MRA at each given location (see Butzin et al. 2020 in this issue,
for details). Due to coastal effects, these LSG estimates were considered to define the shape
of the MRA, i.e. relative changes over time, but subject to a constant potential coastal
shift. Ideally we might cycle the process of building the curve and re-estimating MRAs
several times but the LSG model had a run time of several weeks and so this was not
feasible. Notwithstanding the above attempts to accurately model dcf and MRA, we
recognized that there was further variation in the offsets over time we were not able to
fully capture. This was incorporated through the addition of further independent variability
in the offsets from one calendar age to the next. Consequently our model for the offsets is:

Speleothems�dcfs� : rK��i� � N�	K; �2K�;
Marine records�MRAs� : rK��i� � N�	K � �K��i�; �2K�;

where �K is the further independent variability in offsets from year-to-year around our LSG/
constant dcf model and added to data before curve construction. We place priors on the
constant dcf mean/coastal shifts 	K:

��	K� � N��K; !2
K�:

We do not aim to estimate the precise values of rK��i� during curve construction. However, the
parameter ν, containing the values of 	K which determine the mean dcf/MRA offset for each
dataset, is updated within our MCMC sampler.

To fully specify our offset model, values of the prior mean dcf/coastal shift, �K, for each
dataset; and !K, our uncertainty on the level of this shift, were estimated from the overlap
between additional data available for each speleothem/marine location and the dendrodated
curve from 0–14 cal kBP. Similarly, these overlaps provided an estimate for each �K. See
Section 5.2 for more details. Finally, for the two floating Southern Hemisphere kauri trees
we assumed an offset of 43 ± 23 14C yrs (1�) based upon the North-South hemispheric
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offset estimated in SHCal13 (Hogg et al. 2013). Being direct measurements of the NH
atmosphere, both Suigetsu and the three Bølling-Allerød floating tree-ring sequences are
not offset, i.e. for all �, rK��� � 0.

Offsets: Cariaco Basin
The LSGmodel was not able to adequately resolve the MRA within the geographically unique
Cariaco Basin which has a shallow sill that potentially limits exchange with the wider ocean. A
further model for the MRAs in this location was therefore needed. As it covered a short time
period, the MRA for the Cariaco varved record (Hughen et al. 2004) was modeled as for the
speleothems, i.e. independently varying around a constant level. For the Cariaco unvarved
record (Hughen and Heaton 2020 in this issue), we modeled the F14C domain multiplier
corresponding to any offset as

�K��� � e�rK���=8033 �
X30
k�1

�C;kBC;k���;

a further Bayesian spline with 30 knots placed at jittered quantiles of the Cariaco prior calendar
ages. The value of βC � ��C;1; . . . ; �C;30�T determining this spline was also estimated during
curve construction but with a fixed and large smoothing parameter �C. This approach
meant rapid changes in the 14C determinations within Cariaco were considered as
atmospheric signal while smoother, longer term drifts away from the other data that might
otherwise introduce spurious features into the curve, would be resolved as time-varying
reservoir effects.

Heavier Tailed Errors
Due to the diversity of the datasets in this older time period, as well as the difficulty in
incorporating all their potential complexities, we wished to create a curve that was not
overly influenced by single determinations. We therefore permit the possibility of heavier
tailed errors in the F14C determinations for the data in this older section of curve extending
beyond 13,913 cal BP. This is incorporated by introducing an error multiplier where for
each observation we maintain

Fi � e�rK��i�=8033f ��i� � "i;

but with each determination’s reported uncertainty �i scaled according to a further
parameter 
i

"ij
i � N 0;
�2i

i

� �
; where 
i � Ga�shape � %K�i�

2
; rate � %K�i�

2
�;

and K�i� is the dataset of observation i. All observations i belonging to the same dataset K
therefore have the same shape and rate in the Gamma prior for their individual 
i. This
model, integrating out 
i, equates to a Student’s t-distribution for an individual observation i,

"i � t�location � 0; scale � �i; df � %K�i��:
Further, for each dataset K, we place an independent hyperprior on the value of its particular
%K parameter so that the observations belonging to that dataset are grouped,

%K � Ga�shape � A%; rate � B%�;
to capture potential differences between the various records. Consequently, if a dataset is seen
to contain several outliers, the other determinations in that same set will also be treated with
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more caution. We choose a subjective hyperprior encapsulating an expectation of a low level of
heavy-tailed behavior by selecting, for each dataset, A% � 100 and B% � 1

2. We update both
κ � �
1; . . . ; 
n�T and ϱ, the values of the various %K, within our sampler.

Parallel Tempering
A significant concern with the previous random walk approach was how well the MCMC
sampler mixed. With this random walk approach, we only updated the calibration curve
one calendar year at a time, conditional on the value at all other times, which restricted the
ability of the curve estimate to move significantly. Furthermore, this update was performed
by MH meaning we would frequently reject proposed updates. By switching to Bayesian
splines, we are instead able to update, conditional on the current calendar ages, the entire
curve through its spline coefficients simultaneously via Gibbs. These dual changes, to
update the entire curve at once and to do so via Gibbs sampling as opposed to MH,
hopefully begin to address mixing concerns. However, due to the uncertain calendar ages it
is likely the posterior for the curve (and the true calendar ages) will remain multi-modal. In
an attempt to overcome any remaining concerns over mixing, we also incorporate parallel
tempering. In tempering, we run multiple chains concurrently. One of these MCMC chains
has as its target our posterior of interest while the others have modified, higher
temperature, targets. These higher temperature targets are typically flattened versions of the
posterior of interest designed so that, as the temperature increases, the corresponding
MCMC chain mixes more easily. We then propose swaps between the states of the multiple
chains so that the chains that mix well (i.e. those that run at higher temperatures) improve
the mixing of the chains which do not (i.e. our posterior of interest). We are free to choose
the elements of the likelihood we wish to temper and by how much. We only temper the
likelihood of the observed data, i.e. 
Fjθ; β; ν; βC; κ�; and 
Tjθ� (or equivalent prior 
θ�) since
these were thought to be the main elements restricting mixing and doing so keeps the
MCMC updates straightforward. Our coupled chains run with a pair of temperatures
�1; �2 > 1 with each chain sampling from a modified posterior,


θ; β; �; ν; βC; κ; ϱjF;T��1;�2
∝ L�1;�2

�θ; β; �; ν; βC; κ; ϱjF;T�
� 
Tjθ�1=�1 
Fjθ; β; ν; βC; κ�1=�2 
βj��
ν�
βC�
��
κjϱ�
ϱ�
θ�1=�1 ;

so higher temperatures give flatter posteriors. We show in Section 4.4.3 how these
modifications are simply equivalent to increasing our observational noise and so we can
maintain straightforward and fast updates for each chain. We run the chain at four
temperatures, including the unmodified posterior of actual interest where �1 � �2 � 1, in
parallel. We discuss the effect of tempering, and how it aids mixing, in more detail within
the Supplementary Information.

Merging with Already Created Tree-Ring-Only Section of Curve
We need to ensure we smoothly merge our older section of calibration curve with the
independently created tree-ring-only curve described in Section 4.3. This is achieved by
selection of an appropriate overlapping set of knots for the two sections. We first identify,
in the tree-ring-only curve, the calendar age at which to create the join. This is determined
to be the calendar age of the knot at which, due to the ending of the tree-ring
determinations, the curve uncertainty on the tree-ring-only curve begins to increase
significantly. For IntCal20, this was selected to be at 13,913 cal BP. This knot and the two
knots either side that were used to create the tree-ring-only curve (five tree-ring-only knots
in total) are then copied into the knot basis for the older portion of curve. On each update
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of the spline coefficients for the older section of curve, we pass the three spline coefficients that
relate to the value of a particular realization of the tree-ring-only section of curve at the join.
The Gibbs update for the older spline coefficients is then performed conditional on these three
tree-ring-only spline coefficients. This ensures that when the posterior realizations of the two
curves are connected together for the final curve, each realization is itself a cubic spline with not
only continuity but also smoothness over the transition between the two sections.

Required Simplifications—Blocking and Over-Dispersion
To make the creation of the older section of the curve computationally practical, we do not
incorporate exact modeling of blocking or over-dispersion. The large number of uncertain
calendar ages mean that including blocking is not feasible. Each update to θ requires
recalculation of the spline basis matrix Bθ. Doing this at every year in θA, i.e. every year
represented in all the blocks, would be extremely slow. Instead, we consider each
determination to represent the single year in its centre. This significantly reduces the
number of calendar ages θ at which we have to recalculate our spline basis matrix. This is
likely to have little effect on the overall curve since the density of data in this older section
is not sufficient to identify very fine-scaled features. Over-dispersion was also not included
in modeling the older curve as we lack the required data density to reliably estimate it.
Further, our previous estimate of over-dispersion related to tree-ring determinations only,
as opposed to the broader range of 14C sources used within the older section of curve.
Instead our modification to permit heavier tailed uncertainties aims to deal with potential
over-dispersion in curve estimation. Note however, that when calibrating atmospheric 14C
determinations against the curve in this older time period, we would still expect them to
have similar potential additional sources of variation (beyond the laboratory quoted
uncertainty) as seen in the predominantly dendrodated section. We therefore maintain
predictive intervals for our final, older curve estimate by adding back in the over-dispersion
estimated within the 0–14 cal kBP tree rings to the posterior curve estimate.

4.4.2 Updating the MCMC
We present the update scheme for the MCMC sampler using notation that refers to the full
parameter space. In practice, several of the update steps are done dataset-by-dataset, for
example calendar ages or offsets. The calculations required to perform such dataset-specific
updates often only require consideration of the likelihood restricted to that particular
dataset and so remain fast.

Posterior
Let us define, where subscripts denote the unknown (and updated) variables on which the
elements depend:

�K��� � e�rK���=8033 Γν;βC;θ � diag��K�1���1�; . . . ; �K�n���n��;
C��� � 1

1000
e��=8267 Cθ � diag�C��1�; . . . ;C��n��;

E��� � e��=8267 eθ � �E��1�; . . . ; E��n��T :

Note that our atmospheric-offset multipliers �K��� are determined by either 	K, the values of
the corresponding mean dcf or coastal MRA shift, or βC in the case of the Cariaco unvarved
record. Then, considering each datum as representing a single year and letting
F � �F1; . . . ; Fn�T , we can calculate for each dataset K the offset-adjusted calibration curve:
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fK��� � �K��� C���B���Tβ� E���
 �
; and so

Fjθ; β; ν; βC; κ � MVN Γν;βC;θ CθBθβ� eθ
 �; diag �2i

i

� �� �
:

Our joint posterior then becomes


θ; β; �; ν; βC; κ; ϱjF;T�∝ 
Tjθ�
Fjθ; β; ν; βC; κ�
βj��
ν�
βC�
��
κjϱ�
ϱ�
θ�

∝
Y
K

Y
j2K

�����

j

p
�j

 !
× exp � 1

2

 �T � θ�TΨ�1

T �T � θ�� ��	

�F � Γν;βC;θ CθBθβ� eθ
 ��TWk�F � Γν;βC;θ CθBθβ� eθ
 ��� ��X
K

�	K � �K�2
!2
K

� �βTDβ� �CβTCDCβC�g × �A�rank�D�=2�1 × exp ��
B

� �

×
Y
K

Y
j2K

%K
2

%K
2

Γ�%K2 �


%K
2 �1
j e�

%K
2 
j

 !
×
Y
K

B
A%
%

Γ�A%�
%
A%�1
K e�B%%K ;

where Wκ � diag
�
�21

1
; . . . ; �

2
n

n

��1
includes the precision multiplier representing the heavy tails,

and ΨT is the combined covariance matrix for all the calendar ages. As for the
predominantly dendrodated section of curve, we can sample from this using a
Metropolis-within-Gibbs algorithm, and again much of the updating can be performed
directly via Gibbs sampling.

Gibbs updating the calibration curve βjF; θ; λ; ν; βC; κ.
This update is very similar to the equivalent update in the tree-ring-based section of curve.
Letting F? � F � Γν;βC;θeθ then, were it not for our need to create a smooth transition from
the trees, the posterior

βjF?; �; θ; ν; κ � MVN μβ � QBT
θ CθΓν;βC;θWκF?;Q

� �
;

where Q � �BT
θ CθΓν;βC;θWκΓν;βC;θCθ

 �

Bθ � �D��1 and, due to our dropping of blocking, all the
matrices in the square brackets are diagonal so can be multiplied rapidly. To create the smooth
transition, we draw a realization from the, already estimated, tree-ring-based section of curve
and condition on βR, the value of the three basis coefficients affecting the value of the spline at
the joining knot. Then

β�RjβR � a � MVN�μ̄β; Q̄�;
where μ̄β � μ��R�β �Q�R;RQ�1

R;R�a � μRβ �, and Q̄ is the Schur complement of QR;R in Q. Here, for
exampleQR;R corresponds to the elements of the covariance that relate to the realized tree-ring
based spline coefficients we condition on.

MH updating the calendar ages θjT;F; β; ν; βC; κ
This step is as for the update of the wiggle matched trees. Whether a dataset has a prior on
their calendar ages or noisy observations does not affect the update. For each dataset K in
turn we:
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• Propose θK0 � MVN�θK;Σprop�;
• Calculate Bθ and Bθ0 (and similarly recalculate Γν;βC;θ0 , Cθ0 and Eθ0 at θK0). Accept according

to Hastings Ratio:

HR � min 1;
��θK0jTK;F; β; ν; κ�
��θKjTK;F; β; ν; κ�

	 

;

where

��θKjTK;F; β; ν; κ� � exp � 1
2

�
�TK � θK�TΨ�1

K;T�TK � θK�
n o

�
	

�F � Γν;βC ;θ CθBθβ� eθ
 ��TWκ�F � Γν;βC;θ CθBθβ� eθ
 ��� ��

:

Note that we only need to recalculate the elements in the likelihood of F (e.g. the elements of Bθ)
that relate to θK. In the case of independent error, i.e. Tj � N��j; �2j �, we use a proposal standard
deviation �prop � 2�j and we can accept/reject each proposal j � 1; . . . ; nK independently. In the
case of dependent error with a covariance matrix, i.e. TK � MVN�θK;ΨK;T�, or an equivalent
prior, we update the whole of θK simultaneously by sampling a proposal θ0 � MVN�θ;Σprop�,
where Σprop∝ΨK;T , to obtain higher acceptance rates.

MH updating the offsets νKjF; θ; β; λ; ξ; τ
Similarly, for each offset dataset:

• Propose a new constant dcf/MRA shift 	K0 � N�	K; �prop�;
• Calculate resultant F14C multiplier Γν0;βC;θ. Accept according to Hastings Ratio:

HR � min 1;
��	K0jF; θ; β; ν�K; κ�’�	K0; �K; !2

K�
��	KjF; θ; β; ν�K; κ�’�	K; �K; !2

K�
	 


;

where

��	KjF; θ; β; ν�K; κ� � exp � 1
2

�F � Γν;βC;θ CθBθβ� eθ
 ��TWκ�F � Γν;βC;θ CθBθβ� eθ
 ���

	 


and ’��; �K; !2
K� is a normal density with mean �K and variance !2

K.

As when updating the calendar ages for each dataset in turn, when calculating this Hastings
Ratio we can restrict our attention to the dataset in question, as elements relating to other
datasets will cancel, making this step considerably faster.

Gibbs updating the Cariaco Basin unvarved MRA βC jF; θ; β; λ; ν; κ
Updating the spline MRA coefficients βC for the Cariaco Basin is analogous to the update of
the calibration curve coefficients β. This can intuitively be seen by considering how these
determinations are represented and swapping the offset multiplier �K��K� with the
calibration curve estimate f ���, i.e. for determinations Fi belonging to the Cariaco Basin
unvarved record,

Fi � �K�i���i�f ��i� � "i � f ��i��K�i���i� � "i;
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and noting that, given β and θ, the curve estimates f ��i� are known and
�K��i� �

P
30
k�1 �C;kBC;k��i�, a linear combination of the MRA spline coefficients βC. More

rigorously, this can be seen if we restrict our likelihood to solely the Cariaco
determinations, and change the ordering of Γν;βC;θ and CθBθβ� eθ
 �. Then, letting
FK � diag�CθKBθKβ� eθK� be a diagonal matrix representing the current atmospheric
calibration curve at the Cariaco calendar ages, our posterior for the MRA spline βC
becomes


βCjFK�
βC �∝ exp � 1
2


�FK � FKBC;θKβC�TWκ�FK � FKBC;θKβC� � �CβTCDCβC
�	 

:

Gibbs updating the smoothing parameter λjβ
As before, �jβ � Ga�A0; B0� where A0 � A� rank�D�=2 and B0 � βTDβ

2 � 1
B

� ��1
.

Gibbs updating the precision multipliers κjF; β; θ; ν; βC; ϱ
For each datum,


ijFi; β; �i; �K�i� � Ga�%K�i�
2

� 1
2
;
%K�i�
2

� R2
i

2�2i
�;

where Ri � Fi � �K�i���i�C��i�B��i�Tβ � E��i� is the current residual, and %K�i�
2 is the current

shape/rate prior for the dataset K to which datum i belongs.

MH updating the expected tail behavior ϱKjκ
For each dataset K:

• Propose new parameter %K0 � N�%K; �prop�;
• Accept according to Hastings Ratio:

HR � min 1;
��%K0jκ���%K0�
��%Kjκ���%K�

	 

;

where

��%Kjκ� �
Y
j2K

%K
2

%K
2

Γ�%K2 �


%K
2 �1
j e�

%K
2 
j and ��%K� �

B
A%
%

Γ�A%�
%
A%�1
K e�B%%K :

4.4.3 Additional Considerations
Choice of Splines
The approach to creating the older part of the calibration curve is considerably more
computationally intensive than for the predominantly dendrodated section of curve. In this
older section, we have to update the calendar ages of the constituent determinations
requiring recalculation of the value of the curve each time. This becomes less feasible as the
number of knots increases. Consequently, for this older section, we are not able to choose
such a large number of knots for our spline basis as used in the dendrodated section. To
select our basis for the older section of curve, we therefore began by placing 400 knots at
quantiles (with the addition of a small amount of random jitter) of the observed/prior
calendar ages Ti. This meant that a knot was placed approximately every 5th observed
calendar age, similar to the dendrodated section of curve. However, in order to make the
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fitted placement of the three Bølling-Allerød floating tree-ring sequences more equitable, we
overrode this knot choice in the period from 14.2–15.2 cal kBP. In this period, 50 knots were
placed evenly (i.e. one every 20 calendar years) and all other knots were removed. Tree-ring
sequences P305u and P317 in particular show considerable variability in 14C over their course;
see Adolphi et al. (2017) and Figure 7. If the knots used to model the calibration curve over the
potential fitted range of these trees lie unevenly in calendar age, as would be the case if we
maintained a knot placement based upon the observed quantiles of the other IntCal20
data, the highly variable 14C nature of these tree-ring sequences may have meant that the
method had a preference/bias to locate them where there were more knots as opposed to
where they best fitted the other data. Conversely placing knots at even calendar age
spacings aims to remove this potential bias. One knot every 20 calendar years is still
sufficient to pick out required curve detail in this period. Finally, we added into the spline
bases the 5 knots required for merging with the tree-ring section of curve and removed
other knots in this period. In total, after these modifications, we were left with 444 knots
meaning that the overall method still maintained computational feasibility. These knot
locations then remained fixed throughout the sampler, i.e. did not change as the calendar
ages �i were updated.

Updating with Parallel Tempering
Tempering our target likelihood for the calendar age terms 
Tjθ� (or alternatively the prior 
θ�)
concerning a particular dataset K, we choose


TKjθK�1=�1 ∝ exp � 1
2�1

h
�TK � θK�TΨ�1

K;T�TK � θK�
n oi	 


This is equivalent to the untempered version but with an adjusted covariance
ΨK;T��1� � �1ΨK;T . To run the chain at this temperature we simply adjust the calendar age
covariance (for observed T or prior) accordingly. We can then perform all updates as
described in Section 4.4.2 but with this modified calendar age covariance.

In tempering the likelihood for the observed FK for a particular dataset K, we select


FKjθK; β; ν; βC; κ�1=�2 ∝
Y
j2K

�����

j

p������������
�2 �

2
j

q
0
B@

1
CA

× exp � 1
2�2

�FK � Γ	K;θK CθKBθKβ� eθK

 ��TWκK�FK � Γ	K;θK CθKBθKβ� eθK


 ��	 

;

where for example, in a slight abuse of notation, Γ	K;θK denotes the diagonal offset multiplier
matrix for the specific datasetK, and will depend upon only 	K. In the case of the Cariaco Basin
unvarved record, we would instead have ΓβC ;θK . This is also equivalent to the untempered
version but modifying all the F14C variances within dataset K to be �2j ��2� � �2�

2
j for all

j 2 K. To perform MCMC on the chain with this temperature, we make this modification
and then all update steps remain as in Section 4.4.2 but with the temperature-adjusted F14C
variances.

The amount of tempering applied is dependent upon the datasets. We apply most tempering to
the two floating Bølling-Allerød tree-ring sequences P305u and P317 since their internal 14C
determinations are highly variable and we wish to fully explore their potential fitting location;
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and also the Cariaco Basin unvarved record which has a large number of observations with
high calendar age covariances where again we might otherwise be concerned about mixing.
For these three datasets, we chose values of �2 that were equivalent, at the highest
temperature of the four parallel chains, to increasing the uncertainty �i on the F14C
determinations by 
 36% from the quoted laboratory values. For the other data, the
highest �2 temperature was equivalent to increasing �i by 
 5%. We performed the same,
small amount of tempering for the calendar ages as otherwise the acceptance rate for
swapping between chains became very low. For all the data, the highest �1 temperature of
the four chains was equivalent to increasing the calendar age covariance by 
 10%.

Run Time and Convergence
We ran the four tempered chains in parallel, each for 250,000 iterations. Four independent
swaps between the tempered chains were proposed every 5th iteration. Convergence was
assessed by initializing the chains at several different starting points and then visually
observing the robustness in the curve estimates; along with assessment of other outputs
such as the posterior estimates for the calendar ages of the floating tree-ring sequences and
the spline based MRA of the Cariaco Basin; and the overall model likelihood. For a more
thorough discussion of convergence and the effect of tempering, see the Supplementary
Information. The level of tempering chosen was based upon a trade-off between
maintaining a reasonable acceptance rate of chain swaps, and a highest temperature that
both allowed the Bølling-Allerød trees P305u and P317 to move and gave a “highest-
temperature” curve estimate that had removed most fine detail; again see the
Supplementary Information. In total, there were 4407 accepted chain swaps, with 559
between the two lowest temperatures, i.e. swaps that involved the untempered target of true
interest. To create the final curve, we removed the first half of the target chain as burn-in
and then thinned to every 50th realization leaving us with 2500 posterior realizations
covering the older time-period from which to create the final complete curve.

4.5 Final Curve Output and Forming Predictive Intervals

Due to our merging process, the posterior realizations from the two sections of the curve
occurred in pairs with one another. Each realization from the older section had a matching
realization from the tree-ring-only section. When combined, such a pair gives a complete
curve realization extending from 0–55 cal kBP that is still, in itself, a cubic spline and
hence smooth over the join between the two sections. After pairing these realizations, our
MCMC provided 2500 plausible posterior realizations of complete Δ14C calibration curves,
i.e. gj��� for j � 1; . . . ; 2500, from 0–55 cal kBP.

Additionally, each of these complete curves has an accompanying posterior estimate for the
constant of proportionality � in our (square-root) model for the over-dispersion/additional
uncertainty linked with the specific tree-ring realization. To create the posterior mean and
predictive variance IntCal summaries, each of these Δ14C curves, gj��� for j � 1; . . . ; 2500,
were transformed into the F14C domain. For each corresponding fj���, and each calendar
year � on which output was desired, 50 predictive values of F14C were created by adding
back in the estimated over-dispersion corresponding to that particular curve realization.
These predictive values therefore incorporate the potential additional variability (beyond
the reported lab uncertainty) one might expect to see in a new tree-ring 14C determination
to be calibrated:
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fjk��� � N� fj���; �2�j� fj���� for k � 1; . . . ; 50:

Here ��j� is the estimated constant of proportionality corresponding to curve realization j. These
125,000 predictive F14C values (50 for each of the 2500 curve realizations) were transformed
into radiocarbon ages and finally summarized by pointwise means and variances to form the
published IntCal20. The difference between using the thinned set of 2500 realizations rather
than the entire post-burn-in sample was negligible. However, this thinning allows us to
retain a practical set of complete curve realizations for later independent use which would
give the same calibrated ages of individual 14C determinations as the published IntCal20
summaries. Each of these 2500 realizations has been stored for potential future extraction
of covariance information and to enable more precise age modeling should it be desired.

5 ADDITIONAL INFORMATION PROVIDED BY A BAYESIAN APPROACH

5.1 Over-Dispersion

5.1.1 Choice of Model for Tree-Ring Over-Dispersion and Prior
To select both the appropriate scaling model for the level of over-dispersion present within tree-
ring 14C determinations and a suitable prior on its size, we investigated the over-dispersion seen
in comparisons of same-tree-ring determinations made across laboratories taken from SIRI
(the sixth radiocarbon laboratory intercomparison exercise of Scott et al. 2017). This SIRI
data consisted of repeat measurements of trees from two distinct time periods—3 trees from
a period about 300 14C yrs BP; and 2 trees from a period about 10,000 14C yrs BP. Each of
the trees had about 80 such repeat measurements. For each tree we fitted a Bayesian model

Fi � f ��i� � "i � �i;

where "i � N�0; �2i � is the laboratory reported uncertainty and �i � N�0; �2i � is the additive
error which models the potential over-dispersion present in our 14C observations. We
considered three potential scaling models for the form of �i, the standard deviation of the
additional uncertainty on Fi: a constant model where �i � � for all i; a model where it
scales linearly with the underlying value of F14C, i.e. �i � � f ��i�; and a model where it
scales with the square-root of F14C, i.e. �i � �

����������
f ��i�

p
.

To investigate the suitability of each potential scaling model, we fitted them to the recent and
the older sets of SIRI trees separately and compared the posterior estimates for the constant of
proportionality � obtained in each. The most suitable scaling model was taken as the one that
provides the same posterior for this parameter � when the model is fitted to the older trees as for
when it is fitted to the recent trees. The results of fitting all three scaling models can be seen in
the Supplementary Information. The optimal model was clearly seen to be the square-root
scaling. Figure 4 provides the posterior � estimates under this square-root scaling model on
each of the two time periods separately; as we can see the estimates of the proportionality
parameter � we get under this scaling model are fairly similar and show significant levels of
over-dispersion in the SIRI data.

This square-root scaling model for the additional uncertainty, i.e. �i � N�0; �2f ��i�� was
therefore incorporated into curve construction. To provide a prior on � , the constant of
proportionality, to take forward into IntCal the SIRI data were combined before the over-
dispersion model was refitted to them. The posterior mean and variance of the resultant
joint estimate for � were then used to provide our prior:
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���� � N�0:0056; 0:000452�:

Note that this SIRI data does not itself enter into IntCal and so provides a genuinely
independent prior on � .

5.1.2 Posterior
In Figure 5 we plot the posterior estimate for the constant of proportionality � after curve
construction. Due to the large volume of IntCal data, this posterior is largely determined
by the IntCal tree-ring determinations which dominates the SIRI-informed prior. This
posterior estimate incorporates both additional variation between the IntCal laboratories
and other potential sources of variation in the 14C measurement of tree rings such as
location and species. This IntCal-based posterior for the level of over-dispersion is
considerably smaller than the SIRI prior, approximately one fifth of the size. This is to be
expected since the IntCal data is screened and the SIRI data covered a large number of
laboratories. The difference between the SIRI-informed prior and the IntCal-based
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Figure 4 Fitting scaled over-dispersion model to SIRI (with the standard deviation of additive uncertainty scaling
proportionally to

���������
f ���p

) on each time period separately—Boxplots of observed Fi values in each time period and
posterior histogram of � under model where additive error �i � N�0; �2f ��i��. The left pair of plots show the
value of � when run on the three younger trees (from around 300 14C yrs BP); and the right two plots the
posterior value of � when run on the two older trees (from around 10,000 14C yrs BP). If the posterior estimates
of � in the two periods are similar then this suggests the model is appropriate.
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Figure 5 The posterior for the level of over-dispersion in the tree-ring determinations within
the IntCal data. We model the additional variation, in the F14C domain, as �i � N�0; �2f ��i��.
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posterior does however give some indication as to the much greater range of over-dispersion
that might exist within uncalibrated determinations and emphasizes the need for laboratories to
engage with intercomparison exercises and provide appropriate assessments of measurement
uncertainty before determinations are calibrated against IntCal20 in order to avoid over-
confident dating.

5.2 MRAs and Dead Carbon Fractions

5.2.1 Priors on Marine and Dead Carbon Fraction Offsets

For each marine and speleothem dataset, the offset to the Northern Hemisphere atmosphere in
terms of radiocarbon age was modeled as

Speleothems �dcfs� : rK��i� � N�	K; �2K�;
Marine records �MRAs� : rK��i� � N�	K � �K��i�; �2K�;

with a prior ��	K� � N��K; !2
K�:

Here �K��� are our location-specific MRA estimates obtained from the LSG model in its “GS”
scenario (Butzin et al. 2020 in this issue) forced by a preliminary estimate of atmospheric Δ14C
using the same Bayesian spline and errors-in-variables approach as IntCal20 but based only
upon data from Hulu Cave. To complete our offset model, we are required to specify �K,
the variability in MRA/dcf offset from one calendar year to the next beyond that already
present in the LSG/constant dcf model. We must also provide suitable values for �K and
!K which determine our prior on 	K, the mean dcf/coastal shift. Note we only place a prior
on this shift 	K, its precise value will be updated during curve construction.

Most of the offset datasets have additional younger observations in the IntCal database which
overlap with the tree-ring-only part of the calibration curve from 0–14 cal kBP that has already
been created. These, more recent, offset observations are not themselves used to create the
IntCal curve but, by comparison with these overlapping atmospheric tree-rings, can
independently inform us on suitable values for these three parameters. We therefore fitted
statistical models for the offset of the form above and estimated the various components
for each set. In Figure 6 we show the results for both the Hulu Cave H82 speleothem
(Southon et al. 2012) and the Kiritimati corals (Fairbanks et al. 2005). For H82, we see
that the estimated mean dcf value in this period of overlap is approximately 480 ± 8 14C
yrs �1�� and that we need to add a further independent uncertainty of 
 50 14C yrs to the
determinations to make them consistent with the dendrodated trees. For the H82
speleothem data used for the older part of the curve, we therefore select �K � 480; !K � 8
and �K 
 50 14C yrs. For the Kiritimati corals, where we have data which overlap with
atmospheric trees, we need to shift the LSG estimate down by approximately 280 ± 11 14C
yrs (1�) and add a similar independent uncertainty of 
 50 14C yrs to the determinations,
i.e. we would select �K � �280, !K � 11 and �K 
 50 14C yrs. Comparing the plotted red
curves, representing the constant dcf model for Hulu and the shifted LSG output for
Kiritimati, we see reasonable agreement with the raw data suggesting our approach to
modeling the offsets is appropriate. These comparisons of overlap also give some insight
into how different types of indirect records might perform as recorders of the atmospheric
14C, and where more modeling might be needed to understand the processes they undergo.
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K, determine our prior on 	K. The bottom plots show an estimate of the additional variability needed for the determinations to be
consistent with the tree rings. We set �K to be the mean of these values.
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Datasets with No Overlapping Data
Some datasets did not have any 14C determinations that were more recent than 14 cal kBP and
so no information was available on overlap with the tree rings. For the Mururoa corals (Bard
et al. 1998) and the Iberian and Pakistan Margins (Bard et al. 2013), we considered that the
additional uncertainty �K, to account for MRA variability beyond that seen in LSG, was 150
14C yrs to match coral data on which we did have overlap. We also placed an uninformative
prior on the LSG coastal shift 	K. This keeps the internal shape of the dataset but allows it to
jointly move up/down together to fit the other records. The other two Hulu Cave speleothems
(MSD and MSL in Cheng et al. 2018) were modeled as having separate and independent dcfs
from the H82 speleothem but each having the same prior on its mean and the same additional
variability �K.

Splitting the Hoffman Speleothem
The Hoffman speleothem (Hoffmann et al. 2010) consists of two separated sections—a set of
relatively young data for which there was some overlap with the trees, and then a set of much
older measurements. These were split in curve creation and a separate dcf was applied to the
older measurements. For the more recent section, the prior for the mean dcf 	K was based on
the overlapping determinations, while an uninformative prior was placed on the mean dcf for
the older measurements. Again this keeps the internal shape/structure but allows the dataset to
jointly move up/down to fit best with the other material.

5.3 Curve Realizations

Each iteration of our MCMC sampler generates a curve realization, i.e. what it believes is a
plausible record of atmospheric 14C history. To create the published IntCal20 posterior mean
and variance for the calibration curve a large set of these individual realizations are
summarized/averaged on a calendar year by calendar year (pointwise) basis. In creating
these pointwise summaries we lose potentially valuable curve information, in particular on
the dependence in the value of the curve from one calendar age to the next. When we
calibrate against IntCal20 using its pointwise means and variances we assume that the
value of the curve is independent from one calendar year to the next, i.e. that the curve
could potentially switch from being towards the top of its probability interval in one
calendar year, to being towards the bottom in the next. For the calibration of single 14C
determinations, losing such covariance information has no effect upon the calibrated age
estimate one obtains. However, covariance may matter when one is jointly calibrating
multiple determinations, for example when wiggle matching or incorporating them into a
more complex model. In such instances, one may therefore wish to consider the individual
realizations since they do contain covariance information. Furthermore, and importantly,
the pointwise IntCal20 posterior mean should not be viewed in itself as a realization, i.e. it
is not itself a potential 14C history, but rather an average of many.

We illustrate the difference between an individual posterior realization and the pointwise
summarized values in Figure 7. Here we show, in color, four individual curve realizations
compared to the summarized pointwise mean values (typically what is reported as the
IntCal curve) with their 95% predictive intervals plotted in black. As can be seen the
individual curve realizations are considerably more variable than the summarized IntCal
mean. Individual realizations are always likely to exhibit significantly more short-term
variability than the pointwise mean IntCal20 curve due to the averaging process by which
the latter is obtained. This is most evident in periods where the underlying data is sparse
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and consequently we have little information on the true value of the curve. In these periods each
individual posterior realization will retain similar levels of internal variation/wiggliness as seen
in other periods of the curve, as it has been informed that this is the kind of variation expected,
but will place these wiggles at slightly different times due to the lack of data. However, once
these individual realizations have been averaged over, the pointwise mean summary will tend
towards interpolation and hence appear smooth.

In addition to this reduction in short-term variability, where the constituent IntCal data have
uncertain calendar ages the posterior IntCal pointwise mean may also appear to smooth out
more significant features. Such an effect can be seen in Figure 7 where the inversion in the mean
curve around 14.75 cal kBP (corresponding to floating tree-ring sequence P317) is reduced
compared with both the observed data and the individual realizations. In such instances
where underlying data have uncertain calendar ages, each iteration of the sampler will have
posited a particular set of potential true calendar ages for these determinations, and the
resultant realization will be a plausible 14C history on that basis. Each individual
realization may therefore retain the significant feature but, once the differing calendar ages
at which that feature may occur are averaged over, it may appear reduced in the pointwise
mean summary. This can also be seen in Figure 7 where all the individual realizations
show a more significant inversion than the pointwise IntCal20 mean, but located at slightly
different times to account for uncertainty in the true calendar age of tree P317.

It is important to stress that, for calibration of single determinations, users do not need to
consider more than the pointwise mean and variance summaries for accurate calibration.
These pointwise values are sufficient and provide the simplest way for a calibration user
with a single 14C determination to obtain the correct calendar dates within current
calibration software. We therefore have retained these summary values as our published
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the calibrated age of floating tree-ring sequence P305u.
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output for IntCal20. However, for those wishing to obtain ultimate accuracy in jointly
modeling multiple 14C determinations, or if interest is in atmospheric 14C variability,
individual curve realizations may provide more insight. The IntCal group is currently
discussing how best to provide this additional information.

5.4 Posterior Calibrated Calendar Ages

Our Bayesian approach, in addition to creating a calibration curve, also provides posterior
estimates for all of the other parameters entered into the model, many of which are of
potential interest in their own right. These parameters include the level of over-dispersion
seen within tree-ring 14C determinations of the same calendar age as already discussed; the
posterior MRA for the Cariaco Basin, which is shown in Hughen and Heaton (2020 in this
issue); and the calendar ages �i of all our uncertain age data. Figure 7 provides an
illustration of the type of posterior estimates for the calendar ages �i we obtain. The points
overlaid in panel (a), shown with 1� 14C uncertainty bars, represent the three floating
Bølling-Allerød tree-ring sequences. While these trees enter the curve with no information
as to their true calendar age �, they are themselves calibrated simultaneously to creating the
curve according to how they best fit with the rest of the data. After curve construction we
therefore obtain a posterior estimate for their true calendar ages. The plotted locations of
the trees in panel (a) represent their posterior mean calendar ages. However, we obtain a
complete posterior distribution for their calibrated ages. Panel (b) presents a histogram of
the posterior calibrated age estimate for specific tree P305u. As we can see, this posterior
estimate is bimodal suggesting two potential fitting locations—this potential for
multimodality motivates our use of MCMC tempering. We generate posterior calibrated
age estimates �i for all our data in a similar way. See the Supplementary Information for
posterior calendar age estimates for all our floating tree-ring sequences.

6 CONCLUSIONS AND FURTHER WORK

Our revised approach to the construction of the IntCal calibration curve offers several distinct
advantages over the previous random walk approach used for IntCal09 and IntCal13 (Heaton
et al. 2009; Niu et al. 2013). The use of Bayesian splines maintains a method of equal theoretical
rigour and still fits within the desired Bayesian framework that is now universal for 14C
calibration. However the increased speed with which the Bayesian spline curve can be
constructed enables much greater practical flexibility in our modeling choices, and more
detailed investigation of the effect of key elements on the final curve. The main reason for
this increase in speed is a change to the MCMC. While, as in the random walk approach,
the Bayesian spline fits using Metropolis-within-Gibbs, the critical step of updating the
curve itself is performed via Gibbs and updates the entire curve simultaneously.
Conversely, the random walk approach updated the curve one calendar year at a time and
via Metropolis-Hastings which led to mixing issues and extremely slow convergence.

For users, the main differences in using the IntCal20 curves will be found through an increase in
the level of annual detail in the curve; increased wiggliness in the curve as we extend back in
time; and the introduction of prediction intervals which recognize potential additional sources
of variation in observed 14C determinations beyond that occurring in laboratory measurement.
For the first time, our new approach is also able to generate complete sets of plausible
calibration curves that span from 0–55 cal kBP allowing access to covariance information.
For joint calibration of multiple determinations, such as when analysing the time elapsed
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between events, this covariance information has the potential to offer more detailed insight.
The IntCal working group is currently in discussion about how to best disseminate this
covariance information and is planning to provide a guide as to how it could be used
within calibration. Including such covariance is likely to require modifications to current
calibration software. These realizations, with their covariance information, have however
already been used in the creation of Marine20 (Heaton et al. 2020 in this issue) to
rigorously propagate our atmospheric uncertainties through to the marine calibration curve.

Further work is needed in several areas. Currently the methodology splits curve construction
into two sections. Firstly, we create the curve back to approximately 14 cal kBP based upon
only tree-ring determinations. The older section, based upon a wider range of 14C material, is
then created conditional on this more recent section. Future work aims to combine these two
steps into a single integrated approach. Our current approach to screening potential data
outliers, based on comparison to a curve created using all determinations, is also somewhat
influenced by data volume. A large, or dense, dataset will dominate the curve and so is less
likely to be identified as an outlier than a shorter, or sparser, dataset. An alternative
approach might consider the observed residuals for each set when compared against a
curve estimate that excludes the particular set under consideration. This would however be
considerably more computationally intensive. We also suggest valuable work would be to
investigate potential causes of the over-dispersion seen in the data, e.g. whether this
variability is shared by data coming from the same location, tree species, or laboratory.
Some preliminary work in this area has already been done by Hogg et al. (2019). Further
insight would improve our ability to calibrate multiple determinations such as when wiggle
matching a series of radiocarbon determinations from the same tree and laboratory. Finally
further work is also needed to resolve the MRA within the Cariaco Basin.

ACKNOWLEDGMENTS

We would like to thank two reviewers for helpful comments which have improved the quality
of this paper. T.J. Heaton is supported by Leverhulme Trust Fellowship RF-2019-140\9,
“Improving the Measurement of Time Using Radiocarbon.”

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit https://doi.org/10.1017/RDC.
2020.46

REFERENCES

Adolphi F, Muscheler R, Friedrich M, Güttler D,
Wacker L, Talamo S, Kromer B. 2017.
Radiocarbon calibration uncertainties during
the last deglaciation: Insights from new floating
tree-ring chronologies. Quaternary Science
Reviews 170:98–108. http://www.sciencedirect.
com/science/article/pii/S0277379117300641. doi:
10.1016/j.quascirev.2017.06.026.

Bard E, Arnold M, Hamelin B, Tisnerat-Laborde N,
Cabioch G. 1998. Radiocarbon calibration by
means of mass spectrometric 230Th/234U and 14C
ages of corals: An updated database including
samples from Barbados, Mururoa and Tahiti.

Radiocarbon 40(3):1085–1092. doi: 10.1017/
S0033822200019135.

Bard E, Hamelin B, Fairbanks RG, Zindler A. 1990.
Calibration of the 14C timescale over the past
30,000 years using mass spectrometric U-Th
ages from Barbados corals. Nature 345:
405–410.

Bard E, Ménot G, Rostek F, Licari L, Böning P,
Edwards RL, Cheng H, Wang Y, Heaton TJ.
2013. Radiocarbon calibration/comparison
records based on marine sediments from the
Pakistan and Iberian margins. Radiocarbon
55(4):1999–2019. doi: 10.2458/azu_js_rc.55.17114.

860 T J Heaton et al.

https://doi.org/10.1017/RDC.2020.46 Published online by Cambridge University Press

https://doi.org/10.1017/RDC.2020.46
https://doi.org/10.1017/RDC.2020.46
http://www.sciencedirect.com/science/article/pii/S0277379117300641
http://www.sciencedirect.com/science/article/pii/S0277379117300641
https://doi.org/10.1016/j.quascirev.2017.06.026
https://doi.org/10.1017/S0033822200019135
https://doi.org/10.1017/S0033822200019135
https://doi.org/10.2458/azu_js_rc.55.17114
https://doi.org/10.1017/RDC.2020.46


Bard E, Ménot-Combes G, Rostek F. 2004. Present
status of radiocarbon calibration and comparison
records based on Polynesian corals and Iberian
margin sediments. Radiocarbon 46(3):1189–1202.
doi: 10.1017/S0033822200033087.

Bates D,MaechlerM. 2019.Matrix: Sparse and dense
matrix classes and methods. https://CRAN.R-
project.org/package=Matrix. R package version
1.2-17.

Bayliss A, Marshall P, Dee M, Friedrich M, Heaton
TJ, Wacker L. 2020. IntCal20 tree-rings: An
archaeological SWOT analysis. Radiocarbon
62. This issue.

Beck, JW, Richards, DA, Edwards, LR, Silverman,
BW, Smart, PL, Donahue, DJ, Hererra-
Osterheld, S, Burr, GS, Calsoyas, L, Jull, TAJ,
Biddulph, D. 2001. Extremely Large Variations
of Atmospheric 14C Concentration During the
Last Glacial Period. Science 292(5526):2453–
2458. https://science.sciencemag.org/content/292/
5526/2453. doi: 10.1126/science.1056649. arXiv:
https://science.sciencemag.org/content/292/5526/
2453.full.pdf.

Berry SM, Carroll RJ, Ruppert D. 2002. Bayesian
smoothing and regression splines for measure-
ment error problems. Journal of the American
Statistical Association 97(457):160–169. arXiv:
https://doi.org/10.1198/016214502753479301.
doi: 10.1198/016214502753479301.

Blackwell PG, Buck CE. 2008. Estimating
radiocarbon calibration curves. Bayesian
Analysis 3(2):225–442.

Bronk Ramsey C, Heaton TJ, Schlolaut G, Staff RA,
Bryant CL, Brauer A, Lamb HF, Marshall MH,
Nakagawa T. 2020. Reanalysis of the
atmospheric radiocarbon calibration record
from Lake Suigetsu, Japan. Radiocarbon 62.
This issue.

Buck CE, Blackwell PG. 2004. Formal statistical
models for estimating radiocarbon calibration
curves. Radiocarbon 46(3):1093–1102. doi: 10.
1017/S0033822200033026.

Burr G, Galang C, Taylor F, Gallup C, Edwards RL,
Cutler K, Quirk B. 2004. Radiocarbon results
from a 13-kyr BP coral from the Huon
Peninsula, Papua New Guinea. Radiocarbon
46(3):1211–1224. doi: 10.1017/S0033822200033105.

Burr GS, Beck JW, Taylor FW, Recy J, Edwards RL,
Cabioch G, Correge T, Donahue DJ, O’Malley
JM. 1998. A high-resolution radiocarbon calibra-
tion between 11,700 and 12,400 calendar years BP
derived from 230Th ages of corals from Espiritu
Santo Island, Vanuatu. Radiocarbon 40(3):1093–
1105. doi: 10.1017/S0033822200019147.

Butzin M, Heaton TJ, Köhler P, Lohmann G. 2020.
A short note on marine reservoir age simulations
used in IntCal20. Radiocarbon 62. This issue.

Capano M, Miramont C, Shindo L, Guibal F,
Marschal C, Kromer B, Tuna T, Bard E. 2020.
Onset of the Younger Dryas recorded with 14C

at annual resolution in French subfossil trees.
Radiocarbon 62. This issue.

Cheng H, Edwards RL, Southon J, Matsumoto K,
Feinberg JM, Sinha A, Zhou W, Li H, Li X,
Xu Y, Chen S, Tan M, Wang Q, Wang Y,
Ning Y. 2018. Atmospheric 14C/12C changes
during the last glacial period from Hulu Cave.
Science 362(6420):1293–1297. https://science.
sciencemag.org/content/362/6420/1293. arXiv:
https://science.sciencemag.org/content/362/6420/
1293.full.pdf. doi: 10.1126/science.aau0747.

Cook JR, Stefanski LA. 1994. Simulation-
extrapolation estimation in parametric measure-
ment error models. Journal of the American
Statistical Association 89(428):1314–1328. arXiv:
https://doi.org/10.1080/01621459.1994.10476871.
doi: 10.1080/01621459.1994.10476871.

Corporation M, Weston S. 2019. doParallel: Foreach
parallel adaptor for the “parallel” package.
https://CRAN.R-project.org/
package=doParallel. R package version 1.0.15.

Cutler KB, Gray SC, Burr GS, Edwards RL, Taylor
FW, Cabioch G, Beck JW, Cheng H, Moore J.
2004. Radiocarbon calibration to 50 kyr BP
with paired 14C and 230Th dating of corals from
Vanuatu and Papua New Guinea. Radiocarbon
46(3):1127–1160. doi: 10.1017/S003382220003
3063.

Durand N, Deschamps P, Bard E, Hamelin B,
Camoin G, Thomas AL, Henderson GM,
Yokoyama Y, Matsuzaki H. 2013. Comparison
of 14C and U-Th ages in corals from IODP
#310 Cores Offshore Tahiti. Radiocarbon
55(4):1947–1974. doi: 10.2458/azu_js_rc.v55i2.
16134.

Edwards RL, Beck JW, Burr GS, Donahue DJ,
Chappell JMA, Druffel ERM, Taylor FW.
1993. A large drop in atmospheric 14C/12C and
reduced melting in the Younger Dryas with
230Th ages of corals. Science 260(5110):962–968.

Fairbanks RG, Mortlock RA, Chiu TC, Cao L,
Kaplan A, Guilderson TP, Fairbanks TW,
Bloom A, Grootes PM, Nadeau MJ. 2005.
Radiocarbon calibration curve spanning 0 to
50,000 years BP based on paired Th-230/U-234/
U-238 and C-14 dates on pristine corals.
Quaternary Science Reviews 24(16–17):1781–
1796.

Fan, J, Truong YK. 1993. Nonparametric regression
with errors in variables. Ann. Statist. 21(4):1900–
1925. doi: 10.1214/aos/1176349402.

Fasiolo M. 2016. An introduction to mvnfast. R
package version 0.1.6. https://CRAN.R-project.
org/package=mvnfast.

Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F,
Hothorn T. 2019. mvtnorm: multivariate normal
and t distributions. R package version 1.0-11.
https://CRAN.R-project.org/package=mvtnorm.

Green P, Silverman BW. 1993. Nonparametric
regression and generalized linear models. New

IntCal20 Approach to 14C Calibration Curve Construction 861

https://doi.org/10.1017/RDC.2020.46 Published online by Cambridge University Press

https://doi.org/10.1017/S0033822200033087
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=Matrix
https://science.sciencemag.org/content/292/5526/2453
https://science.sciencemag.org/content/292/5526/2453
https://doi.org/10.1126/science.1056649
https://arXiv:https://science.sciencemag.org/content/292/5526/2453.full.pdf
https://arXiv:https://science.sciencemag.org/content/292/5526/2453.full.pdf
https://arXiv:https://science.sciencemag.org/content/292/5526/2453.full.pdf
https://arXiv:https://doi.org/10.1198/016214502753479301
https://arXiv:https://doi.org/10.1198/016214502753479301
https://doi.org/10.1198/016214502753479301
https://doi.org/10.1017/S0033822200033026
https://doi.org/10.1017/S0033822200033026
https://doi.org/10.1017/S0033822200033105
https://doi.org/10.1017/S0033822200019147
https://science.sciencemag.org/content/362/6420/1293
https://science.sciencemag.org/content/362/6420/1293
https://arXiv:https://science.sciencemag.org/content/362/6420/1293.full.pdf
https://arXiv:https://science.sciencemag.org/content/362/6420/1293.full.pdf
https://arXiv:https://science.sciencemag.org/content/362/6420/1293.full.pdf
https://doi.org/10.1126/science.aau0747
https://arXiv:https://doi.org/10.1080/01621459.1994.10476871
https://arXiv:https://doi.org/10.1080/01621459.1994.10476871
https://doi.org/10.1080/01621459.1994.10476871
https://CRAN.R-project.org/package=doParallel
https://CRAN.R-project.org/package=doParallel
https://CRAN.R-project.org/package=doParallel
https://doi.org/10.1017/S0033822200033063
https://doi.org/10.1017/S0033822200033063
https://doi.org/10.2458/azu_js_rc.v55i2.16134
https://doi.org/10.2458/azu_js_rc.v55i2.16134
https://doi.org/10.1214/aos/1176349402
https://CRAN.R-project.org/package=mvnfast
https://CRAN.R-project.org/package=mvnfast
https://CRAN.R-project.org/package=mvnfast
https://CRAN.R-project.org/package=mvtnorm
https://CRAN.R-project.org/package=mvtnorm
https://doi.org/10.1017/RDC.2020.46


York: Chapman and Hall/CRC. doi: 10.1201/
b15710.

Harrell FE. 2001. Regression modeling strategies:
with applications to linear models, logistic
regression, and survival analysis. In: Springer
series in statistics. New York: Springer.

Heaton TJ, Bard E, Hughen K. 2013. Elastic tie-
pointing—transferring chronologies between
records via a Gaussian process. Radiocarbon
55(4):1975–1997. doi: 10.2458/azu_js_rc.55.17777.

Heaton TJ, Blackwell PG, Buck CE. 2009. A
Bayesian approach to the estimation of
radiocarbon calibration curves: the IntCal09
methodology. Radiocarbon 51(4):1151–1164.
doi: 10.1017/S0033822200034214.

Heaton TJ, Köhler P, ButzinM, Bard E, Reimer RW,
Austin WEN, Bronk Ramsey C, Grootes PM,
Hughen KA, Kromer B, Reimer PJ, Adkins J,
Burke A, Cook MS, Olsen J, Skinner LC. 2020.
Marine20—the marine radiocarbon age calibration
curve (0–55,000 cal BP). Radiocarbon 62. This
issue. doi: 10.1017/RDC.2020.68.

Hoffmann D, Beck J, Richards D, Smart P,
Singarayer J, Ketchmark T, Hawkesworth C.
2010. Towards radiocarbon calibration beyond
28 ka using speleothems from the Bahamas.
Earth and Planetary Science Letters 289(1–2):
110. doi: 10.1016/j.epsl.2009.10.004.

Hogg A, Hua Q, Blackwell P, Niu M, Buck C,
Guilderson T, Heaton TJ, Palmer J, Reimer P,
Reimer R, Turney C, Zimmerman S. 2013.
SHCal13 Southern Hemisphere calibration,
0–50,000 years cal BP. Radiocarbon 55(4):
1889–1903. doi: 10.2458/azu_js_rc.55.16783.

Hogg AG, Heaton TJ, Bronk Ramsey C, Boswijk G,
Palmer JG, Turney CSM, Southon J, Gumbley
W. 2019. The influence of calibration curve
construction and composition on the accuracy
and precision of radiocarbon wiggle-matching
of tree rings, illustrated by Southern
Hemisphere atmospheric data sets from AD
1500–1950. Radiocarbon 61(5):1265–1291. doi:
10.1017/rdc.2019.42.

Hogg AG, Heaton TJ, Hua Q, Palmer JG, Turney
CSM, Southon J, Bayliss A, Blackwell PG,
Boswijk G, Bronk Ramsey C, Pearson C,
Petchey F, Reimer P, Reimer R, Wacker L.
2020. SHCal20 Southern Hemisphere
calibration, 0–55,000 years cal BP. Radiocarbon
62. This issue. doi: 10.1017/RDC.2020.59.

Hughen K, Heaton TJ. 2020. Updated Cariaco Basin
14C calibration dataset from 0–60 cal kyr BP.
Radiocarbon 62. This issue. doi: 10.1017/RDC.
2020.53.

Hughen KA, Southon JR, Bertrand CJH, Frantz B,
Zermeño P. 2004. Cariaco Basin calibration
update: Revisions to calendar and 14C chrono-
logies for Core Pl07-58Pc. Radiocarbon
46(3):1161–1187. doi: 10.1017/S0033822200033075.

Miyake F, Masuda K, Nakamura T. 2013. Another
rapid event in the carbon-14 content of tree
rings. Nature Communications 4:1748. doi: 10.
1038/ncomms2783.

Miyake F, Nagaya K, Masuda K, Nakamura T.
2012. A signature of cosmic-ray increase in AD
774–775 from tree rings in Japan. Nature
486:240–242. doi: 10.1038/nature11123.

Niu M, Heaton TJ, Blackwell PG, Buck CE. 2013.
The Bayesian approach to radiocarbon
calibration curve estimation: The IntCal13,
Marine13, and SHCal13 methodologies.
Radiocarbon 55(4):1905–1922. doi: 10.2458/
azu_js_rc.55.17222.

O’Hare P, Mekhaldi F, Adolphi F, Raisbeck G,
Aldahan A, Anderberg E, Beer J, Christl M,
Fahrni S, Synal HA, Park J, Possnert G,
Southon J, Bard E, ASTER Team, Muscheler
R. 2019. Multiradionuclide evidence for an
extreme solar proton event around 2,610 B.P.
(~660 BC). Proceedings of the National
Academy of Sciences 116(13):5961–5966. www.
pnas.org/content/116/13/5961.full.pdf. doi: 10.
1073/pnas.1815725116.

Pearson CL, Brewer PW, Brown D, Heaton TJ,
Hodgins GWL, Jull AJT, Lange T, Salzer MW.
2018. Annual radiocarbon record indicates 16th
century BCE date for the Thera eruption.
Science Advances 4(8). https://advances.
sciencemag.org/content/4/8/eaar8241.full.pdf.
arXiv:https://advances.sciencemag.org/content/4/
8/eaar8241.full.pdf. doi: 10.1126/sciadv.aar8241.

R Core Team. 2019. R: A language and environment
for statistical computing. R Foundation for
Statistical Computing. Vienna, Austria. https://
www.R-project.org/.

Ramsay JO, Wickham H, Graves S, Hooker G. 2018.
fda: Functional Data Analysis. https://CRAN.R-
project.org/package=fda. R package version
2.4.8.

Reimer PJ, BaillieMGL, Bard E, Bayliss A, Beck JW,
Bertrand CJH, Blackwell PG, Buck CE, Burr GS,
Cutler KB, Damon PE, Edwards RL, Fairbanks
RG, Friedrich M, Guilderson TP, Hogg AG,
Hughen KA, Kromer BGM, Manning S, Bronk
Ramsey C, Reimer RW, Remmele S, Southon
JR, Stuiver M, Talamo S, Taylor FW, van der
Plicht J, Weyhenmeyer CE. 2004a. IntCal04
terrestrial radiocarbon age calibration, 0–26 cal
kyr BP. Radiocarbon 46(3):1029–1058. doi: 10.
1017/S0033822200032999.

Reimer PJ, Brown TA, Reimer RW. 2004b.
Discussion: Reporting and calibration of post-
bomb 14C data. Radiocarbon 46(3):1299–1304.
doi: 10.1017/S0033822200033154.

Reimer PJ, BaillieMGL, Bard E, Bayliss A, Beck JW,
Blackwell PG, Bronk Ramsey C, Buck CE, Burr
GS, Edwards RL, Friedrich M, Grootes PM,
Guilderson TP, Hajdas I, Heaton T, Hogg AG,

862 T J Heaton et al.

https://doi.org/10.1017/RDC.2020.46 Published online by Cambridge University Press

https://doi.org/10.1201/b15710
https://doi.org/10.1201/b15710
https://doi.org/10.2458/azu_js_rc.55.17777
https://doi.org/10.1017/S0033822200034214
https://doi.org/10.1017/RDC.2020.68
https://doi.org/10.1016/j.epsl.2009.10.004
https://doi.org/10.2458/azu_js_rc.55.16783
https://doi.org/10.1017/rdc.2019.42
https://doi.org/10.1017/RDC.2020.59
https://doi.org/10.1017/RDC.2020.53
https://doi.org/10.1017/RDC.2020.53
https://doi.org/10.1017/S0033822200033075
https://doi.org/10.1038/ncomms2783
https://doi.org/10.1038/ncomms2783
https://doi.org/10.1038/nature11123
https://doi.org/10.2458/azu_js_rc.55.17222
https://doi.org/10.2458/azu_js_rc.55.17222
https://www.pnas.org/content/116/13/5961.full.pdf
https://www.pnas.org/content/116/13/5961.full.pdf
https://doi.org/10.1073/pnas.1815725116
https://doi.org/10.1073/pnas.1815725116
https://advances.sciencemag.org/content/4/8/eaar8241.full.pdf
https://advances.sciencemag.org/content/4/8/eaar8241.full.pdf
https://arXiv:https://advances.sciencemag.org/content/4/8/eaar8241.full.pdf
https://arXiv:https://advances.sciencemag.org/content/4/8/eaar8241.full.pdf
https://doi.org/10.1126/sciadv.aar8241
https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=fda
https://CRAN.R-project.org/package=fda
https://CRAN.R-project.org/package=fda
https://doi.org/10.1017/S0033822200032999
https://doi.org/10.1017/S0033822200032999
https://doi.org/10.1017/S0033822200033154
https://doi.org/10.1017/RDC.2020.46


Hughen KA, Kaiser KF, Kromer B, McCormac
FG, Manning SW, Reimer RW, Richards DA,
Southon JR, Talamo S, Turney CSM, van der
Plicht J, Weyhenmeyer CE. 2009. IntCal09 and
Marine09 radiocarbon age calibration curves,
0–50,000 years cal BP. Radiocarbon
51(4):1111–1150. doi: 10.1017/s00338222000
34202.

Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell
PG, Bronk Ramsey C, Buck C, Cheng H,
Edwards RL, Friedrich M, Grootes PM,
Guilderson TP, Haflidason H, Hajdas I, Hatté
C, Heaton TJ, Hoffmann DL, Hogg AG,
Hughen KA, Kaiser KF, Kromer B, Manning
SW, Niu M, Reimer RW, Richards DA, Scott
EM, Southon JR, Staff RA, Turney CSM, van
der Plicht J. 2013. IntCal13 and Marine13
radiocarbon age calibration curves 0–50,000
years cal BP. Radiocarbon 55(4):1869–1887.
doi: 10.2458/azu_js_rc.55.16947.

Reimer P, Austin WEN, Bard E, Bayliss A, Blackwell
PG, Bronk Ramsey C, Butzin M, Cheng H,
Edwards RL, Friedrich M, Grootes PM,
Guilderson TP, Hajdas I, Heaton TJ, Hogg
AG, Hughen KA, Kromer B, Manning SW,
Muscheler R, Palmer JG, Pearson C, van der
Plicht J, Reimer RW, Richards DA, Scott EM,
Southon JR, Turney CSM, Wacker L, Adolphi
F, Büntgen U, Capano M, Fahrni S,
Fogtmann-Schulz A, Friedrich R, Köhler P,
Kudsk S, Miyake F, Olsen J, Reinig F,
Sakamoto M, Sookdeo A, Talamo S. 2020. The
IntCal20 Northern Hemisphere radiocarbon age
calibration curve (0–55 cal kBP). Radiocarbon
62. This issue. doi: 10.1017/RDC.2020.41.

Reinig F, Nievergelt D, Esper J, Friedrich M, Helle
G, Hellmann L, Kromer B, Morganti S, Pauly
M, Sookdeo A, Tegel W, Treydte K, Verstege
A, Wacker L, Büntgen U. 2018. New tree-ring
evidence for the late glacial period from the
northern pre-alps in eastern Switzerland.
Quaternary Science Reviews 186:215–224.
http://www.sciencedirect.com/science/article/pii/
S0277379117305802. doi: 10.1016/j.quascirev.
2018.02.019.

Samworth R, Poore H. 2005. Understanding past
ocean circulations: a nonparametric regression

case study. Statistical Modelling 5(4):289–307.
arXiv:https://doi.org/10.1191/1471082X05st102oa.
doi: 10.1191/1471082X05st102oa.

Scott EM, Naysmith P, Cook GT. 2017. Should
archaeologists care about 14C intercomparisons?
Why? A summary report on SIRI. Radiocarbon
59(5):1589–1596. doi: 10.1017/RDC.2017.12.

Southon J, Noronha AL, Cheng H, Edwards RL,
Wang Y. 2012. A high-resolution record of
atmospheric 14C based on Hulu Cave
speleothem H82. Quaternary Science Reviews
33:32–41. http://www.sciencedirect.com/science/
article/pii/S0277379111003817. doi: 10.1016/j.
quascirev.2011.11.022.

Stuiver M, Polach HA. 1977. Discussion: Reporting
of 14C data. Radiocarbon 19(3):355–363. doi:
10.1017/S0033822200003672.

Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS,
Hughen KA, Kromer B, McCormac G, van der
Plicht J, Spurk M. 1998. INTCAL98
radiocarbon age calibration, 24,000–0 cal BP.
Radiocarbon 40(3):1041–1083. doi: 10.1017/
S0033822200019123.

Turney CS, Fifield LK, Hogg AG, Palmer JG,
Hughen K, Baillie MG, Galbraith R, Ogden
J, Lorrey A, Tims SG, et al. 2010. The
potential of New Zealand kauri (Agathis
australis) for testing the synchronicity of
abrupt climate change during the Last
Glacial Interval (60,000–11,700 years ago).
Quaternary Science Reviews 29(27–28):
3677–3682. http://www.sciencedirect.com/science/
article/pii/S0277379110003197. doi: 10.1016/j.
quascirev.2010.08.017.

Turney CSM, Jones RT, Phipps SJ, Thomas Z,
Hogg AG, Kershaw AP, Fogwill CJ, Palmer
J, Bronk Ramsey C, Adolphi F, et al. 2017.
Rapid global ocean-atmosphere response to
Southern Ocean freshening during the last
glacial. Nature Communications 8(520).
https://hdl.handle.net/10289/11469. doi: 10.
1038/s41467-017-00577-6.

van der Plicht J, Bronk Ramsey C, Heaton TJ,
Scott EM, Talamo S. 2020. Recent
developments in calibration for archaeological
and environmental samples. Radiocarbon 62.
This issue. doi: 10.1017/RDC.2020.22.

IntCal20 Approach to 14C Calibration Curve Construction 863

https://doi.org/10.1017/RDC.2020.46 Published online by Cambridge University Press

https://doi.org/10.1017/s0033822200034202
https://doi.org/10.1017/s0033822200034202
https://doi.org/10.2458/azu_js_rc.55.16947
https://doi.org/10.1017/RDC.2020.41
http://www.sciencedirect.com/science/article/pii/S0277379117305802
http://www.sciencedirect.com/science/article/pii/S0277379117305802
https://doi.org/10.1016/j.quascirev.2018.02.019
https://doi.org/10.1016/j.quascirev.2018.02.019
https://arXiv:https://doi.org/10.1191/1471082X05st102oa
https://doi.org/10.1191/1471082X05st102oa
https://doi.org/10.1017/RDC.2017.12
http://www.sciencedirect.com/science/article/pii/S0277379111003817
http://www.sciencedirect.com/science/article/pii/S0277379111003817
https://doi.org/10.1016/j.quascirev.2011.11.022
https://doi.org/10.1016/j.quascirev.2011.11.022
https://doi.org/10.1017/S0033822200003672
https://doi.org/10.1017/S0033822200019123
https://doi.org/10.1017/S0033822200019123
http://www.sciencedirect.com/science/article/pii/S0277379110003197
http://www.sciencedirect.com/science/article/pii/S0277379110003197
https://doi.org/10.1016/j.quascirev.2010.08.017
https://doi.org/10.1016/j.quascirev.2010.08.017
https://hdl.handle.net/10289/11469
https://doi.org/10.1038/s41467-017-00577-6
https://doi.org/10.1038/s41467-017-00577-6
https://doi.org/10.1017/RDC.2020.22
https://doi.org/10.1017/RDC.2020.46

	The IntCal20 approach to radiocarbon calibration curve construction: A new methodology using Bayesian splines and errors-in-variables
	1. Introduction
	Notation
	Data and Code

	2. Developments in the IntCal20 statistical methodology
	Improvements in Statistical Implementation
	Improvements in Data Modeling
	Improvements in Output

	3. A Brief Summary of Bayesian Splines, Errors-in-Variables and Predictive Intervals
	3.1. Bayesian Splines and Choice of Modeling Domain
	3.1.1. Frequentist Ideas
	3.1.2. Selection of Appropriate Fitting and Modeling Domains for Radiocarbon
	3.1.3. Bayesian Reframing
	3.1.4. Variable Smoothing and Knot Selection

	3.2. Errors-in-Variables Regression
	3.2.1. Calendar Age Uncertainty
	3.2.2. Importance of Recognizing Calendar Age Uncertainty

	Illustration
	Implications for Visually Assessing Curve Fit
	3.3. Predictive Intervals and Over-Dispersion
	3.3.1. Background and Motivation
	3.3.2. The Over-Dispersion Model: Additive Errors Scaling with $\sqrt {{F^{14}}{\rm{C}}}$
	3.3.3. Implications for Calibration


	4. Creating the curve
	4.1. Notation
	Calibration Curve by Domain
	Observed Data
	Model Parameters

	4.2. Basic Model for Observed Data and Curve
	Prior on $\bi{\beta}$
	Prior on $\lambda$

	4.3. Creating the Predominantly Dendrodated Part of the Curve Back to Approximately 14 cal kBP
	4.3.1. Modifications to Basic Model

	Blocking and Additive Errors
	Additive Errors Model
	Floating Tree-Ring Sequences
	4.3.2. Efficient Incorporation of Blocking

	Finding Values of ${\bi{F^{14}}{\bi{C}}}$ at Each Year Represented in a Block
	A Blocking Matrix
	4.3.3. Details of MCMC Algorithm

	Posterior
	Gibbs Updating ${\bi{\beta}}|{\bf{F}},{\bi{\lambda}},{\bi{\xi}},{\bi{\tau}}$
	Gibbs Updating ${\bi{\lambda}} |{\bi {\beta}},{\bi{A}},{\bi{B}}$
	MH Updating ${\bi{\xi}} |{\bf{F}},{\bi{\lambda}},{\bi {\beta}},{\bi{\tau}}$
	MH Updating ${\bi{\tau}} |{\bf{F}},{\bi{\lambda}} ,{\bi{\beta}}$
	4.3.4. Additional Considerations

	Choice of Splines
	Outlier Screening
	Run Length
	4.4. Creating the Older Part of the Curve
	4.4.1. Modifications to Basic Model

	Uncertain Calendar Ages
	Offsets: Reservoir Ages and Dead Carbon Fractions
	Offsets: Cariaco Basin
	Heavier Tailed Errors
	Parallel Tempering
	Merging with Already Created Tree-Ring-Only Section of Curve
	Required Simplifications-Blocking and Over-Dispersion
	4.4.2. Updating the MCMC

	Posterior
	Gibbs updating the calibration curve ${\bi \beta}}|{\bf{F}},{\bi{\theta}},{\bi{\lambda}},{\bi{\nu}},{{\bi{\beta}}_{\rm{C}}},{\bi{\kappa}}$.
	MH updating the calendar ages ${\bi{\theta}}|{\bf{T}},{\bf{F}},{\bi{\beta}},{\bi{\nu}},{{\bi{\beta}}_{\bf{C}}},{\bi{\kappa}}$
	MH updating the offsets ${{\bi \nu _{\boldcal K}}}|{\bf{F}},{\bi{\theta}},{\bi{\beta}},{\bi{\lambda}} ,{\bi{\xi}},{\bi{\tau}}$
	Gibbs updating the Cariaco Basin unvarved MRA ${{\bi{\beta}_C}}|{\bf{F}},{\bi{\theta}},{\bi{\beta}},{\bi{\lambda}},{\bi{\nu}},{\bi{\kappa}}$
	Gibbs updating the smoothing parameter ${\bi{\lambda}} |{\bi{\beta}}$
	Gibbs updating the precision multipliers ${{\bi{\kappa}}}|{\bf{F}},{\bi{\beta}},{\bi{\theta}},{{\bi{\nu}}},{{\bi{\beta}}_{\rm{C}}},{\bi{\varrho}}$
	MH updating the expected tail behavior ${{\bi{\varrho}}_{\boldcal K}}|{\bi{\kappa}}$
	4.4.3. Additional Considerations

	Choice of Splines
	Updating with Parallel Tempering
	Run Time and Convergence
	4.5. Final Curve Output and Forming Predictive Intervals

	5. Additional information provided by a Bayesian approach
	5.1. Over-Dispersion
	5.1.1. Choice of Model for Tree-Ring Over-Dispersion and Prior
	5.1.2. Posterior

	5.2. MRAs and Dead Carbon Fractions
	5.2.1. Priors on Marine and Dead Carbon Fraction Offsets
	Datasets with No Overlapping Data

	Splitting the Hoffman Speleothem
	5.3. Curve Realizations
	5.4. Posterior Calibrated Calendar Ages

	6. Conclusions and Further Work
	Acknowledgments
	Supplementary material
	REFERENCES


