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Abstract. Assuming that the largest convective patterns generate the majority of convective
transport, we devise a numerical scheme simplifying the convective velocity field using two
parallel radial columns to represent up- and downstream flows. Horizontal exchange is described
by fluid flow and radiation over the interface between those two columns. The main parameters of
this convective description have a straightforward geometrical meaning, namely the diameter of
the columns (representing the size of the convective cells) and the ratio of cross section between
up- and downdrafts. For this geometrical setup, the equations of radiation hydrodynamics are
solved time-dependently using an implicit scheme which has the advantage of being devoid of any
time step limits. In order to demonstrate our approach, we present comparisons with detailed
2D hydrodynamics computations for the example of convection zones in Cepheids.
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1. Introduction
Current two- and three-dimensional hydrodynamics simulations of stellar photospheric

convection are remarkably successful in reproducing the observed properties. In particular
for the sun, comparisons with observational constraints from line profiles (e.g. Asplund
et al., 2000) and the solar granulation pattern (e.g. Stein & Nordlund, 1998, Wedemeyer
et al., 2004) show the high level of fidelity of multi-dimensional simulations. Indirectly,
this also confirms various other (non-observed) properties of the numerical models such
as temperature structure, convective flux, and convective velocities.

Motivated by this success of multidimensional hydrodynamics in modelling convective
transport, we devised a numerical scheme which describes the circulating convective
flow in the most simple manner with two parallel radial columns. Convective up- and
downdraft motions are represented by radial fluid flow in these two columns while a
horizontal component of the flow over the interface between these two columns closes the
circulating motion. These two columns thereby do not stand for an individual convective
cell but should be considered as a representation of all up- and downdraft motions.

This discretization scheme has three main parameters: First, the typical horizontal
length scale D that can be interpreted as a diameter of the columns or as their distance
from each other. Physically, this corresponds to the characteristic size of the flow patterns
or eddies of the modelled convection.

Secondly, the parameter cf1 (‘cf ’ for column fraction) describes the fraction of the
sphere allocated to column 1. Accordingly, cf2 = 1 − cf1 is the relative cross section of
column 2. This different size of the columns can be used to model convection zones with
narrow down- and wide updrafts as observed, e.g., in the solar granulation.

Finally, a third constitutive parameter specifies details of the horizontal advection from
one column to the other; but since this parameter not used in the examples below, we
will not discuss it here further.
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The big advantage of this two-columns discretization scheme is that its very sim-
ple setup allows for an efficient and straightforward application of the implicit solution
method. This results in a code that is almost as fast as an implicit 1D-Code (as used,
e.g., for stellar evolution or for stellar pulsations) while including the effects of convective
transport by the simple, yet hydrodynamical consistent, circulating flow.

2. The discretization scheme

Figure 1. The two-columns discretization scheme. The primary variables (compare Table 1) are
included in their staggered-mesh localization; D is the typical distance/diameter of the columns.
Advection occurs, as indicated by arrows, in radial direction as well as over the interface between
the two columns (thick line).

Figure 1 shows the setup of the two-columns discretization scheme. Note that, even
though not drawn as such, all this takes place in spherical symmetry; in general, the
two columns also do not have the same size. The area shaded in gray in Fig. 1 is the
discretization volume for the scalar quantities ρ, e, J and the corresponding equations
(see Table 1). Vector variables in radial (ur , Hr , ρ) and horizontal (uθ , Hθ ) direction
are discretized in similar volumes located in staggered-mesh positions. For a detailed
description of the discretization scheme see Stökl (2008).

The radial distribution of the grid points ri is determined by an adaptive grid equation
(Dorfi & Drury, 1987). This adaptive grid equation is solved implicitly together with
the physical equations and continuously adjusts the grid resolution according to the
evolving physical structures. The adaptive grid also allows the usage of a Lagrangian
outer boundary condition so that the grid can follow radius variations of the star, e.g. due
to stellar pulsations or structural resettling caused by the onset of convective transport.

3. Method of solution
The system of discrete equations compiled in Table 1 is solved by an implicit solver.

This method has the advantage of being not affected by the CFL (after Courant, Friedrichs
& Lewy 1928) time step limit and in principle allows arbitrarily large time steps. The
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Table 1. The set of 16 primary variables and the corresponding discrete equations. A moment
description for the radiation field (Mihalas & Mihalas, 1984) has been adopted for the equations
of radiation hydrodynamics. The radially averaged densities ρ are used for assembling the radial
momentum ρur ; this formalism is necessary to implement the second order advection scheme
for the momentum within the 5-point discretization stencil.

Variable Description Equation

ri Radius Adaptive grid equation
mi Integrated mass Poisson equation

ρ1 i , ρ2 i Density Equation of continuity
ρ1 i , ρ2 i Averaged density Radial averaging of ρ
e1 i , e2 i Specific internal energy Equation of energy
u1 i , u2 i Radial velocity Equation of motion, radial component

uθ i Horizontal velocity Equation of motion, horizontal component
J1 i , J2 i 0th moment of intensity Radiation energy equation
H1 i , H2 i 1st moment of intensity, radial Radiation flux Eq., radial component

Hθ i 1st moment of intensity, horizontal Radiation flux Eq., horizontal component

Closures: – tabulated equation of state (temperature, gas pressure), evaluated separately in
each column: T1 = T (ρ1 , e1 ), T2 = T (ρ2 , e2 ), P1 = P (ρ1 , e1 ), P2 = P (ρ2 , e2 )

– tabulated opacities (Rosseland mean), evaluated separately in each column:
κ1 = κ(ρ1 , e1 ), κ2 = κ(ρ2 , e2 )

– closure of radiation moments with an Eddington factor fedd = K/J = 1/3

inclusion of elliptical parts into the system of physical equations (Poisson and grid equa-
tion) is also only possible with an implicit scheme.

As the system of equations contains nonlinear terms, a Newton-Raphson iteration is
used where each iteration step involves the inversion of the Jacobi matrix. According
to the number of equations, the Jacobian consists of 16 × 16 sub-matrices which form
a pentadiagonal banded structure reflecting the discretization on a 5-point stencil. The
inversion of the Jacobi matrix uses the customary approach of elimination of the two
lower sub-diagonals and subsequent back-substitution of the resulting upper triangular
matrix.

Usually, the models have 500 radial grid points. Due to the adaptive grid, the majority
of them clusters around the steep gradients in the photosphere and in the convective
region.

4. Stationary solutions
The stationary solution for the convective velocity field is obtained by computing the

temporal evolution starting from a hydrostatic, purely radiative initial model. In order
to make the convective circulation go in the intended sense of rotation (i.e. wide up-, and
narrow downdrafts) small radial velocity perturbations (u � 1m/sec) are applied to the
hydrostatic model using the Schwarzschild convection criterion as a guide. Starting from
these perturbations, the convective velocities develop quickly and after a dynamic phase
of growth which lasts about a thermal time scale of the involved part of the envelope, the
convection approaches the stationary solution. This evolution typically requires about
1000 time steps that increase from a few seconds at the start up to 1010 sec for the
stationary solution.

The ultimate aim of our work is the investigation of the interaction of convection
and pulsation in Cepheids. Hence, as a first step, we computed stationary solutions for
Cepheid convection zones.
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Figure 2 illustrates the results for a rather typical Cepheid with Teff = 5400K, L =
103 L�, and M = 4.75M�. The geometrical parameters are D = 20Hp0 and cf1 = 0.8.
According to the (arbitrary) convention of using column 1 for up-, and column 2 for
downdrafts, the latter corresponds to a downstream cross section of 20% of the sphere.
The typical horizontal extension D of the columns is specified relative to the characteristic
photospheric pressure scale height, Hp0 = RTeff /g. This formalism is motivated by
Freytag et al. (1997) where a horizontal scale of photospheric convection of about 10Hp0
was found to be a good estimate for a broad range of stellar parameters.

Figure 2. Stationary solution for a Cepheid convection zone: The upper panel shows the con-
vective transport in units of the total luminosity. The convective velocities are given in the lower
panel: updraft (dashed line), downdraft (dotted line) and horizontal (solid line). A positive sign
of the horizontal velocity corresponds to a flow from column 1 to column 2, i.e. from updraft to
downdraft. The figure focuses only on the outer convective region, the model actually extends
down to about 3.6 R�.

5. Comparison with 2D-computations
In order to verify the convection zones computed with the two-columns scheme, Fig. 3

compares them with results from 2D hydrodynamics carried out with CO5BOLD
(Freytag, 2008). The figure gives examples for convection zones in cool and hot Cepheids
which are qualitatively quite different:

For lower effective temperatures, a deep convective region contains both the H and He II
ionization zones. In that case, convection carries a substantial fraction of the energy flux
and the extended downdrafts lead to a pronounced overshoot at the lower boundary.

For hotter stars, where radiative transport is more effective, convection becomes less
vigorous and is thus no longer able to bridge the gap between the two ionization zones;
hence, there only remains a thin convective shell at the H ionization zone. The He II
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ionization zone only appears as a very slight bump in the convective flux. However, even
though not visible in Fig. 3, there is still a substantial, extended convective velocity field.

Figure 3. Comparison of the two-columns scheme with 2D hydrodynamics. Shown are con-
vective fluxes computed with the two-columns code for Cepheids with effective temperatures of
5200 K (solid line) and 5800 K (dashed line) as well as the corresponding results obtained with
CO5BOLD (both dotted lines).

The comparison of the two-columns scheme with 2D hydrodynamics confirms that the
two-columns scheme is able to reproduce many properties of the convection zone:
• An extended lower overshoot.
• The efficiency of convective transport, also in the overshoot region.
• Two distinctive bumps in the convective flux correlated to H and He II ionization.
• An inward flux of kinetic energy (not illustrated).
• The magnitude of convective velocities (not illustrated).
• The transition with increasing effective temperature from an extended convection

zone embracing both the H and He II ionization zones to a thin, inefficient convective
shell.
Most differences in the results between the two-columns scheme and the 2D simulations,
in particular the different depth of the overshoot, are probably due to the simplified
geometrical picture of the two columns scheme. An other prominent effect are the con-
siderably smeared-out curves for the 2D results (see upper boundaries of the convective
regions) that are caused by the spatial and temporal averaging necessary for extracting
such integral quantities from the 2D simulations. Generally, the results for the convection
zones in Cepheids agree well with those found for the similar A-type stars (Steffen et al.,
2005).

The main advantage of the two-columns model over multi-dimensional hydrodynamics
are the large time steps possible with the implicit solution method. The two-columns
code requires about one minute CPU-time to follow the temporal evolution of the con-
vection zone up to the stationary solution. In contrast, the 2D simulations of the Cepheid
convection zones with CO5BOLD took up to six months to reach sufficiently stationary
states.
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6. Summary

The two-columns scheme allows for a non-local, time-dependent description of convec-
tion and the main parameters of the scheme have a straightforward geometrical meaning.
Moreover, the convective solutions are qualitatively quite robust and do not vary drasti-
cally within the reasonable parameter range (Stökl, 2008).

Due to the implicit solution method, very large time steps are possible which make the
method in many applications much faster than multi-D hydrodynamics. The simplified
convective circulation of the two-columns scheme has stationary solutions. Hence, this
method can be applied to problems where long time series are required, e.g. stellar
pulsation or stellar evolution, without the necessity of resolving the dynamical time scale
of convective turbulence.

Comparisons with 2D hydrodynamics proved that the scheme is able to reproduce many
important properties of convection such as convective flux, overshoot, kinetic energy
flux, and the range of convective velocities. First time dependent Cepheid pulsations
computed with the two-columns scheme have also already demonstrated the feasibility
of our approach to simulate simultaneously convection and pulsations.

Despite these achievements, the two-columns model is basically still a parameter-
depended description. The good quantitative agreement between two-columns and 2D
is in part also a result of suitable values for the free-parameters. However, the adopted
parameters cf1 = 0.8 and D = 20Hp0 are by no means the outcome of an extensive
parameter tuning.

An other limit of the scheme is the very coarse spatial resolution in horizontal direction
and the simplistic description of the (vertical and horizontal) spectrum of convective
velocities. So while the method is able to reproduce the main macroscopic properties
of convection through the simple circulation fluid flow, one should not expect a correct
description of more subtle details or turbulence effects from such a simple scheme.
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Stökl, A.: 2008, A&A, submitted
Wedemeyer, S., Freytag, B., Steffen, M., Ludwig, H.-G., & Holweger, H.: 2004, A&A, 414, 1121

https://doi.org/10.1017/S1743921308022503 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921308022503


Two-columns convection 95

Discussion

Kupka: The type of model for convection you are using here is known in meteorology
under the name of mass-flux model. If one ties both velocity and temperature to the
same column (up≡hot, cold≡down), sign symmetries in some third (and fourth) order
correlations are violated and one runs into troubles with that particularly in overshooting
zones. Secondly, I wonder about your choice of the column fraction value. There are
problems known to exist for A-stars where the simulations are known to not recover the
observed, blue-wards curved line profiles. For line profiles of Cepheids this non-solar-like
shape is even more prominent. I’d thus not rely on the simulations as a valid test of
models until they themselves have been probed with observational data.

Stoekl: (1) I’m not familiar with these meteorology models – however, my implemen-
tation does not couple the sign of velocity and temperature variations. I can not argue
about 3rd & 4rd order moments as I’ve never translated the 2-columns scheme into that
formulism. (2) The value for the fraction in cross section for up- and downdrafts is left
as a free parameter. Therefore, when observations – of line profiles or of whatever – can
provide constrains, this is a very welcome input. Despite the mentioned problems of 2D
(and 3D) hydro simulations, I think that the qualitatively agreement of 2 columns & 2D
simulations is a promising result.

Woitke: What is the difference between your “2 column” approach and a regular
radiation-hydro code with an extremely coarse resolution like 500×2?

Stoekl: There is none. – in principle – the geometric interpretation of the 2-columns-
scheme is not that of a usual 2D–grid.

https://doi.org/10.1017/S1743921308022503 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921308022503

