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The authors have recently treated (2) the problem of finding subsets E of
the real line R, of type Fa, such that E—E contains an interval and the A>fold
vector sum (k)E is of measure zero. Positive results can be obtained, for all k,
on the basis of a recent theorem of J. A. Haight (3), following earlier partial
results (1), (4) for k ^ 7; and indeed in these cases the problem has a solution
with E a perfect set. An analogous problem, apparently in most respects
subtler than the first, is the following. Do there exist finite regular Borel
measures /jonf? such that fi*fi is absolutely continuous (where p. is the adjoint
of n) and the kth. convolution power nk is singular ? Both problems are of
interest in the general context of elucidating the properties of the measure
algebra M(IR) or, more generally, M(G) for locally compact abelian G. The
second problem may be regarded as an attempt to provide (at least one aspect
of) a multiplicity theory for the first.

The purpose of the present note is to point out that the necessary machinery
for a positive solution of this second problem in the simplest case, k = 2, has
been available for many years, in a classical theorem of Singer (7, pp. 380-381;
see also 6, Theorem 6.1); we give the solution in this case. It appears that
the construction has inherent limitations and necessarily fails to provide a
solution for large k. We show by an elementary argument that it must break
down for k ^ 6. This does not, of course, imply that the result is false in such
cases. It would seem that for k ^ 3 a subtler approach than ours is needed to
determine the truth of the matter.

We begin with some considerations involving measures on R. We shall
produce measures with the required properties by taking suitable infinite
convolution products of simple probability measures. We shall say that a
sequence vn of measures tends weakly to a limit v if vn(/)-> v(/) for each interval
of continuity of v (i.e. / is to be open and its end-points are not atoms for v).
In the present context this mode of convergence has various equivalent formula-
tions.

Lemma 1. Let (vn) be a sequence of non-negative measures on R with the
properties

(i) vn-»v weakly,
(ii) there is a constant c>0 such that for any interval I, of length 1(1),

lim sup vn(/) ^ cl(I).
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Then v is absolutely continuous: in fact

-Lv(A)= I f(x)dx

where 0 ^f(x) ^ c for all x.

Proof. This is a straightforward verification.

Suppose next that q = (qlt q2, ...,) is a sequence of integers with qr ^ 2
for all r e W . Write c?r = {qtft •••<lr)~1- F ° r e a c ^ r£W let Fr be a set of
integers, Fr = {«ir), ..., «£?}, say. Let /ir be a probability measure (that is,
non-negative and of total mass 1) supported on the points nf-r)dr («

(r) 6 Fr).
We shall suppose, to simplify the situation, that each n(r) e Fr is essential, that
is, fir(n^dr)>0 for each n(r). It is not always true that n = \I^*IL2*... converges;
and even if it does its total mass may be strictly less than 1. However, if

there is a constant C, independent of r, with | «(r) | ^ Cqr for
all n(r) e Fr and all r (1)

then Hy*ji2... converges weakly to a probability measure \i. The support of fi
00

is the set of all points that admit a development of the form £ nir)dr, with
r = 1

n(r) e Fr. Condition (1) is satisfied in all the»cases with which we are concerned.

Lemma 2. Suppose that (1) holds, and also
the residues of the n(r) mod qr form a complete set. (I)

Let nr be a probability measure on the points nMdr such that for each integer a,
0 ^ a ^ qr— 1, the total mass of fir on the n(r)dr with «(r) s a modqr is exactly
q'1. Then n = / i j * ^ * - - - 's absolutely continuous.

Proof. Write vr = ^1*n2*...*nr. Let Er be the set of numbers of the form
r

£ «(sVs, with n(s) e Fs (1 ^ s ^ r) and £ the set of all numbers of the form
s = 1

00

£ n(s)ds with n(s) e Fs (s
1 ^ 1). The measure vr is concentrated on Er, and the

s = 1
total mass concentrated on any one point of Er does not exceed dr, as is easily
verified. Moreover, the points of Er are distant at least dr from each other.
The measures vr converge weakly to a limit ju, whose support is E, and it is
immediate from Lemma 1 that \i is absolutely continuous (with c = 1).

Lemma 3. If (I) and (2) hold, and if fir is a probability measure on the n{r)dr

with fir = fi'r + n'r, where fi'r satisfies the conditions specified for \ir in Lemma 2,
and

E n A*; II < oo
r = 1

then n = nt*[i2*... is absolutely continuous.

Proof. It is clear from Lemma 2 that JX' = n\ *n'2*... is absolutely continuous;
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the present Lemma is now a consequence of the classical theorem of Jessen and
Wintner (5, Theorem 35).

The explicit reference to Jessen and Wintner's theorem can be avoided in the
present case by a simple direct argument. For each reNwe can write

s = 1 s = r + 1 \ «= 1 s = r+1

The first term is clearly absolutely continuous and the norm of the second is
00

1— Yl (1 —II f-s\\)l this—>0 as r-*co. The measure n is then the limit in
s = r+1

norm of absolutely continuous measures, and is thus itself absolutely continuous.

Lemma 4. If (I) holds, and now Fr = {n^, ..., n£} is a set of integers with
00

<jr g (l-co,)qr, where f\ (1 -eor) = 0
r = 1

and fir is a probability measure on the points n^dr then fi = //1*/i2*-.. is
singular.

Proof. If as before vr = iil*n1*---*Hr then the support E, of vr contains at
most

dr1 n (i-«J
s = 1

points, all of the form ndr. For any given a, b the proportion of the points of the
form ndr that are in Ern[a, b~\, as compared with \a, b~\, tends to 0 as r—>oo
because 11(1 —cos) diverges to 0. It follows that the support of n = lim vr

is of measure 0, and this in turn implies that n is singular (ji = 0 is excluded by
condition (1)).

We now come to the main construction. Let ar be any prime-power;
Singer has established (7, pp. 380-381) the existence of a set Ar of ar+1 residues
mod af + ar+l, such that Ar — Ar contains all residues, with zero represented
ar +1 times and the other a? + ar residues once each. We may suppose without
loss of generality that the elements of Ar are integers n with 0 g n < o r

2 + a , + l .
Let qr = af + ar + l, and let kr be the measure with mass (a^l)'1 at each
point ndr, (n e Ar).

00 ^

Theorem 1. If £ a~l < oo then X = kl*k2*--- 's such that A*X is absolutely
r = 1

continuous and X2 is singular.

Proof. Write /ir = Xr*lr: then it is immediate that \ir has mass (ar+1)"1

at 0 and ( a r + l ) ~ 2 at the other a2 + ar points of {ndr: neAr-Ar). Let /4
have mass (a2 + ar + i)~i at each point of {ndr: n e Ar-Ar); if fir = ^ + / i ' ;
then it is clear that

|| n" || = 2a?l(a,+l)(a? + a,+l) ~ 2a;1

E.M.S.—19/2—I
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and we are thus in the situation of Lemma 3. It follows from that lemma
that \i = /z1*/i2*--- = A1*^1*A2*12*... = X*X is absolutely continuous.

Moreover, if vr = A2, the support of vr is {ndr: n e (2)Ar), and this contains
at most ar+1+\(a 2 + ar) points. With qr = a 2 + ar+1 this leads to

lim sup (1 — cor) ^ \

and hence 11(1 —cor) = 0. It follows from Lemma 4 that

v = v1*v2*... = A1*A1*A2*A2*... = A2

is singular.
One consequence of Theorem 1 is the following:

Corollary. There exists on IR a function f (necessarily continuous and tending
to zero at + oo) that is the Fourier-Stieltjes transform of a singular measure, such
that | / 1 is the Fourier-Stieltjes transform of an absolutely continuous measure.

Proof. Let A be as in Theorem 1 and le t /be the Fourier-Stieltjes transform
of A2.

We conclude by showing, as promised, that our method does not seem well
suited to discuss the cases of larger values of k.

Let M(IR, d) be the subset (in fact a subalgebra) of M(IR) consisting of
measures supported on the subgroup {nd: ne I}, and let q be a positive integer.
Denning the map <f> from M(R, d) to M(I(q)) by (<f>n)(a) = £ n(nd) it is

n = a mod q

clear that <f> is a homomorphism. In general || <f>n || g || n ||, and if for each a
all the fi(nd) with n = a mod q have the same sign (or the same phase in the
complex case) then || <f>fi \\ = \\ [i \\. It will be convenient in the following to
look at the images under <f> of measures on IR rather than directly at the measures
themselves.

Theorem 2. If X is as in Theorem 1 then X6 is absolutely continuous.

Proof. Let qr, dT be as before and write G = I(qr). Let <j> be defined as

above relative to dr, qr. Let <j>Xr = ar; then ar*ar = fir + yr, say with

P r = 4>n',, yr = <f>Hr.

It is clear that fir is Haar measure on G (normalised to have mass 1), and that
|| Jr || = || M;' || = 2a 2 / (a r +l ) (a 2 + a r + l ) . Taking Fourier transforms, denned
for any oeM(G) by 6(x) = £ °{y)iy, *>, s o t n a t

y e G
1 v

where 6 ( ^ G, here) is the dual group of G, we have

where /5r(0) = 1, ̂ r W = 0 if x # 0 and (since Sr(0) = 1) ^ 0 ) = 0, | Ux) I g II V, I
everywhere.
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We may thus write

where £r(0) = 0 and | er(x) | ^ || yr ||* everywhere, and it follows that for any
keN we have

a"r(x) = $£

T h u s | g l (x) | g || yr f12 e v e r y w h e r e , w h e n c e | ek(y) | ^ — \G\\\yr \\k'2, a n d

II e * | | = I I eJGO I = I G 11| y r M*'2

= (a; + ar

Let dr be chosen so that <j>6r — ek, \\ 8r || = || sk ||, and Xk— 0r is non-negative.
Then <j>(Xk — 6r) is Haar measure on G, so Xk — 9r satisfies the requirement for \i'r
in Lemma 3, while || 6r || = || e* || ~2k/2a2~k/2. Thus, if k ^ 6, Z|| 0, || <oo
(since Sa,"1 <oo) and all the conditions of Lemma 3 hold. Thus

is absolutely continuous.
It is evident that if ar->co more rapidly, so that 1La~i<oo, then A5 is already

absolutely continuous. It seems likely that these results could be substantially
improved by the use of more delicate arguments.
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