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Introduction

1. In an earlier paper1 the author investigated the relation
existing between the induced matrices of a group of permutation
matrices and the table of group characters of the irreducible repre-
sentations of the corresponding symmetric group. It was found that
the traces of a particular set of induced matrices sufficed to give, by
a relatively simple transformation, the complete table of characters.
I t was remarked also that for n > 4 the set of compound matrices of
permutation matrices, on the other hand, could at most provide only
part of the table; for in fact the number of compounds, n + 1. is then
less than P (n), the numbe'r of partitions of n. For this reason the
subject was not pursued into further detail.

I t is however of some interest to know what part of the table of
group characters the compound matrices of permutation matrices
actually provide, that is to say, what particular irreducible matrix
representations of the symmetric group of order n! are latent in these
n + 1 compounds. I t appears that there are in fact just n of these
representations; that they occur simply combined, and are typified
by the following partitions of n, namely,

[n], [» - 1, 1], [n - 2, I2], . . . . . [2, 1—*], [1»], (1)

and that not merely the traces but the representations themselves
can be obtained directly. The distinctive feature of these partitions
is evident when we set out the Ferrers-Sylvester diagrams, for
example

* * * * * * * * * *
* * *

(2)
*

when n = 4. The diagrams are of a type that may be called
unicursal; they form a subclass (with a slight change of convention)

1 Proc. Edin. Math. Soc. (2), 5 (193V), 1-13.
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ON COMPOUND PERMUTATION MATRICES 197

of those used by MacMahon1 to represent compositions of an integer
n. In brief, the partitions concerned are at the same time com-
positions.

We shall prove that the 4th compounds Aw, k — 0, 1, 2, .. . . , n
of the permutation matrices A are equivalent respectively to the
representations

[»], [n] + [n - 1, 1], [n - 1, 1] + [» - 2, I2] [2, 1»-2] + [1«]. (3)
Hence, if the traces of these compounds are entered in rows corre-
sponding to k — 0, 1, 2, , n and the first differences of these rows
are taken, we shall have a table of group characters of representations
corresponding to unicursal partitions. Let this table or matrix be

A

denoted by G, the complete table of characters being denoted by G.

Preliminary Reduction

2. It is convenient to begin by removing from the permutation
matrices, the scalar or identity representation 1, 1 ,1 , . . . . ,1 contained
in them. This can be done by subjecting all the permutation
matrices to the operations rowx + row2 + • • • • + rown, col2 — col1;

col3 — colr, . . . . , col,j — coli; or, without essential change, to the
similar operations with rows and columns interchanged. These are
operations of type HAH'1, and they semi-isolate a leading unit
element in each matrix. For example when n — 3 the permutation
matrices

. 1 .

. . 1
. . 1
. 1 .

so treated yield
-1 .

1
1

"1

1
1

1
1 - 1 - 1

. 1
1 - 1 - 1

(1)

(2)

where the semi-isolated leading unit elements constitute the scalar
representation and in the last two rows and columns we see the
familiar [2, 1] rational representation of the symmetric group of order
3!, namely

[• i ] t i (3)

Combinatory Analysis, 1916, vol. i, 153.
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198 A. C. AITKEN

In the general case of order n! this reduction gives at. once, and in a
rational canonical form, the irreducible [n — 1, 1] representation, and
is perhaps the easiest way of obtaining it.

Compounds of the [n — 1, 1] representation

3. We proceed to form the compounds of the matrices of the
\n — 1,1] representation. As is well known, the characteristic poly-
nomials of the permutation matrices are

( l - * ) » (1 - x2) (1 - x)"~2, . . . . , 1 -xn, (1)

corresponding respectively to conjugate classes or cycle-types
• [ln], [2, ln " 2 ] , . . . . , [TO] of the permutations. Removing from each the
factor 1 — x belonging to the scalar representation, we have the
characteristic polynomials of the matrices of the \n — 1, 1] representa-
tion in their conjugate classes,

(1 — a;)""1, (1 — x2) (1 - x)n~* .1 + x + x2 + + a;""1. (2)'

Now the latent roots of Aw are the i-ary products of the latent roots
of A, and so the successive traces of A<-0>, Am, ...., A^ are the
elementary symmetric functions of the latent roots, that is to say, are
the coefficients of 1, — x, x2, — a;3,.... in the characteristic polynomials
of the present case, for these are evidently self-reciprocal poly-
nomials. Hence the table M of characters of the compounds in
question may be constructed as follows : let the polynomials (2) be
expanded in powers of — x, and let the respective sets of coefficients
of (— x)k in each, for k = 0, 1, 2, . . . . , n — 1 be entered as successive
columns of a matrix of n rows and P (n) columns. This is the matrix
M. For example when n = 4we have

l-x3 l+x+x2+x3

1
X

X2

X3

1
3
3
1

1
1

— 1
- 1 .

1
- 1
- 1

1

1 1

~ 1 • (3)
1 - 1

and the 4-by-5 table of coefficients is the matrix M.

Identification of the matrix of characters
A

4. We shall now prove that M is simply O. For in the first
place, the classical relations of Frobenius1 for group characters may

1 See for example D. E. Littlewood, The Theory of Group Characters, 1940, 63-67.
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be expressed thus,
- fr'(h \ C\\

where 0' is the transposed matrix of group characters. Here we
mean by {s(M} the column vector having for elements the ordered
products of sums of powers, for example

{s\ s2sl si s^ s4} (2)

in the case n = 4. The partition of n shown by the suffixes of the
factors is denoted by {A), the conjugate partition by (A)', while {hw,}
denotes the corresponding column vector having for elements the
bialternant symmetric functions of Jacobi, for example

" • ( 2 i ! ) = "o % ™a • (3 )

I . h0 h2

By way of illustration the first of the relations of Frobenius for n —• 4
is

*i = 4̂ + 3 (̂31) + 2 A(22> + 3 A(2i') + (̂i«y- (4)

Now in symmetric polynomials any identity that is homogeneous
and of degree n in n variables continues to hold for any greater
number of variables. Let us then define symmetric functions
depending as follows on t, an arbitrary parameter: sT = ] —f,
r = 1,2,3, This sufficiently defines the generating functions of
the fundamental symmetric functions, and it is these generating
functions, not the arguments, that are of interest. From the relations
existing1 between generating functions we find at once that the
complete homogeneous symmetric functions h are generated in this
case by

(1 -tx) (1 - a ; ) - 1 = 1 + (1 — t)x + (1 - t)x2 + , (5)

so that h0 = 1, hr = 1 - t, r = 1, 2, 3,
It is now possible to deduce the values of the bialternants

corresponding to unicursal partitions. The distinctive feature of
these* is that the first subdiagonal contains elements ho(= 1)
exclusively. So, illustrating once again by n = 4, we have in the
present case such results as

1 - t 1-t l - t
1 1 — t 1 —i

1 \~t

(6)

1 MacMahon, Combinatory Analysis, vol. i, 3-7.
2 Ibid., vol. i, 200.
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200 A.. C. AlTKEN

and indeed in general, by the operations rowj — row2, row2 — row3>

row3 — row4 and so on we see that if the unicursal partition is of r
parts, then the value of hw, is (— t)T~l (1 — t). We see equally that
any bialternant corresponding to a non-unicursal partition must
acquire, when so reduced, zero elements above the diagonal and at
least one zero element in the diagonal, and so must vanish identically
in t.

Transcribing therefore the relations of Frobenius to this case, we
have the general result, which the following will serve to illustrate,

{s\ a2a\ s\ s^ s4} = G' {^ hm h&v) hlV)}, (7)
that is,

{(I-*)4 (1—*2)(1—02 (l-<2)2 (l-t3)(l-t) 1-t*} '

= (l-t)G'{l -t <2 -t3 t*}. • (8)

Comparing this with the table of §3 (3), and bearing in mind that t is
arbitrary and that the elements of {1 — t t2 — t3} and of the general
vector of similar kind are linearly independent, we conclude that

Reduction of compound permutation matrices

5. We can now see what matrix of characters would have
A

replaced G, had we taken compounds of the original unreduced per-
mutation matrices. For in that case each polynomial generating a
column of the matrix would have contained the additional factor
1 — x; the first column in our illustration being generated by (1 — a;)4

instead of (1 — x)3. The resulting matrix would therefore be such
A

that the first differences of its rows would give G. It follows that the
compounds of permutation matrices, for k = 0, 1,2 , n, are
reducible respectively to the following simple direct sums of
irreducible representations,

[»], [«] + [n - 1, 1],. [» - 1, 1] + [n - 2, I2], [2, l»-«] + [1«]. (1)

This is a much simpler resolution than the corresponding resolution
of the successive induced matrices of permutation matrices, though
it leaves untouched the question of finding the characters correspond-
ing to non-unicursal partitions. On the other hand, the compounds
of the [n — 1, 1] representation give directly, not merely the
characters, but the special matrix representations themselves, and in
suitable rational canonical form.
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Compound matrices of direct sums

6. The result of § 5 (1) might have been deduced from a theorem
on compound matrices which, with its extensions and the analogous
theorems for induced matrices, is of independent value. In its
simplest case it concerns (B.+ C)(i), where B and C are submatrices
in direct sum, that is, aligned in isolation from each other down the
diagonal of a partitioned matrix. The term " direct sum " usually
refers to submatrices square in shape, of order m x m; here we shall
extend it to the case of rectangular submatrices. The theorem is
that, in a sense about to be described,

where L x M denotes the direct product matrix of L and M. This
useful theorem has been given before by the author,1 but implicitly
only and in respect not of identity but of collineatory equivalence.
It has also been given explicitly, but still in respect of equivalence,
by D. E. Littlewood.2 An explicit enunciation and proof have been
given by W. Ledermann.3 We shall establish it as an identity for the
kth compound of

where B and C may be rectangular. By Laplacian expansion any
minor of order k in this matrix, not identically zero in the elements
bij, ctj, must be the product of a non-vanishing subminor of order p
in B by the complementary subminor of order k — p in C. But the
matrix having such products as elements, all duly arranged in lexical
order of rows and columns, is the direct product B^ x C-k~p\ If there-
fore we adopt a compound lexical order (Aitken, op. cit., 367) which
first exhaustB the suffixes of elements in B, then of those in B and G
together, and if we order all minors accordingly, we arrive at the
matrix on the right of (1). It is to be noted that with this conven-
tion of order (1) is an identity, and not simply a collineatory equival-
ence. An example is

i d3 • bi d3 c1 d3

bo dzd3

, (3)

' Proc. London Math. Soc. (2), 38 (1935), 367, 370.
2 Proc. London Math. Soc. (2), 40 (1936), 375, or Theory of Group Characters, 198.
•' Proc. Roy. Soc, Edin., 56 (1936), 77-78.
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202 A. C. AITKEN

that is,

since here C1'^ does not exist.
The theorem (1) is the analogue, in respect of direct sum, direct

product and the forming of compound matrices, of Vandermonde's
identity of combinatory algebra, namely

(m + n)w = mik) + m^.^n + m(lt_2) n(2) + + nw, (5)

where m(h) = m(m— 1) (m — 2) (m — k + l)/k\. Indeed if B and
C are unit matrices of orders m x m and n x n respectively, Vander-
monde's theorem expresses the equality of the traces on both sides
o f ( l ) . . - •

It is almost evident that theorems such as (1) referring to com-
pletely isolated submatrices have counterparts referring to semi-
isolated submatrices; and semi-isolation is sufficient for reducibility.
In such cases we envisage, instead of the direct sum, a succession of
submatrices semi-isolated on the one side, either above or below
the diagonal, but the same side for all. In our application to com-
pound permutation matrices we use the semi-isolated case corre-
sponding to

(1"+ -B)(i) = JB<*-1) + B»\ (6)

which gives directly the result of §5 (1) on the reducibility of com-
pound permutation matrices, when once the theorem of § 3 has been
established.

Further useful generalizations are worthy of record. Let us
arrange minors of order k according to a compound lexical order that
exhausts first the suffixes of elements in B, then of those^in B and C,
then of those in B, C and D, and so on. Then, analogous to the
Vandermondian multinomial expansion having powers replaced by
factorial polynomials, there is an expansion for the kth compound of

|— B
. C . .. .

D (7)

H
where B, G, . . , H are in general rectangular but isolated. We have
merely to interpret combinatory numbers by compound matrices,
sum by direct sum, in the general sense here employed, product by
direct product. There is also the semi-isolated analogue.
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Induced matrices of direct sums

7. There are equally valuable identities for induced matrices of
direct sums, and it will be well to mention them for reference. The
identity for the binary case has been given by Ledermann (op. cit.).
Let oi[4] denote the combinatory number which, when mis a positive
integer, enumerates the combinations of m things & at a time when
all possible repetitions are permitted. Then there is the correspond-
ing Vandermondian identity

(m + n)m = mm + m[k_^n + m[t_2]n[2] + + nm, (1)

easily established by combinatorial reasoning. If it is recalled that
the elements of Alk\ the kth induced matrix of A, are the minor
permanents of order k extracted from A and arranged in lexical order,
and that in minor permanents repetition of rows and columns is
allowed (always with the convention that for each set of p repeated
columns, not rows, the permanent is to be divided by p\), we have
by the same reasoning as before, and with the same agreement as to
order, the identity

[B + C]M = &» + J**-11 x CW + #*-« x C™ + . . . . + CM, (2)

in the extended sense of the direct sum. There is a corresponding
analogue for the Vandermondian expansion of (m+n+p+ +»")[*],
and there are also the counterparts of these theorems for the case
of semi-isolated submatrices.

The corresponding expansions for direct products of submatrices
in direct sum or semi-isolation are well known and easy to establish;
they are analogoua in all respects to the multiplication of linear
multinomial functions, and if the convention of compound lexical
order be observed, are true identities.
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