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Abstract  The best-constant problem for Nash and Sobolev inequalities on Riemannian manifolds has
been intensively studied in the last few decades, especially in the compact case. We treat this problem
here for a more general family of Gagliardo—Nirenberg inequalities including the Nash inequality and
the limiting case of a particular logarithmic Sobolev inequality. From the latter, we deduce a sharp
heat-kernel upper bound.
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1. Introduction

1.1. The case of the Euclidean space R™

Let p be a positive real number. If n > p, the HY(R™) Sobolev inequality asserts that
there exists a constant A such that for all u € HY(R™),

(n—p)/np 1/p
(/ |u|P/ (nP) dx) < A(/ [VulP dx) .

When combining with Hélder’s inequality, we obtain a new family of inequalities, called
Gagliardo—Nirenberg inequalities, asserting that for all u € H} (R™),

1/r 0/2 (1-0)/s
(/ |urd$> < (A/ |Vul? da:) (/ |usdx) ,
n Rn RTL

where 7,5 > 0, § € [0,1] and

Actually, according to [3], when p is fixed and 6 > 0, these inequalities are all equivalent
up to the constant A. Some famous particular cases have numerous applications. One
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may mention Nash’s inequality,

1+(2/n) 4/n
(/ |u|2dx> < A(/ Vu|2dx) (/ |u|dm) )

introduced by Nash in his celebrated paper [13], which is obtained by setting r = 2,
s=land 8 =n/(n+2). If r =2+ (4/n), s =2 and § = n/(n + 2), we then obtain the

inequality
2/n
/ |24/ dz < A(/ Vuzdx) (/ |u|2dx> )

which has been used by Moser in a subsequent work [12]. Let us note that these inequal-
ities still hold when n < p (which implies § # 1), whereas the Sobolev embeddings are
not valid in this case. One can refer to [3], for example, for a more general discussion. In
the following, we restrict p to p = 2 and thus consider, when 6 # 0, the inequality

2/r0 2(1-6)/s6
(/ |u7"dac> < A(/ |Vu|2dac> (/ |ul® dm) . (1.1)
n Rn n

Let us fix r and assume that (1.1) holds with an A independent of 8, which is the case
for all n > 0 (see [3]). Making € go to 0, we obtain that for all u > 0 such that |jul, =1
the logarithmic Sobolev inequality

-1
2 2-
/ u Inu" dz < (—|— r) 1n(A/ |Vu|2dx>. (1.2)
n n T Rn

According to [3], this inequality is again equivalent to the previous ones and we shall

thus consider that it represents the case 6§ = 0.

Let Ag(r, s,0,n) be the optimum A such that (1.1) is valid. In most cases its explicit
value is unknown. The best constant in Sobolev inequalities was first obtained indepen-
dently by Aubin [1] and by Talenti [14] when n > 3. They showed that

4
n(n — 2)w,21/"’

2n 9
AO (7]/—2787 ].,n) = K(n,Z) =

where w,, is the volume of the standard unit sphere of dimension n. Later, the SLs ,, case
was solved by Carlen [4]. In addition, with Loss [5] he computed the best constant for
Nash’s inequality. These values are

2

A0(2, 2, 0,71) = %

(n+2)/n
AO 2a 17 & | = (n ha 2) )
n+2 22/nn )\ (B)|B|2/™

where A1 (B) is the first Neumann eigenvalue of the Laplacian for radial functions on the
unit ball B in R™ and |B| is the volume of B in R™. One may remark that A\;(B) can be
numerically computed. A brief discussion about this last point can be found in [5].
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1.2. The Riemannian case

Let (M, g) be a smooth compact Riemannian n-manifold. When n > 3, the H? Sobolev
inequality on M asserts that there exist constants A and B such that for all u € HZ (M),

(n—2)/n
(/ |u|2n/(n*2) dUg) < A/ |Vu|3 dvngB/ |’U,‘2dvg~
M M M

As in the case of the Euclidean space R", we can define all the Gagliardo—Nirenberg
inequalities on M by Holder’s inequality. Actually, we obtain that for all u € HZ(M),

2/rf 2(1-6)/s6
(/ |u|rdvg) < (A |Vu|§ dvg + B/ |u|2dvg> (/ |ul® dvg) , (1.3)
M M M M

where 7,5 > 0, 6 € (0,1) and

1 On—2) 1-86
+ .
T 2n s

Again, these inequalities are all equivalent and can be defined for all n > 1. For the last
assertion, one should refer to Theorem 1.1 in [8] (which treats the case of a modified
Nash inequality) for an easy-to-adapt proof using a partition-of-unity argument.

Now, we define

A(r,s,0,n) = {A € R s.t. 3B € R for which (1.3) is valid}.

One may ask if this set is closed and what is its infimum, called the first best constant.
This problem has been intensively studied for the Sobolev inequalities (a complete dis-
cussion may be found in [10]). Recently, Humbert [11] solved the Nash case. In both
cases, it was shown that the set is closed and that the infimum is the best constant of
the corresponding Fuclidean inequalities. In these proofs, the explicit value of the best
constant was known but not used. Therefore, one we may ask if the answer is identical
for all the Gagliardo—Nirenberg inequalities. The first aim of this paper is to study to
what extent the previous proofs may be generalized to other cases. At the same time, we
point out the fact that the explicit value of Ag(r,s,d,n) is useless for solving the first
best-constant problem for the family of inequalities that we study.

One may easily check that inf A(r,s,0,n) = Ag(r, s,0,n). To this end, we may again
simply follow the proof of Theorem 1.1 in [8]. Our main result in this work is to give
conditions on r, s, § such that (1.3) holds with A = Ay(r, s,0,n), including the Nash case
studied by Humbert [11]. The proof we present does not allow us to treat the full range
of parameters. It generalizes [11], itself inspired by the paper by Druet [7]. While the
main ideas of the proof below are already present in these works, the range of parameters
r, s, @ under investigation presents us with a number of new technical difficulties. For
the sake of completeness, we thus decided to present a self-contained proof. Our main
result is the following.
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Theorem 1.1. Let (M, g) be a smooth compact Riemannian n-manifold. Let r, s, 0
be constants satisfying r > 2, s > 1, 6 € (0,1) and

1 O0n-2 1-6
(n-2) 1-9

T 2n s

If s <2 <r <2+ s(2/n), then there exists a constant B such that for all u € C*(M),

2/r0 2
(/ u|” dvg> < <A0(r,s,0,n) |Vu|§ dvg—i-B/ |u|? dvg> (/ |u|® dvg>
M M M M

Let us now study some interesting particular cases. The Nash inequality is obviously

(1-6)/s6

included in our family but we can remark that Moser’s inequality only appears as a
limiting case. Indeed, we then have r = 2 + s(2/n). Up to now, we have not been able
to prove that B does not explode as A goes to Ag(r, s,0,n). Another limiting case can
be treated with this theorem: the logarithmic Sobolev inequality. This one is obtained as
in §1.1, by fixing r = 2 and making 6 go to 0. The following result will be proved in § 3.

Corollary 1.2. Let (M, g) be a smooth compact Riemannian n-manifold. There exists
a constant B such that for all u € C°°(M) verifying u > 0 and |lull2 =1,

2
/ u? Inu? do, < énln</ Vul? dvg+B). (1.4)
M nme Ju

The best-constant problem for the Sobolev inequality has as many applications as the
Yamabe problem. A classical use of the logarithmic Sobolev inequalities is the computa-
tion of heat-kernel upper bounds (see, for example, [2,6]). Actually, following a result of
Bakry [2], the optimal Euclidean inequality can be used to compute the optimal upper

bound
1
Pill1,00 € 773
1P < e
where (P;)¢~0 is the heat semigroup on the Euclidean space R™. One may ask if a similar
argument works on manifolds. At first, in §3.2, we shall cite the theorem obtained by
Bakry [2]. From it and Corollary 1.2, we will then deduce the following,.

Corollary 1.3. Let (M,g) be a smooth compact Riemannian n-manifold and let
(Pt)t>0 be the heat semigroup on M. One then has

1
(1P]]1,00 < We(nﬂCBO/S)t’

where 0 < t < (meBgy)~! and By is the best constant B in (1.4).
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2. Proof of Theorem 1.1

As already indicated, the proof follows the pattern of the proof of the main result of [11],
itself inspired by [7]. As 7, s, 6 and n are fixed in this section, we shall denote by A, the
constant Ag(r,s,0,n). The case n = 1 is handled with a partition-of-unity argument as
we prove that Ag is the infimum of A(r, s,0,n). One can thus assume that n > 2. Without
loss of generality, we can also assume that Voly(M) = 1. Moreover, let us observe that
0 € (0,1) implies s < r. We proceed here by contradiction. The proof is composed of three
steps. The first one is a preliminary step in which we introduce alternative notation that
will be used throughout this section. This part being nearly identical to the one in [11],
we keep the notation from that paper to make comprehension easier. Step 2 is a set of nine
lemmas. The first three are classical ones and deal with concentration-point phenomena
in partial differential equations, whereas the other six give more specific results. We then
conclude in the third step.

Step 1. Preliminary.

Proceeding by contradiction, we assume that for all B > 0 there exists u € C*°(M)
such that

2/r0 2(1-6)/s0
(/M fuf" dvg> > (Ao /M|vu|§dvg+B/M |u|2dvg) (/M |u|sdvg> .

This is equivalent to
= inf I, < A"
o= Y31 0

for all > 0, where

I = (/M Vul? du, +a/M u|2dvg) (/M |u|sdvg)2
M= {u e COO(M)//M fuf" dv, = 1}.

We assume throughout the proof that s > 1, the case s = 1 being handled by replacing
s with 1 + €, in I,, where (€4)q is such that lime, = 0 (see [11] for the particular case
r = 2 and s = 1). Using the same arguments as in [8], we can prove that there exists
Uo € HZ(M), ug > 0, such that I, (ua) = f1e- Moreover, in the sense of distributions,

wBaufxil = kaugila (21)

(1-6)/s6

and

24, A guq + 2aAqua +

2(1—0) /50
Ao (/ ug, dvg) ,
M
(2(1-0)/50)—1
(/ |Vua|3 dvg + a/ u? dvg) (/ ul, dvg> ,
M M M
2
g )He

where

Bq

ko
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The Sobolev embedding theorems and the standard elliptic theory (see [9]) imply u, €
C?(M). From now on, all limits below are taken as o — oco. Considering subsequences if
needed, we can assume that all sequences have limits (finite or infinite).

One has 1, < Ay', hence

2(1-0)/s6
lim(/ u? dvg> </ ul, dvg> =0
M M
2(1-0)/s6
limsup(/ |Vua\§ dvg> </ ul, dvg) <Ayt
M M

From (1.3) with A = Ag + ¢, B = B, and u = u,, with € small, we obtain

B 2(1-6)/50
A 1< ol2d - / o?d / ol®d .
(ot < ([ Fuaaoy + 5 [ ualany ) ([ ool as,
Hence
2(1-6) /50
liminf(/ |Vua\§ dvg> </ ul, dvg) > Ayl
M M

As a consequence,

and

lim A4, /M |Vua|Zdvg = Ag', (2.2)

lim B, /M ug, dv, = lim B, A39/20-0) = A5t (2.3)

limk, = (2/0)A7 Y, 2.4
0

lim oA, /M u? dv, = 0. (2.5)

Let 2, € M be such that ue(za) = [[tallse- Set aq = (Aa|lua?c7)!/2. Since

1:/ ugdvgg/ uidvg||ua|252,
M M

we obtain from (2.5) that a, — 0.
Step 2. Some lemmas.

The first three results are classical. One begins with the following.

Lemma 2.1. For all § > 0,

mea (6aa) ug, dvg

i
m Sy us, dog

> 0.
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Proof. Let 6 > 0. For all x € B(0,6), set

go(@) = (expy, 9)(aa),
Ya(r) = [JUuq Hgolua (eszQ (aa)).

It is an easy matter to check that

Ay, pa(®) = lluall a2 Agua(exp,  (aar))
~ a1 Bt e, ()
1—-6 s—1
— Baua(exp%(aax)) faAaua(esza(aax)) .
Hence 1—o
Aguﬁpa + aAa‘PaHuaH?xTr + THuafo:TBa‘Pi_l = %ka‘:@g_l'
Noting that Aguq(zq) = 0, we obtain from (2.1) that
1;9 s—2 1 r—2
Ao + 0 Balluallis” < gkalluallss™, (2.6)

which implies that |A,, ¢q| < C. By standard elliptic arguments (see, for example, [9]),
we then show that the sequence (¢,) is equicontinuous. Hence, by the Ascoli theorem,
there exists ¢ € CY(B(0,d)) such that ¢, — ¢ in C°(B(0,d)). Moreover,

©(0) = lim ¢, (0) = 1.

Therefore,

/ o5 dvy, = Jual|taz" / us, dv,
B(0,6) B, (aad)

)

sd
= [lua || 25~ @ (/) A (n/2)+(56/2(1-0)) waaiww‘” to Ty
fM ug, dvg
Using the relations
2 2 2(1-0)
e R (2.7)
2(1—0)
(r—s)zn v -2-r)in=r, (2.8)
we obtain
sd
| endu, - (Il 4207200 1=(001-01/0) L2200 V2 0
B(0,8) ° fM u, dug
One may easily verify that
2 2 1-06
r<2+s- & —>1 & 1—M<0.
n r6 st
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Since (2.3) and (2.6) imply that AFS02070) ¢ Cllua |55 ®, we have

u?, dv
B(0,5) Jar us, dog

Noting that lim fB(o 5) Pa dvg, >0,

fBza (aad) ug, dug

> C >0.
Joy us dug
This ends the proof of Lemma 2.1. O
One shows similarly that
|||l * AZ0/20=0) _ ¢ > 0. (2.9)
r/n

Let us note that (2.9) leads to aq|uallcs — C > 0. As a consequence, ||uqllco — +00
and A, — 0. Moreover, since s < 2, we also have

/ ug, dvg < / uf, dvg|luallie® = AF20 lug |35,
M M
Consequently, by (2.9) and the inequality |luq|2" < C [,, u2 dvg, we obtain
||ua||gg2/ w2 dvy = C > 0. (2.10)
M
Remark. Relations (2.7) and (2.8) are intensively used throughout the proof and we
will thus no longer be precise when they are needed.

One can now improve the previous lemma. Actually, we have the following.

Lemma 2.2. Let (¢q)qo be a sequence of positive real numbers satisfying (aq/cqo) — 0.
Then
S
fBza (e) Yo dvg

Joy us, dog
Proof. Let n € Co(R) be such that
(i) n([0, 3]) = {1},
(i) ({1, +oc]) = {0},
(i) 0 <7< 1.

lim =1.

For k € N, set 0.1 = (n(c;ldg(x,xa)))zk.
Multiplying (2.1) by nj, ,ua and integrating over M, we obtain

2Aa/ Moy 1 Ua D gUa dvg + ZQAQ/ v, kui dvy
Mo M

2(1 —0)

+ 7 Ba/ Nev oy AV :ka/ New. ey Vg
M M
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The identity

2 2
/ Ug,kUaAgua dvg = / |V77;{kua|§ dog _/ |V77;{k §U§ dvg
M M M
then leads to

2Aa/ |V772/2ua|!2] dvg — 2Aa/ |V77£/§ 2ug dug + 2aAa/ nh pus du,
M ’ M ’ Mo

2(1 -6
A, [ g = Yo [ ot do,
M M

(2.11)

Moreover, (1.3) with A = Ay + ¢, B = B, and u = g kUq gives

2/r0
(/M |77a,kua|T dvg)

2(1-6)/s0
< ((AO +€) / |V77a,k‘u0¢|_c21 dvg + Be/ |"7067kua|2 dvg> (/ M ktal® dvg> .
M M M

(2.12)
Set
A\r = lim fM ﬂZ,kui dug
; fM ug, dug
X = lim fM ni,kuz dog
k Sy us, dog

X zlimAa/ \Vn;/lzua@dvq,
M ’ ’

Ys :limAa/ \Vnmkua\idvg,
" .
Zy = lim/ Moy oW, dVg.
s

Let us now search for some relations involving A, S\k, Xk, Vi and Z;.
One has the following.

(i) Relation (2.10) implies that

2
lim Aa/ |V77r/2 2U2 dvg < lim Cafa = 0.
M

a,klg™a Cg

(ii) Relation (2.5) implies that

lim aAa/ nh wus dvg = 0.
s
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(iii) By definition of A,,

2(1-6) /56
lim (/ Vo kil dvg> (/ Mo dvg)
M M

=lim A, (/ |V77a1kua|3 dvg> j\i(l—e)/sa

—Y)\ (1-6)/s6

2(1-6)/s6
lim (/ n2 Lu? dvg) (/ % LU, dvg) < lim Aa/ u? dv, = 0.
Mo Mo M

Therefore, taking the limit in (2.11) and (2.12), we obtain

1-46 AO
X+ —— Ayt =22
k+ 9 )\k 0 0

Z]z/?"e (AO + E)Y )\2(1 6)/80

and

Zk:7

Set X = Ao Xy and Yy, = AyYs. Noting that € is arbitrary, we then have
0Xk + (1 —0)\y = Zg,
2/10 _ < 72(1-8)/s6
Z, "L YAy .

Now, let us remark that

ALz,
k:)\]:)‘

After some easy computations, it follows that
/\k < - 0Yr0/2(1 0)<Z}17(1/(179)) - exkzkfl/(lfe))j\;/s-
Set f(x,z) = 2"~ (/=) _ gz,=1/(1=0)  One has

of 0 ya-e
az(:v,z) 1_92 p 1]).

Sin~ce 9?2';6—1—(1—9))\;C = Zp, Ao < Zi < X or Xi < Zi < Ai. In both cases, f(Xk,Zk) <
f(Xk, Xi). As a consequence,

e < (V72X 7He/a=0 )

From Hélder’s inequality for the measure du, = |Vua|f] dvg and the equalities
Y, = lionAa/ ni’k|Vua\§ dvg,
M

X zlionAa/ N k| Va2 dug,
M
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it follows that 171:/2 < Xi and A\, < 5\2/8. Since, by Lemma 2.1,

. . . waa(Ca) ud dv,
C < Apt1 < A1 < A < Ay < lim —2————

fM us, dvg ’
we then have f
u?, dv
YN eN, ©<AV/® lim Bealee) 2 9
Joy ug, dog
Thereafter,
. me (en) Wer dVg
lim —e—=—— =1
fM us, dvg
and Lemma 2.2 is proved. |

An important estimate follows.

Lemma 2.3. There exists C' > 0 independent of « such that for all t € M and every
a?
Ue () dg(x,xa)”/’“ <C.

Proof. Let us assume by contradiction that there exists a sequence (yq)q of points
of M such that

Ua (Vo) dg (Yo, Ta)™™ — +o0. (2.13)

From now on, in most cases we set ro = dg(-, Zq). Set v = Ua(Ya) dg(ya,xa)”/r. One
can assume without loss of generality that v, = ||uarg/ "Nloo-
First, let us prove that for all ¥ small enough, we have

By, (ta(Ya)""/™) N By, (aav7) = 0. (2.14)

It is enough to prove dg(Ya, Ta) = Ua(Ya) + anvl or, equivalently, AR vl +
Aatia(Ya)™/™. If v < r/n, we obtain from (2.13) that oM7Y 5 00 and v, ¥ — 0. One

has yet to show that vaua(ys)™™ < C. Meanwhile, (2.9) implies

—r/n

< aa”ua”gé"
< (Aallual 25T Jua|27™)12
<C,

otio(Ya)™'™

which proves (2.14).
Let us now set for all x € B(0,1)

ha(z) = (expy, 9)(la),
Ya(r) = ua(yoz)_lua(expya (la)),

where [, = Hua||go((1/2)+(r/n))ua(ya)l/z-
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From (2.1), one can easily check that

Ap,ta(@) = ta(ya) " aBgtialexpy, (laz))

—1—(2r/n) r—1
_ Falltallee™® 0 (yo) et G (4 e ()

24,
(1= 0)Baflualloc " a(ya)™ o
B oA, Yala)™
Hence, under the assumption |[1a |z (5(0,1)) < C and by (2.6),
||U ||—1—(27"/n)+r—1
A N < alloo
B, o) < el
”ua”;(r—s)@(l—e)/w)
<
<C i
<C.
Let us now show that
uallLo (B, (0) < UallLo (B, (uaya)-7/m) < CtalYa)-
By the definition of y,, we have for all z € B, (ua(ya)"/"),
ua(ya)dg(ymxa)n/r > uq(2) dg(x7xa)n/r~ (2.15)

Moreover, since = € By, (ta (o) ™/™) and s (ya) < ||tallco, We have

—r/n

dg (2, Ya) < Ua(Ya) )
and by (2.13), ua(ya)™"/™ < 1dy(ya,24). Therefore,
dg<xa,$) P dg(yaaxa> - dg(yaax) < dg<yayxa) - ua(ya)_r/n P> %dg(ya7$a>7

which, combined with (2.15), proves that

el (B, (waya) /7)) < Ctia(Ya)-

Hence, we have [[¢a ||z (B, (1.)) < C and, as a consequence, [|Ap, VallL(B,. 1.) < C-
By arguments already used above, there exists 1 € C°(B(0,1)) such that ¢, — 1 in
C°(B(0,1)) with ¥(0) > 0. One then has

sd
/ wi dvy, = AZG/2(1_0)Ua(ya)_sl;nfoa(la) o Wy
B(0,1) : Jar wi dug

oo C( e ]l )WQ)” S50 (1) Y 409 :
Ua (Yo fM uy, dog
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Set
_ Ua (Ya)

B ”uaHoo

Ma
We obtain
S
foa (lo) Yo dug T O (n/2)+s
Joy us dug @
Lemma 2.2 and (2.14) imply
foa (ua(ya)~"/™) 'LLZ dUg
Jay us, dug

Consequently, limm, = 0. Now, let us show that there exists a sequence (yg)g>o of
positive real numbers converging to +oo such that for all k > 0,

m,, " / ug, dvg — 0. (2.16)
By, (Q_kua(ya)_r/n)

=0.

lim

Let us proceed by induction. Since [[uallL_ (B, (ua(ya)-/m) < CUa(Ya), we have

/ U;g dvg < CUa(ya)T_S/ uz d’Ug
Bya (ta(ya) /™) Byq (e (ya)~"/™)

< Cmtuall® | g duy.
By, (ua(ya)="/™)

Therefore, we can set 79 = r — s by (2.14). Let us assume that we constructed the

sequence up to some k > 0.

Set a,1(2) = 1(25ua(ya) /" dg (Yo, ).
Multiplying (2.1) by uanivk/mg’c and integrating over M, we obtain

24 2A 20 A
7m7(’j / |V77a7kua|3 dvg — 7;; / |Vna7k|3u§ dv, + %0‘ / Wi,kui dvg
a JM mao Jpr mey M

2(1-0) B, kao
+ ( ) 773 kus dvg = / ni,ku;advy
Ma M

0 mgf“ M ’ @
(2.17)
Relation (2.16) and Holder’s inequality imply
Aam;'Yk/ \Vnmk@ui dv, < C’Aaua(ya)%/"m;'“"/ u? dvg
M By (2 *ua (yo) /™)
< Cllual 2y [ v,
By, (27Fua(ya)—m/m)

< Cllug|222m2 " m 7 (Vol g (By, (2 g (ya) /™)) = /")

2/r
X (/ Uy, dvg>
Bya(zikua(ya)ir/n)

2—r+(2r/n) =V +(2/m) vk
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and
o [ s <
M

There are now two possibilities. One is the case

One then has, by (2.17),
Agmy / n2 u? dvg < C,
M ’
Bom* / n2 ul dvg < C, (2.18)
s
Aam;'y’“/ \Vn%kua\; dv, < C.
M

Moreover, we obtain from (1.3) with u = nyu, that

2/r6 2(1-0)/s6
([ dtstany) < a [ (Vnmsaliany ([ ais doy)
M M M
2(1-6)/s6
+B/ n2 k“id%</ Nox kuid”g> :
M Mo

Noting that (2.18) is still valid by changing 7 into 7°/2, we then have

2(1-6)/s6
[ Wiesali s ( [ i dvg)

C 2(1-0)/s0
< 7,Aa/ Vo kUa 2 du (Ba/ Mo, 1 Ue, dv )
AaBi(l_g)/ég " ‘ ‘g g " N 9

< CmQ+RO-0)/50) 7,

and

2(1-0)/s0
/ 773 kui duy (/ Nov ks Uer d”g)
M M

<L/ n2 u2 dv (B / e s du )2(1—9)/39
= Bi(l—@)/s@ o a,ka Mg | Pa v a,k%a 4V

< CmH+C=0)/50)

Thereafter, by using the relation

I r r
/ U d’l)g < / na,kua dvga
By, 2=+t Dug (yo)=7/™) M
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we obtain

/ ug, dvg < Cmg'9/2)(1+(2(1—e)/se))%
Bya (27(k+1)uo¢ (ya)ir/n)
< Cm((x(re/n)‘i'l)’)’k.

Consequently, we can set yx11 = ((r6/2n) + 1)v4.

The other possibility is
2(1 — 0) 2
—§)———> — 1--) <.
(r=s) s6 7k( 7")

The same arguments as above give

/ W duy < Crlr/D(+20=0)/30))((r=5) (201-6)/50) 2/ 1))
By, (27D (yo)—7/™)

and

Tk T
my, / ug, dvg
By, 2=+t ug (ya)—m/m)

< Cmg@/?)(l-i-(?(l—@/39))((T—S)(2(1—9)/89))+7k((7"9/2)(1+(2(1—9)/89))(2/7")—1)'

Thereafter, the relation

T2 ) = et ) e
r92(1—6)2—s

2 s r

implies
M= / o dvy < Cm{r0/D0+R-0)/s0)((r-)(2(1-0)/50)),
By, 27 Dug (ya)="/m) )

Since

rf 2(1-6)
— —_— 1
2<1+ o )> ;

set Ye+1 = Yk + (r — $)(2(1 — 0)/s0). One can easily check that the sequence (vx)r>o0
converges to 400. Since lyta (Yo )™/™ — 0, we have also proved that for all k > 0,

m,* / ug, dvg — 0.
Byq (la)

But since

/ Yl dop, = ua(Ya) TI" / ug, dvg,
B(0,1)

Byq (la)
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we also have

/ ug, dvg e Cmn/D+r,
Bya (la)

This leads to a contradiction and this ends the proof of Lemma 2.3. (Il

Let ¢ > 0. Before concluding, we need some sharp estimates. The first one is the
following.

Lemma 2.4. Ifr # 2, there exists C > 0 independent of « such that
AT/ / ul, dv, < C. (2.19)
M=Bg, (c)

If r =2, for all k > 0, there exists C' > 0 independent of o such that

A;k/ ug, dvg < C.
M—Bg, (c)

Proof. One starts with the case r # 2. Let § € ]0, (s6/2(1 — 6))[. Lemma 2.3 gives

A;‘s/ ug, dvg < C’A;‘S/ uZTZ(Tfs)/T dvg
M—B,,, (c) M~—Bg,(c)

< CA? ug, dvg
M-B,,(c) ’
< CA;SAza/Z(lfe).

Hence,

A° ug, dvg — 0.
M—Bg, (c)

Let us show by induction that for all kg +1 > k > 0,

A;6((r9/2n)+1)k / ul, dvy < C, (2.20)
M—-B;, (2%c)

ko
rd r
ol —+1 < .
<2n+ ) r—2

Set Nak(z) = 1 —n(27%c 1, (r0,2)) and € = ((rf/2n) + 1)*. Assume that (2.20) is
true for some k < ko. Multiplying (2.1) by uani’k/A‘gf’“ and integrating over M, we then

where kg is such that

obtain
2A, / 9 2A, / 9 9
— Vo, kUal; dvg — —5— \Y ug, dv
A‘Ef’“ " | Na,k oz|g g A(;aek " | "704,k|g g
20 201—6) B . k i
+ A(;Eka /M o Uy dvg + 9 A‘S(:’“ y 1, dvg = AT(E’“ /M o gy dvg.
(0% (0% (03

(2.21)
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Since de, < (r/(r — 2)), we have, by Holder’s inequality and (2.20),

2/r
Aif‘se" / |V77a7k|§ui dvg < C’A;‘SE’“(I*@/T” <AOL‘SE’c / ul, dvg>
M M

e

~Ba, (27%0)

and
ko

2 T
@ /M na’kua d’Ug < C.
Hence, by (2.21),
24,
Al
200A,,
e /M na yus dug < C, (2.22)
2(1-0) B,
0 A Ju

Moreover, (1.3) with u = 14, e gives

2/r0 2(
([ dtsrany)  <a [ (Vnmsaliany ([ s doy)
Mo M Mo
2(1-6)/s6
+ B/ Mo 1y dvg (/ Mo kU dvg) .
Mo Mo
Noting that (2.22) is still valid after changing 7 into 7°/2, we then have

2(1-6)/s0
/ |V77a,kua‘;2; dvy (/ nikui dvy)
M M

C , , o 2(1—-) /58
<W o M|Vna’kua|gdvg B, Mna’kuadvg

< CAUHEA=0)/50))5e,

/ |v"7a,kuo¢|3 dUg < C,
M

ni’kui dvg < C.

1-6)/s6

and
2(1-6)/s6
/ T U dog (/ Mo, ke Ui d”g>
Mo M
o 2(1-6)/s6
< ——— | 2 uldo (Ba/ s uidv)
Bi(lfé)/se /M k g v k g
< CA31+(2(1—9)/89))561C.
Thereafter,

2/r0
[P
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Hence, from the inequality

r r r
/ Uqy d"Ug g / na,kua d’l)g’
M—B,, (2k+1c) M

we obtain
/ ol dv, < CAQHEO=0)/50)500/2)cx.
M—B,, (2"+1c)

Since

2(1-6)\ro ro r6
R A AL A LA
< R )2 n thegth

we deduce (2.20) with rank & + 1.
Let us remark that we have not only proved (2.19) but similarly, by a last induction,
we have shown that

A=/ (r=2)+(s0/201-0)) / us dv, < C.
M—Bg, (c)

The case r = 2 is handled identically, except that the induction can be continued forever.
O

In order to prove Lemma 2.6, we first have to show the following.

Lemma 2.5. There exists ty > 0 such that
Vo € M — By, (tgAr0/2n(r=90-0) " Ay, (z) < 0.
Proof. Let z € M be such that Ajuq(x) > 0. One then has, by (2.1), that

1-0
aA, + TBQUQ(:U)S*2 < %kaua(l’)’"*?

Hence, CB,, < uq(x)"~*. Moreover, by (2.3), we have B, > C A2 Hence,
U () > CAZS0/20r=9)(1-0),
By using Lemma 2.3, which gives u,(z) < Cr;"/r, we obtain
dy(z,20) > CATS/2n(r=5)(1-0)
This proves our assertion. O

In order to simplify the notation, set w = rsf/2n(r — s)(1 — 6). Set N, = n(c~'ry).
One can now prove the following.

Lemma 2.6. There exists C' > 0 independent of o such that

[ ar 1Tl dvy < Cllual
M
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Proof. Set v, = [}, niykrﬂVua@ dv,. Integrating by parts, we obtain

Vo = / narauaAgua dvg — 2/ UaNaTa(Via, VaTa)q dvg.
M

Hence, by Lemma 2.5,
Ya € / niriuaAgua dvg + C/ UaNaTa|Vialg [VNaTalq dvg.
(toA%) M

Relations (2.1), (2.6) and (2.9) give

1 2(1 -6
[uaAgta] < A koqul, — 20cAqu? — %Baufx
k ' —nNnw—
< C2A et < A1

It follows that
/ nzriuaAgua dvy < C'Voly(Bg,, (toAg))A;"“’_l (toAg)2
2o (t0AS)
< CAX L

One may easily check that

n(r—s)(1—0) s 2

Hence
/ P12 ua A yug do, < CAGH/ CE=9)(1-0)(r-2)
2o (t0AY)
< Cllugll35

Moreover, Holder’s inequality leads to

2

1/2 1/
/ UaNaTa|Vialg [VNaTalg dvg < (/ ngrmVU(Xﬁdvg) (/ uZ|V77ara|§ dvg> )
M M M

But
|V77a7"a|3 <C
Therefore,
/ oo el Vtialy [Viaraly dvy < (valuall257)
" allaT«a alg alalg g X al|Ula .

One then has
- 1/2
r 3 C+C< r) ’
[lual™ ||ua|\2

[ ual

which proves the lemma. O
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Changing 7 into 1"/2, we also obtain
[ IVl dvy < Cllual
M

We now prove the following main estimate.

Lemma 2.7. There exists C' > 0 independent of o such that
/ ulnhr? dv, < Cy/aA?e.
M
Proof. Assume by contradiction that

T T 02
Joy wanird dug

. 2.2
oAz — 400 (2.23)

Multiplying (2.1) by
Ua T2
Joy unmnr2 dug

and integrating over M, we obtain

244 [1(Agua)uanr? dug N 20 A, [y, uinhrd dvg  2(1 — 9)B Jop uiminrs dug

2 2 @ 2 - e
Jar uaminrd dvg Jar ubmard dvg 0 Jar ubmnrd dvg

(2.24)

An integration by parts and Lemma 2.6 lead to

‘/ (Agua)uan;ridvg
M

< C‘/ 7]27"§|Vua|g dv, +/ ui|vng/27'a‘g dv,
M M

< Olluali3s™

Hence, by (2.23),

2Aa [y (AtiaJUatlara dvy  CALuallls”  C
fM ulnhrz dug NG Ja

Since
204, [y, uZnhr? dvg,

2
Joy b2 dug

>0,

we have, by (2.24),
S T .2
Ba fM U’anarg dvg S C
fM ugﬁfﬂ"a d’Ug

Therefore, by (2.3),

S oo T 02
fM unhr? du,g

072(1—0 S
A20/201-6) Joy unmnr2 dug

(2.25)

https://doi.org/10.1017/50013091501000426 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091501000426

Gagliardo—Nirenberg inequalities on a compact Riemannian manifold 137

Moreover, Lemma 2.4 gives

/ “37727’2 dvg — / uin;ri dvg < C/ uf, dvy < CAiw-i-(sG/Q(l—H)).
M M M=B,,(0)

It follows from (2.23) and (2.25) that

S 008 0.2
Joy usmird dug

< (2.26)
AP0 [ g dg
Now let us prove
s ,.8,.8 f]\/l ufmgri dUg
/M UM T o dUg < CW (227)

One has, by Lemma 2.3,

/ ug e dvg = / ug e, dvg + / ug Moo dvg
M Ba,, (A% al/4) M—B,, (Azal/4)
C
< usnors dv —1—7/ usnir? du,.

w/Bza(Azal/‘i) allaa A¥g (Aga1/4)27s M—B,,, (Aval/4) allaTa dUg
Clearly,

/ ud s dvg < CASPU=0 (A%l /4)s,

B, (Agal/4)

Assume by contradiction that

t
$0/2(1—0) [ qw - 1/4\s ] 88,2
A (A2a7/%)° > (Aza /i) /MBM(A:QIM) ugnors dug, (2.28)

where t, — +00. We obtain from Lemma 2.3 that

8,2

r,r..2
/ UeNoTe dvg < / UpNaT o dvg
M—B.,, (Agat/*) M—Bg, (Agal/t)

< / R e (LR
M—Bg, (A:Ocl/4)

50/2(1=0) ¢ yw 1/4\2
< C(Ar&)al/ﬁl)—(r—s)(n/r) Aa t(Aaa / )

< CVaA.

Moreover, we can easily check that

/ ur? dv, < CVaA2,
Ba, (Agal/4)
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which contradicts (2.23). Hence (2.28) is false and we have proved that

C
5,5 ,.8 usnd 2
/ Ug Moo dvg < Aoal/iz—s Ug Moo dvg.
M—B,, (A2al/4) (Agal/t) M—Bg, (AL al/4)

Inequality (2.27) follows.
From (1.3) with u = uara1nq, we obtain

fM ‘v“anaroab dug fM usmors dv )2(170)/59
fM nerr dvg)2/m0

1<A4
fM Uiniri dvg(fM UL o dvg)Q(l_a)/SQ

B
- (foy unmnrs, dvg)2/m6

Let us prove that

fM uZnZre dvg( fM UGN o dvg)Q(l_e)/sa

lim
fM Oz ozrgz dv9)2/re

=0. (2.29)

One has, by Holder’s inequality,

Jog u2n2r2 dvg ([, usmrs, dug)20=0)/s0
fM ulnrrt dv )2/7’9

fM inirs )2(1—0)/59

fM nerr dug)(2/r0=2/7)

fM uSmsrs, dug)20-0)/59

(Jo unminr2 dug)(1-0)/0
_ <Ba Jousnsrs dvg>(1 /0 ([ unmir? dug)R1=0)/30)=((1-0)/6)
S Sy uannr? dug B20-0)/50 .

Equations (2.27), (2.3) and (2.9) then lead to

fM uZn?r? dvg(fM usnirs dvg)2(1—9)/59
(fM ulnhrt dv )2/7“9
S s —0)/s0
< < fM oz’r]o/r2 dvg >2(1 )/
A dvg

50/2(1—0) 9
a fM Ufﬂ?gﬂ'a

cAL e
X Dmamya—s @a=a /@ \ [, tellara 4 :

Therefore, we have, by (2.26),

Jog W vy uar dug 00/ Al G/

fM ur’m argdvg)z/re = q2—8)(1-0)/2s0
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Since

— ) _ n(r—s)—r2—s
L s ~ e —g =) = r(2=9))
:ﬁ((n—?)(r—s)—&—s(r—m)

0,

WV

(2.29) follows.
Now, let us prove that

UaTaTol] dv usmirs du,)21=9)/:
u |V EdgM;;;dgz(le)/ee
([ unnnrn dvg)2/To — 0. (2.30)
M allaTa g
Using (2.27) and (2.26) successively, we obtain
Jar IVuanaral? dvg ([, usnirs duy)2(1-6)/50
(Joy unmnrn, dug)2/m0
< C Jar [Vtanaral? dvg( [y, usmir2 dug)2(1=0)/s0
S (Aa,al/zi)(z—s)(z(ke)/se) (fM w2 dvg)1/9
< CAa ( Js Wt dvy >2<19>/89
= (A5l MR8\ 4207200 | “r e

fM |vuanaro¢|3 dvg
(fM ugngri dvg)(1/0)7(2(170)/50)

Aé*(r(%S)/n(T*S)) fM |Vua77a7“a|_3 dv,
aC@=9)1=0/258 ([ urrr2 du,)(1/0)-C0-0)/56)

<C

CA};(T(2*S)/n(T*S))*QW((1/9)7(2(1*9)/59)) ( A2 >(1/0)—(2(1—9)/39)

= a(2—s)(1-0)/2s0 fM ug‘ng,ri d’Ug

x/ |Vua77a7“a|§dvg.
M

Holder’s inequality leads to
/ |Vua770t7",1|£27 dvg = / |Vua|§niri dvg + 2/ UaNaTa(Via, VaTa)q dvg
M M M
+ / ui\Vnara@ dug
M

< [ 1Vuaind vy [ 2l naral3du,
M M

1/2 1/2
+ 2</ \Vua|3773ri dvg> (/ uZ|V77aroé|£27 dvg> .
M M
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Hence, we have, by Lemma 2.6,
[ IVuataralt o, < Clua

Finally, noting that

1 20-6)_ 2 201-6) 2
6 0 s Y
we obtain from (2.23) that

fM |Vua77ara\£2] dv, (fM UM, d”g)Q(lfe)/So

(far wamrs, dug) /7
A(ll—(r(2—s)/n(r—s))—2w((1/9)—(2(1—0)/59))+2u—1

<C a2—8)(1-0)/2s0
However,
r(2—s) 1 2(1-9)
1— 27 oy - - ) o1
n(r —s) “ (9 s e
r(2-59) TS 2r rsf

n(r—s)_n(r—s)(1—9)+n(T—s)+n(7‘—s)(1—0)_1

s 1 1 n 0

~n(r—s) 1-0 1-0)
Relation (2.30) follows. Equations (2.29) and (2.30) contradict (1.3) with u = uaTana-
As a consequence, (2.23) is false and Lemma 2.7 is proved. g

=1

The last two estimates are important in the third step.
Lemma 2.8. There exists C' > 0 independent of o such that
0
1- (.[M Ug Moy dvg)z/T <C
VAR

Proof. Let £ be the Euclidean metric on M. One then has

|vua77a|§ < \Vucﬂ?a@(l + CT‘Z),
(1—Cr2)dve < dv, < (1+Cr2)dug,
/M |Vuar]a|§ dve < /M |Vuana|§(l + COr2) du,. (2.31)

Hence, we obtain

2/r6
1- (/ up d’l)g) < C’(l —/ ul nh dvg)
M ' M
< C(/ ug, dvg —/ Uy Ny dvg + C/ ul 2 dvg>
M M M

C(/ ug (1 —ng) dvg + C’/ ulnhr? dvg).
M M

N
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One easily checks that, if » > 2, 2w < r/(r — 2). Therefore, Lemmas 2.6 and 2.7 lead to
Lemma 2.8. O

The final lemma that we need is as follows.

Lemma 2.9. There exists C' > 0 independent of o such that

2(1-6)/s0 2(1-6)/s6
(/ Ualla dvs) ) (/ Ualla dvg) +CAVa.
M M

Proof. Multiplying (2.1) by uar2nl,/A?*\/a and integrating over M, we obtain

2472

Va

/ (Agua)uaring dvg + 2y AL / uwirin” dug
M M

2(1_9) BO& 5.2, r ka ro2,r
+9Agw\/a/MuaT“"a dvg = Ai‘*’\/&/MUO‘T’lno‘dvg'

One has already shown in the proof of Lemma 2.6 that

/X%%mw%wwscwmzﬁ
M

Relation (2.3) and Lemma 2.7 then lead to

[0

2w
/ ugrany dvg < CM < CAinse/z(l—e))\/&
M ' B
And since this result is also true with n = n*/",
/ ugrams, dvg < CAZF(s0/20=0)) /o, (2.32)
M

Noting that dve < (1 + Cr2)duv,, we obtain

2(1-6) /56 2(1-6)/56
(/ummm) <(/umm%+0/umym%>
M M M

2(1-6) /6 W nsr? du, \2(1=0)/s0
< (/ U, dvg> (1 + CfMa?asag) :
M fM UM, dvg

Inequality (2.32) implies
Jap uimir? dug
Jag wimg, dvg

Consequently,

2(1—-6)/s6 2(1—-0)/s0
(/um&m) <(/um&m)
M M

(2(1-6)/56)—1
+C </ us,ns dvg) / uiniri dvy.
M M
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One deduces from (2.32) and Lemma 2.2 that

2(1-6)/s6
(/ vz
M
2(1—6)/50
< </ usns dvg)
M

(2(1—6)/s6)—1 515 dy,, \(2(1=0)/50)—1
+C ( / ul dvg> <W> / usnar? dvg
M fM ug, dug M

2(1—0)/s0
< ( / usnd dvg) + CALP2 a.
M

This ends the proof of the lemma. (I

Step 3. Conclusion.
One has, by definition of Ay,

2/r6 2(
( / ugnlldvg) < |wana|§dvg< / uznzdvg)
M M M

and, by Lemma 2.6 and (2.31),

1-60)/s0

/ Vutaral? dve < / |Vtal202 dvg + Cllual|2".
M M

Hence, we obtain from Lemma 2.9 that

(1-0)/s0

2/r0 2
(/ ulnh dv5> < Ao/ [Vua|2n2 dug (/ usne, dvg> +CA¥/a. (2.33)
M M M
The definition of u, leads to

1
1= (/ |Vua|§dvg+g/ u? dvg>Aa. (2.34)
Ha JM Ha JM

Combining (2.33) and (2.34), we obtain

2/r0 2
1— (/ L dvg> > —Ao/ |Vua|£277]i dv, (/ usns dvg)
M M M

Aa A
+ —/ Vg2 dvg + a / u? dv, — CAX/a.
Moo J M M

(o3

(1-0)/s0

Then, noting that
Aa/ u? dv, > C A2
M
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and dividing by A2¥/a, it follows that

L Uyt 4™ Ao V202 do (S uims, dug)>( =9/
\/aAaw = \/a M (e gna g A%"J

A172w
,ua\/a /M |Vuo,|£27 dvg + \/ja — CA%~.

+

Finally, since

1
- 2 AOa
Mo
(fM ug Mg dvg
Aa

)2(1-6)/56
<1

we find

1= (it dug 270 Ag AL )
fM\/aAm : 2 0\/5 /M |VU(1|3(1 —n2) dv, + Agv/a — C A%,

By Lemma 2.8, the left member is bounded while the right one converges to +o0o. This
ends the proof of the theorem.

3. Some applications

3.1. The best-constant problem for the logarithmic Sobolev inequality

In this subsection we prove Corollary 1.2. Fix r = 2. One then has the following inequal-
ities:

1+(2/n((2-5)/5)) 4/n(2—s)
(/ |u|2dvg) < <A/ \Vu\z dvg+B/ |u|2dvg) (/ |u|sdvg> ,
M M M M

where 1 < s < 2. Let us denote them by I4(A, B). We proved in §2 above that all these
inequalities hold with their first best constant. Set

A(s) = inf{A € R s.t. 3B € R for which I;(A, B) is valid},
B(s) = inf{B € R s.t. I,(A(s), B) is valid}.

It is clear that I, (A, B) implies I;(A, B) when s’ > s. Therefore, A(s) is increasing.
According to [3], A(s) is bounded by a constant independent of s. Hence, A(s) converges
to a constant A(2) as s — 2. If ' > s, I,(A(s"), B(s')) holds. One can then set

A'(s) =inf{A € R s.t. I;(A, B(s')) is valid}.

Thereafter, by definition of A’(s), for all € > 0, there exists u € C°°(M) such that
lu|ls = 1 and

1+(2/(n(2—-5)/5))
A’(s)/ [Vul? dog +B(s')/ lu? dv, < (/ |u|2dvg> + €.
M M M
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Adding the previous inequality with I5(A(s), B(s))(u) and noting that A(s) < A’(s), we
easily obtain B(s') — B(s) < V,(M)?/*)=1¢. Since € is arbitrary, we have proved that
B(s) is decreasing and converges to a constant B(2) as s — 2. Now, taking the limit in
I;(A(s), B(s)) as s — 2, we obtain that for all u > 0 such that |Ju||z = 1 the logarithmic
Sobolev inequality

/ u? Inu? dv, < énln(A(Q)/ |Vu|3 dvg—i—B(Q)).
M M

Clearly, A(2) = Ag(2,2,0,n) = (2/nme) is optimal and the inequality is optimal in the
sense that no constant can be lowered. This proves Corollary 1.2.

3.2. Heat-kernel upper-bounds estimates

We discuss here one application of the estimates of the heat-kernel upper bounds.
When M is a complete manifold (not necessarily compact), it is well known (see, for
example, [6]) that all the previous inequalities are equivalent to

C

1Pel1,00 < YoR

where (P;)¢s0 is the heat semigroup on M. Moreover, when M is the Euclidean space

R"™, we have
1

(4mt)n/2”

Hence, it is quite obvious that, on a manifold, we should have the small-time estimate

[P ll1,00 =

1

Pill1,00 ~ .
1P oo ~ gy

Corollary 1.3 gives additional information on this estimate when M is compact. In order
to prove it, we need the following theorem from Bakry (see [2] for a detailed proof in the
more general case of the Markov diffusion generators).

Theorem 3.1. Let us assume that, for all w € C*° (M) such that u > 0 and ||ul|s = 1,

/ u? Inu? dvy < gb(/ |Vu|3 dvg),
M M

where ¢ : Ry — R is concave, increasing and of class C*. One then has for all 1 < p <
q <00
[Ftllp.q < €™,

where

t= [ Sy md m= [ 600 - o0 06,

provided we find a function v > 0 for which these two integrals are finite.
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Set e
S 1
v(s) = — snmeB(2),
(5) = 2%~ dnreB(2)
where A > fnmeB(2) is a parameter and B(2) is the constant introduced in the previous
subsection. One has

() = ;n1n<nfrex + B(2)>.

It is an easy matter to check that

and that

H(0(s)) — v(s)¢/(v(s)) = snln

( 2\s? ) .\ nQﬂei(fzgs -1

Some easy computations then lead to

- / [ P
1 8\s? 8\
and
° 2)s? ds n?meB(2) [ s—1
—n [ 1 / d
" 2n/1 . nme(s —1) ) s2 4\ . st s
2\ e 52 \ds n’meB(2)
1 1
=1 1 1 o
znln(nﬂe2>+2n/1 n<8—1)82 24\
2\ n’meB(2)
=17
U g 24\
2 n’meB(2)
R N o
2 24\

Since A = n/8t,

It follows that 1
P, o < nmeB(2)t/3
|| tHL (47‘(’t)n/2€

with 0 < ¢ < (meB(2))~!. This yields Corollary 1.3.
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