AN APPLICATION OF A THEOREM OF SINGER

by D. M. CONNOLLY and J. H. WILLIAMSON (Received 22nd March 1973)

The authors have recently treated (2) the problem of finding subsets E of the real line \mathbb{R} , of type F_{σ} , such that E-E contains an interval and the k-fold vector sum (k)E is of measure zero. Positive results can be obtained, for all k, on the basis of a recent theorem of J. A. Haight (3), following earlier partial results (1), (4) for $k \leq 7$; and indeed in these cases the problem has a solution with E a perfect set. An analogous problem, apparently in most respects subtler than the first, is the following. Do there exist finite regular Borel measures μ on \mathbb{R} such that $\mu * \tilde{\mu}$ is absolutely continuous (where $\tilde{\mu}$ is the adjoint of μ) and the kth convolution power μ^k is singular? Both problems are of interest in the general context of elucidating the properties of the measure algebra $M(\mathbb{R})$ or, more generally, M(G) for locally compact abelian G. The second problem may be regarded as an attempt to provide (at least one aspect of) a multiplicity theory for the first.

The purpose of the present note is to point out that the necessary machinery for a positive solution of this second problem in the simplest case, k = 2, has been available for many years, in a classical theorem of Singer (7, pp. 380-381; see also **6**, Theorem 6.1); we give the solution in this case. It appears that the construction has inherent limitations and necessarily fails to provide a solution for large k. We show by an elementary argument that it must break down for $k \ge 6$. This does not, of course, imply that the result is false in such cases. It would seem that for $k \ge 3$ a subtler approach than ours is needed to determine the truth of the matter.

We begin with some considerations involving measures on \mathbb{R} . We shall produce measures with the required properties by taking suitable infinite convolution products of simple probability measures. We shall say that a sequence v_n of measures tends weakly to a limit v if $v_n(I) \rightarrow v(I)$ for each interval of continuity of v (i.e. I is to be open and its end-points are not atoms for v). In the present context this mode of convergence has various equivalent formulations.

Lemma 1. Let (v_n) be a sequence of non-negative measures on \mathbb{R} with the properties

(i) $v_n \rightarrow v$ weakly,

(ii) there is a constant c > 0 such that for any interval I, of length l(I),

 $\limsup_{n\to\infty} v_n(I) \leq cl(I).$

Then v is absolutely continuous: in fact

$$v(A) = \int_A f(x) dx$$

where $0 \leq f(x) \leq c$ for all x.

Proof. This is a straightforward verification.

Suppose next that $q = (q_1, q_2, ...,)$ is a sequence of integers with $q_r \ge 2$ for all $r \in \mathbb{N}$. Write $d_r = (q_1q_2...q_r)^{-1}$. For each $r \in \mathbb{N}$ let F_r be a set of integers, $F_r = \{n_1^{(r)}, ..., n_{\sigma_r}^{(r)}\}$, say. Let μ_r be a probability measure (that is, non-negative and of total mass 1) supported on the points $n^{(r)}d_r$ $(n^{(r)} \in F_r)$. We shall suppose, to simplify the situation, that each $n^{(r)} \in F_r$ is essential, that is, $\mu_r(n^{(r)}d_r) > 0$ for each $n^{(r)}$. It is not always true that $\mu = \mu_1 * \mu_2 * ...$ converges; and even if it does its total mass may be strictly less than 1. However, if

there is a constant C, independent of r, with $|n^{(r)}| \leq Cq_r$ for all $n^{(r)} \in F_r$ and all r (1)

then $\mu_1 * \mu_2 \dots$ converges weakly to a probability measure μ . The support of μ is the set of all points that admit a development of the form $\sum_{r=1}^{\infty} n^{(r)} d_r$, with $n^{(r)} \in F_r$. Condition (1) is satisfied in all the cases with which we are concerned.

Lemma 2. Suppose that (1) holds, and also the residues of the $n^{(r)} \mod q_r$ form a complete set. (2)

Let μ_r be a probability measure on the points $n^{(r)}d_r$ such that for each integer a, $0 \leq a \leq q_r - 1$, the total mass of μ_r on the $n^{(r)}d_r$ with $n^{(r)} \equiv a \mod q_r$ is exactly q_r^{-1} . Then $\mu = \mu_1 * \mu_2 * ...$ is absolutely continuous.

Proof. Write $v_r = \mu_1 * \mu_2 * \dots * \mu_r$. Let E_r be the set of numbers of the form $\sum_{s=1}^{r} n^{(s)} d_s$, with $n^{(s)} \in F_s$ $(1 \le s \le r)$ and E the set of all numbers of the form $\sum_{s=1}^{\infty} n^{(s)} d_s$ with $n^{(s)} \in F_s$ $(s \ge 1)$. The measure v_r is concentrated on E_r , and the total mass concentrated on any one point of E_r does not exceed d_r , as is easily verified. Moreover, the points of E_r are distant at least d_r from each other. The measures v_r converge weakly to a limit μ , whose support is E, and it is immediate from Lemma 1 that μ is absolutely continuous (with c = 1).

Lemma 3. If (1) and (2) hold, and if μ_r is a probability measure on the $n^{(r)}d_r$ with $\mu_r = \mu'_r + \mu''_r$, where μ'_r satisfies the conditions specified for μ_r in Lemma 2, and

$$\sum_{r=1}^{\infty} \parallel \mu_r'' \parallel < \infty$$

then $\mu = \mu_1 * \mu_2 * \dots$ is absolutely continuous.

Proof. It is clear from Lemma 2 that $\mu' = \mu'_1 * \mu'_2 * \dots$ is absolutely continuous;

the present Lemma is now a consequence of the classical theorem of Jessen and Wintner (5, Theorem 35).

The explicit reference to Jessen and Wintner's theorem can be avoided in the present case by a simple direct argument. For each $r \in \mathbb{N}$ we can write

$$\mu = \underset{s=1}{\overset{r}{\underset{s=1}{\underset{s=r+1}{s=r+1}{s=r+1}{\underset{s=r+1}{s=r+1}{s=r+1}{s}{s=r}{s=r}{$$

The first term is clearly absolutely continuous and the norm of the second is $1 - \prod_{s=r+1}^{\infty} (1 - \| \mu_s'' \|)$; this $\rightarrow 0$ as $r \rightarrow \infty$. The measure μ is then the limit in norm of absolutely continuous measures, and is thus itself absolutely continuous.

Lemma 4. If (1) holds, and now $F_r = \{n_1^{(r)}, \dots, n_{\sigma_r}^{(r)}\}$ is a set of integers with

$$\sigma_r \leq (1-\omega_r)q_r$$
, where $\prod_{r=1}^{\infty} (1-\omega_r) = 0$

and μ_r is a probability measure on the points $n^{(r)}d_r$ then $\mu = \mu_1 * \mu_2 * ...$ is singular.

Proof. If as before $v_r = \mu_1 * \mu_2 * ... * \mu_r$ then the support E_r of v_r contains at most

$$d_r^{-1}\prod_{s=1}^r (1-\omega_s)$$

points, all of the form nd_r . For any given a, b the proportion of the points of the form nd_r that are in $E_r \cap [a, b]$, as compared with [a, b], tends to 0 as $r \to \infty$ because $\Pi(1-\omega_s)$ diverges to 0. It follows that the support of $\mu = \lim v_r$ is of measure 0, and this in turn implies that μ is singular ($\mu = 0$ is excluded by condition (1)).

We now come to the main construction. Let a_r be any prime-power; Singer has established (7, pp. 380-381) the existence of a set A_r of $a_r + 1$ residues mod $a_r^2 + a_r + 1$, such that $A_r - A_r$ contains all residues, with zero represented $a_r + 1$ times and the other $a_r^2 + a_r$ residues once each. We may suppose without loss of generality that the elements of A_r are integers n with $0 \le n < a_r^2 + a_r + 1$. Let $q_r = a_r^2 + a_r + 1$, and let λ_r be the measure with mass $(a_r + 1)^{-1}$ at each point nd_{r} , $(n \in A_r)$.

Theorem 1. If $\sum_{r=1}^{\infty} a_r^{-1} < \infty$ then $\lambda = \lambda_1 * \lambda_2 * ...$ is such that $\lambda * \tilde{\lambda}$ is absolutely continuous and λ^2 is singular.

Proof. Write $\mu_r = \lambda_r * \tilde{\lambda}_r$: then it is immediate that μ_r has mass $(a_r+1)^{-1}$ at 0 and $(a_r+1)^{-2}$ at the other $a_r^2 + a_r$ points of $\{nd_r: n \in A_r - A_r\}$. Let μ'_r have mass $(a_r^2 + a_r + 1)^{-1}$ at each point of $\{nd_r: n \in A_r - A_r\}$; if $\mu_r = \mu'_r + \mu''_r$ then it is clear that

$$\| \mu'' \| = 2a_r^2/(a_r+1)(a_r^2+a_r+1) \sim 2a_r^{-1}$$

E.M.S.—19/2—I

and we are thus in the situation of Lemma 3. It follows from that lemma that $\mu = \mu_1 * \mu_2 * \ldots = \lambda_1 * \tilde{\lambda}_1 * \lambda_2 * \tilde{\lambda}_2 * \ldots = \lambda * \tilde{\lambda}$ is absolutely continuous.

Moreover, if $v_r = \lambda_r^2$, the support of v_r is $\{nd_r: n \in (2)A_r\}$, and this contains at most $a_r + 1 + \frac{1}{2}(a_r^2 + a_r)$ points. With $q_r = a_r^2 + a_r + 1$ this leads to

 $\limsup (1 - \omega_r) \leq \frac{1}{2}$

and hence $\Pi(1-\omega_r) = 0$. It follows from Lemma 4 that

$$\nu = \nu_1 * \nu_2 * \dots = \lambda_1 * \lambda_1 * \lambda_2 * \lambda_2 * \dots = \lambda^2$$

is singular.

One consequence of Theorem 1 is the following:

Corollary. There exists on \mathbb{R} a function f (necessarily continuous and tending to zero at $\pm \infty$) that is the Fourier-Stieltjes transform of a singular measure, such that |f| is the Fourier-Stieltjes transform of an absolutely continuous measure.

Proof. Let λ be as in Theorem 1 and let f be the Fourier-Stieltjes transform of λ^2 .

We conclude by showing, as promised, that our method does not seem well suited to discuss the cases of larger values of k.

Let $M(\mathbb{R}, d)$ be the subset (in fact a subalgebra) of $M(\mathbb{R})$ consisting of measures supported on the subgroup $\{nd: n \in \mathbb{Z}\}$, and let q be a positive integer. Defining the map ϕ from $M(\mathbb{R}, d)$ to $M(\mathbb{Z}(q))$ by $(\phi\mu)(a) = \sum_{\substack{n \equiv a \mod q \\ q \ d}} \mu(nd)$ it is clear that ϕ is a homomorphism. In general $\| \phi\mu \| \leq \| \mu \|$, and if for each a all the $\mu(nd)$ with $n \equiv a \mod q$ have the same sign (or the same phase in the complex case) then $\| \phi\mu \| = \| \mu \|$. It will be convenient in the following to look at the images under ϕ of measures on \mathbb{R} rather than directly at the measures themselves.

Theorem 2. If λ is as in Theorem 1 then λ^6 is absolutely continuous.

Proof. Let q_r , d_r be as before and write $G = \mathbb{Z}(q_r)$. Let ϕ be defined as above relative to d_r , q_r . Let $\phi \lambda_r = \alpha_r$; then $\alpha_r * \tilde{\alpha}_r = \beta_r + \gamma_r$, say with

$$\beta_{\mathbf{r}} = \phi \mu_{\mathbf{r}}', \ \gamma_{\mathbf{r}} = \phi \mu_{\mathbf{r}}''.$$

It is clear that β_r is Haar measure on G (normalised to have mass 1), and that $\|\gamma_r\| = \|\mu_r''\| = 2a_r^2/(a_r+1)(a_r^2+a_r+1)$. Taking Fourier transforms, defined for any $\sigma \in M(G)$ by $\hat{\sigma}(x) = \sum_{\substack{y \in G \\ y \in G}} \sigma(y) \langle y, x \rangle$, so that

$$\sigma(x) = \frac{1}{\mid G \mid} \sum_{y \in G} \overline{\hat{\sigma}(y) \langle x, y \rangle},$$

where $\widehat{G} (\cong G, \text{ here})$ is the dual group of G, we have

$$|\hat{\alpha}_r(x)|^2 = \hat{\beta}_r(x) + \hat{\gamma}_r(x)$$

where $\hat{\beta}_r(0) = 1$, $\hat{\beta}_r(x) = 0$ if $x \neq 0$ and (since $\hat{\alpha}_r(0) = 1$) $\hat{\gamma}_r(0) = 0$, $|\hat{\gamma}_r(x)| \leq ||\gamma_r||$ everywhere.

122

We may thus write

$$\hat{\alpha}_r(x) = \hat{\beta}_r(x) + \hat{\varepsilon}_r(x),$$

where $\hat{\varepsilon}_r(0) = 0$ and $|\hat{\varepsilon}_r(x)| \leq ||\gamma_r||^{\frac{1}{2}}$ everywhere, and it follows that for any $k \in \mathbb{N}$ we have

$$\hat{\alpha}_r^k(x) = \dot{\beta}_r(x) + \hat{\varepsilon}_r^k(x).$$

Thus $|\hat{\varepsilon}_{k}^{r}(x)| \leq ||\gamma_{r}||^{k/2}$ everywhere, whence $|\varepsilon_{r}^{k}(y)| \leq \frac{1}{|G|} |G| ||\gamma_{r}||^{k/2}$, and $||\varepsilon_{r}^{k}|| = \sum_{y \in G} |\varepsilon_{r}^{k}(y)| \leq |G| ||\gamma_{r}||^{k/2} = (a_{r}^{2} + a_{r} + 1)[2a_{r}^{2}/(a_{r} + 1)(a_{r}^{2} + a_{r} + 1)]^{k/2} \sim 2^{k/2}a_{r}^{2-k/2}.$

Let θ_r be chosen so that $\phi \theta_r = \varepsilon_r^k$, $\|\theta_r\| = \|\varepsilon_r^k\|$, and $\lambda_r^k - \theta_r$ is non-negative. Then $\phi(\lambda_r^k - \theta_r)$ is Haar measure on G, so $\lambda_r^k - \theta_r$ satisfies the requirement for μ_r' in Lemma 3, while $\|\theta_r\| = \|\varepsilon_r^k\| \sim 2^{k/2} a_r^{2-k/2}$. Thus, if $k \ge 6$, $\Sigma \|\theta_r\| < \infty$ (since $\Sigma a_r^{-1} < \infty$) and all the conditions of Lemma 3 hold. Thus

$$\overset{\infty}{\underset{r=1}{\overset{\times}{\underset{r=1}{\overset{*}{\underset{r=1}{\underset{r=1}{\overset{*}{\underset{r=1}{\overset{*}{\underset{r=1}{\underset{r=1}{\overset{*}{\underset{r=1}{\underset{r=1}{\overset{$$

is absolutely continuous.

It is evident that if $a_r \to \infty$ more rapidly, so that $\sum a_r^{-\frac{1}{2}} < \infty$, then λ^5 is already absolutely continuous. It seems likely that these results could be substantially improved by the use of more delicate arguments.

REFERENCES

(1) D. M. CONNOLLY, Integer difference-covers which are not k-sum-covers, for k = 6, 7, Proc. Cambridge Philos. Soc. 74 (1973), 17-28.

(2) D. M. CONNOLLY and J. H. WILLIAMSON, Difference-covers that are not k-sum-covers II, Proc. Cambridge Philos. Soc. 75 (1974), 63-73.

(3) J. A. HAIGHT, Difference-covers which have small k-sums for any k, Mathematika 20 (1973), 109-118.

(4) T. H. JACKSON, J. H. WILLIAMSON and D. R. WOODALL, Difference-covers that are not k-sum covers I, Proc. Cambridge Philos. Soc. 72 (1972), 425-438.

(5) B. JESSEN and A. WINTNER, Distribution functions and the Riemann zeta-function, *Trans. Amer. Math. Soc.* 38 (1935), 48-88.

(6) H. B. MANN, *Addition Theorems* (Interscience tracts in pure and applied mathematics no. 18, Interscience Publishers, New York, 1965).

(7) J. SINGER, A theorem in finite projective geometry and some applications to number theory, *Trans. Amer. Math. Soc.* 43 (1938), 377-385.

UNIVERSITY OF LETHBRIDGE CANADA and UNIVERSITY OF YORK ENGLAND