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Abstract

Prior studies on design ideation have demonstrated the efficacy of using patents as stimuli
for concept generation. However, the following questions remain: (a) From which part of
the large patent database can designers identify stimuli? (b) What are their implications
on ideation outcomes? This research aims to answer these questions through a design
experiment of searching and identifying patent stimuli to generate new concepts of
spherical rolling robots. We position the identified patent stimuli in the home, near and
far fields defined in the network of patent technology classes, according to the network’s
community structure and the knowledge proximity of the stimuli to the spherical rolling
robot design. Significant findings are: designers are most likely to find patent stimuli in the
home field, whereas most patent stimuli are identified in the near field; near-field patents
stimulate the most concepts, which exhibit a higher average novelty; combined home- and
far-field stimuli are most beneficial for high concept quality. These findings offer insights on
designers’ preferences in search for patent stimuli and the influence of stimulation distance
on ideation outcomes. The findings will also help guide the development of a computational
tool for the search of patents for design inspiration.
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1. Introduction

Design creativity is the ability of an agent to address a design opportunity
by developing outcomes that are both novel and useful (Sarkar & Chakrabarti
2011). Concept generation is an early phase in the design process where solution
principles are conceived to address design opportunities (Jensen et al. 2009; Taura
& Yukari 2012). Concept generation is a significant phase of the design process
because a successful product is likely to be an outcome of an exploration of a
variety of solution principles (Pahl & Beitz 2013). Owing to the ease of making
changes that are less expensive in this phase, the scope for design creativity is
greater in this early phase than the downstream phases (French 1985). Several
guidelines, methods and tools have been proposed to foster creativity during the
concept generation phase.

Providing stimuli to designers in order to identify analogies from them for
generating concepts is one of the most potent and useful methods (Chakrabarti
et al. 2005; Chan et al. 2011). A stimulus is beneficial for concept generation by
helping develop creative solutions, enhance novelty, inhibit fixation, etc. (Qian &
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Gero 1996; Goel 1997; Linsey et al. 2010; Chan et al. 2011). Simultaneously, certain
stimuli can also inhibit concept generation by causing bias and fixation (Jansson
& Smith 1991). Therefore, stimuli need to be carefully chosen before using them.
Several kinds of aids to foster the use of stimuli and analogies have been proposed
and found to be effective at improving quantity, novelty and creativity of solutions
(Chakrabarti et al. 2005; Linsey et al. 2010). Prior studies have found that it is
easier to analogize with stimuli from near than far domains to the target domain,
because stimuli from near domains have more structural similarities to the target
design problem than stimuli from far domains (Christensen & Schunn 2007).
However, stimuli from far domains, owing to their surface dissimilarities, are the
best sources for novelty and creative breakthroughs (Gentner & Markman 1997;
Ward 1998). Several researchers investigated the effects of stimulation from near
and far analogical distances on the outcomes of ideation, for instance Wilson
et al. (2010), Fu et al. (2013b) and Chan & Schunn (2015). However, to date, the
characterization of near and far stimuli have been inconsistent in existing studies,
and so, their findings cannot be generalized across these studies.

Meanwhile, patents have been increasingly explored as sources of stimuli for
engineering design (Fantoni et al. 2013; Fu et al. 20130, 2015; Murphy et al. 2014;
Srinivasan et al. 2017a,b). Patents contain technical descriptions of products and
processes, which are both novel and functional, from various domains. The patent
database is an enormous reservoir of design precedents. The growing patent
data, as inventors continually file patent applications over time, present both
opportunities and challenges for using them as design stimuli. Therefore, efficient
methods and tools are required for designers to retrieve the most relevant from
among millions of patents in the vast patent databases. While it is acknowledged
that patents are useful for inspiration, questions persist pertaining to: from where
in the complex database can designers find useful patent stimuli, and which of
these patent stimuli can most effectively inspire designers to generate novel and
valuable concepts. Moreover, due to a lack of uniform characterization of near
and far stimuli, there is no single method to characterize stimuli as near or far,
and consequently, not much work has been done to identify from where in the
patent database can near and far patent stimuli be identified.

As a solution, network analysis techniques have been increasingly exploited to
uncover the knowledge structure in the patent database to facilitate engineering
design. For example, Fu et al. (2013a) analyzed the similarities of occurrences of
functional verbs between patents to construct the Bayesian networks of patents.
Such a network provides information of functional similarity between individual
patents, which in turn has potential for a patent recommendation system for
design stimulation (Fu et al. 2015). At a higher level, the patent classification and
citation information have also been analyzed to measure knowledge proximity or
distance between different classes of patents and construct technology network
maps to approximate the total technology space (Kay et al. 2014; Leydesdortft,
Kushnir & Rafols 2014; Alstott et al. 2017a; Yan & Luo 2017). In these network
maps, nodes are technology classes that represent various technology categories
and contain patents related to corresponding technology categories. These nodes
are connected according to the knowledge proximity between them. A structural
analysis of the networks can allow one to define and identify the technology
classes near or far from a given design problem in the technology space. In this
study, we will utilize such a technology space network to locate the patents that
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designers found useful in an ideation exercise, according to the proximity between
technology classes in the network. Herein, we consider a patent as useful if it is
used as a stimulus for concrete concepts generated by designers.

The broad objectives of this research are: (a) to identify locations within the
network of technology classes from where designers identify useful patent stimuli
and (b) to study the implications of using such patent stimuli for ideation on the
outcomes of ideation. Toward these broad objectives, the research in this paper
examines the effects of using patents — sourced from technology classes which
are located at the home field, near field and far field to a design problem - as
stimuli for ideation on the outcomes, based on the data from an open concept
generation exercise. The three fields in the technology space are defined based on
community detection within the network of technology classes. The home field
entails the technology classes that are directly relevant to the design problem, the
near field comprises the technology classes that are in the same cohesive network
communities as those in the home field, and the far field includes the technology
classes in all the other communities in the technology network.

In the following sections, we review prior literature relevant to the theories
and methods grounding our research (Section 2), introduce our data and research
method (Section 3), present and discuss our findings (Sections 4 and 5).

2. Literature review

This study is theoretically motivated and grounded by the literature on design
by analogy. Within the field of Design Science, the area of analogical design has
been extensively researched. However, to fit the scope of this research, only those
prior studies that use patents for stimulation in ideation or analyze the effect of
analogical distance on the performance of ideation are reviewed here.

2.1. Patent stimuli and design by analogy

Many researchers have studied the use of patents as stimuli for design and
developed tools for the search and analysis of patents. For example, several tools
have been developed to search for patents to facilitate the use of TRIZ principles
(Altshuller & Shapiro 1956) in solving design problems (Mukherjea, Bamba &
Kankar 2005; Cascini & Russo 2006; Souili et al. 2015) developed the Biomedical
Patent Semantic Web for retrieving patents based on the semantic associations
between biological terms within the abstracts of biomedical patents. Particularly,
a recent strand of research has focused on analyzing and using patents to aid in
design by analogy.

Fu et al. (2013a) developed a computational tool for automatically identifying
patent stimuli at different analogical distances. They extracted verb and noun
content from the technical descriptions of patents, used semantic analysis to
quantify the functional and surface similarities between patents, and created
function- and surface-based Bayesian networks of patents, respectively. In the
networks, a design problem can be located as the starting point, and the ‘analogical
distance’ between the problem and patents is defined as the length of path
between them. Murphy et al. (2014) proposed a functional vector approach to
systematically search and identify functional analogies from the patent database.
The following steps constitute the methodology: (a) process patents to identify
a vocabulary of functions, (b) define a set of functions in patents comprising
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primary, secondary and correspondent functions, (c) index patents using the
functional set to create a vector representation of the patent database, (d) develop
methods for generating query and estimate relevance of patents to a query, and
(e) retrieve and display patents relevant to the query. Fu et al. (2015) empirically
tested the functional vector approach of Murphy et al. (2014), to aid in the search
for functional analogies from patent databases to stimulate design concepts,
and found the experimental group generated solutions of higher novelty than
the control group. Srinivasan et al. (2017a) tested the efficacy of using patents
as design stimuli through a concept generation experiment, and found that
the average quality and novelty of the concepts generated with patent stimuli
individually or in combination with other resources is higher than those generated
without any stimuli.

2.2. Stimulation distance

Design by analogy leverages existing solutions from source fields to solve design
problems in target fields (Gick & Holyoak 1980; Weisberg 2006; Linsey 2007).
The distance between the source and target fields is referred to as the stimulation
or analogical distance. The Conceptual Leap hypothesis states that stimuli from
far sources, owing to their surface dissimilarities, provide the best stimulation for
creative breakthroughs (Gentner & Markman 1997; Ward 1998). Some anecdotal
evidence exists in support of this hypothesis. However, empirical findings related
to the validation of this hypothesis have not been consistent.

Chan et al. (2011) observed that far-field analogies help develop concepts
of higher novelty, higher variability in quality and greater solution transfer
but stimulate fewer concepts than near-field analogies. Chan & Schunn (2015)
reasoned that the most creative solutions are more likely to be developed
from near distance than far distance stimuli, owing to better perception and
connection to the problem at hand. Srinivasan et al. (2017b) observed that as
analogical distance of patent stimuli from the design problem increases, novelty of
concepts generated using these stimuli increases but quality of concepts decreases.
However, Wilson et al. (2010) observed no distinctions between stimuli from
far sources and near sources. Fu et al. (2013b) found that stimuli from near
sources or ‘middle ground’ help generate solutions of higher ‘maximum novelty’
than far sources; no significant differences were seen in ‘average novelty’ between
near and far sources. Fu et al. also observed that both the ‘mean quality’ and
the ‘maximum quality’ of solutions generated using stimuli from near sources
are higher than those generated using stimuli from far sources. Consequently,
they argued stimuli from ‘middle ground’ to be more beneficial for developing
creative solutions. With these findings, Fu et al. (2013b) posited that comparisons
of effects of analogical distance across different studies are hard owing to different
metrics being used to measure distance in these studies. They also argued about
the terms ‘near’ and far’ as being relative and not being able to completely
characterize these across different studies due to lack of a common metric to
measure distance.

2.3. Network of technologies by distance or proximity

These prior studies have implied the potential value for designers to make use
of the knowledge of the relative distance or proximity between technologies in
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the search for design stimuli from either near or far sources. For example, to use
patents as design stimuli, the Bayesian network of patents of Fu et al. (2013a)
quantifies and visualizes the analogical distance between patents and a design
problem, and thus designers can potentially use the network to identify patent
stimuli from near or far distance from the design problem. However, the network
of patents is only applicable for a small set of patents, whereas the total patent
database contains millions of patents that may provide varied inspirations from
different distances to a design problem.

According to the patent classification systems, such as the International Patent
Classification (IPC) system, each patent is classified in one or multiple technology
classes, which are categories of patents and represent different technology fields.
This presents a structure for locating patents in the enormous database. A few
recent studies have proposed methods to measure the knowledge proximity
between the patent technology classes and used such proximity information to
construct the network map of technology classes (Kay et al. 2014; Leydesdorff
et al. 2014; Yan & Luo 2017). The network of all technology classes in the patent
database can be used to approximate the total technology space (Alstott et al.
2017a). Such a network of technology classes, given the proximity information,
may serve as a framework to define the near or far field of design stimulation.
In turn, such a network map will allow the designers to be better informed of
the proximity (or distance) between the source field of potential patent stimuli
and the target field where a design problem or opportunity is located, or be better
oriented to identify patents specifically from either the near or far field from the
design problem.

In particular, the key requirement to create such a network is the measure
of knowledge proximity between the patent technology classes, i.e., link weight
in the network. In the literature, a variety of measures of knowledge proximity
have been reported. One group of measures are computed using the data of
patent references. For example, Jaccard index can be adopted to calculate the
number of shared references of a pair of classes normalized by the total number
of all unique references of patents in either class (Jaccard 1901; Small 1973) as
an indicator of knowledge proximity. Alternatively, the cosine similarity index
can be calculated between two vectors indicating patent references made from
the patents in a pair of classes to all classes respectively (Jaffe 1986; Kay et al.
2014; Leydesdorff et al. 2014), i.e., class-to-class reference vectors. For a higher
granularity, Yan & Luo (2017) extended the cosine similarity measure to class-
to-patent vectors, concerning references to specific patents instead of aggregated
classes. Another group of measures use the ‘co-classification’ information, i.e., how
often two classes are co-assigned to individual patents, to compute knowledge
proximity. For instance, the cosine similarity index can be calculated between
two vectors of the occurrences of a pair of classes with all other classes in patents
(Breschi, Lissoni & Malerba 2003; Ejermo 2005; Kogler, Rigby & Tucker 2013). The
normalized co-classification index measures the deviation of the actual observed
co-occurrences of class pairs in patents from random expectations (Teece et al.
1994; Dibiaggio, Nasiriyar & Nesta 2014; Yan & Luo 2017) have reviewed and
compared various knowledge proximity measures used in patent mapping. Note
that, this strand of research on measuring the knowledge proximity between
different patent technology classes was not previously engaged in the engineering
design literature.
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2.4. Summary

In brief, patents have been used as stimuli to foster ideation; however, while there
exists evidence that the use of such stimuli is beneficial, the observations on the
effect of analogical distance on for example, the attributes of design outcomes
have not been consistent. Moreover, several metrics have been used to measure
the proximity between stimuli and design problems and distinguish near- and
far-field stimuli (Fu et al. 2013a). However, most of the prior studies are based on
the textual analysis of small sets of patents selected from the patent database. No
efforts, to our knowledge, have been pursued at identifying near and far fields to a
design problem in the total technology space, and at searching for patent stimuli
in the total patent database. The network of all technology classes may serve as
a macro and consistent framework to define home, near and far fields to a target
design problem or more open-ended design interest.

In the present study, we make use of the patent technology class network to
classify the patents in the total patent database into home, near and far fields to a
design problem. On this basis, we seek to answer the following questions:

(1) Where are the sources of useful patent stimuli in the technology class
network: home, near or far fields?

(2) What are the implications of using patent stimuli from these different fields
on the outcomes of ideation?

3. Method and data

This study analyzes the data, including the patent stimuli and generated concepts,
from an ideation exercise. In this section, we will introduce the exercise and the
methods used to analyze the patent stimuli and concepts.

3.1. Ideation exercise and data

Data from an ideation exercise of 30.007 Engineering Design and Project
Engineering, a course offered at the Engineering Product Development (EPD)
Pillar (https://epd.sutd.edu.sg/) of Singapore University of Technology & Design
(SUTD) (https://www.sutd.edu.sg/) is used for this research. This course is
mandatory for the second-year undergraduate students in the EPD Pillar and
provides a holistic understanding and competency in engineering design. All the
students participating in this ideation exercise had undertaken several design
courses and structured design projects prior to this course. The ideation exercise
was an early part of a design project, which ran throughout the course. The
objective in this project was to conceive, design and develop an innovative
spherical rolling robot (SRR) concept of self-defined system requirements, and
fabricate a functional prototype. This objective was deliberately kept open to
provide students the flexibility and room for creativity and innovation.

Before ideation, all the student designers were provided with Sphero™, a SRR
toy manufactured by the company Sphero Inc. (http://www.sphero.com/sphero),
to play, analyze and understand the structure and functioning of a SRR. Sphero is
propelled by a self-contained cart and installed with an on-board micro-controller
unit. Users may manipulate its motion remotely via a smartphone or tablet. Sphero
represents a generic design of SRRs and is also a successful commercial product
in the market. The designers were also offered access to 15 prototypes of SRRs
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developed earlier at SUTD. The purpose of such sharing before ideation is to allow
the students to rapidly learn and build up the basic design knowledge of SRRs.

The research team prepared two sets of patents for student designers to read
and get inspired. The most cited US patent from each of the 121 3-digit technology
classes defined in the IPC system was provided. The number of forward citations
received by a patent is highly correlated to its realized value or importance
(Trajtenberg 1990; Hall, Jaffe & Trajtenberg 2000). These 121 patents constituted
the first set (Most Cited set). In addition, a randomly identified patent from each
of the 121 3-digit IPC technology classes was also provided. These 121 random
patents were identified using a random number generator and constituted the
second set (Random set). The participants were provided with the title, abstract
and images of the patents. If the participants found these contents relevant and
inspirational for their problem, they could read the technical descriptions of the
patents. Note that it was not mandatory for participants to use the provided
patents as stimuli. In addition to the 242 given patents, all the participants were
allowed to search and use other patents and resources (such as internet and books)
for inspiration. The two sets of patents provide a basic coverage of patents from
all the 121 technology classes in the total technology space, and complement the
intuitive unguided search of the participants by bringing all the technology classes
to the attention of the searchers.

The participants were instructed to generate functional and novel concepts,
but no limit was fixed on the number of concepts they must generate. The
participants were given a week to generate concepts and asked to sketch or render
concepts with annotations and briefly explain how they work. At the end of the
exercise, they needed to submit a report for each concept generated. Figure 1
shows an example of the submitted reports. Specifically, the participant must
report which patents were used as stimuli and their justification, other resources
accessed, and how stimuli were transformed into the new SRR concept (see
Figure 1a), in addition to a textual description and a sketch of the generated
SRR concept (Figure 1b). In the end of the concept generation exercise, 138 SRR
concepts were generated using 231 patent stimuli. Among these patent stimuli, 39
patents were from the Most Cited set, 33 from the Random set, and the rest were
searched and identified by the student designers on their own.

In addition, a consent form seeking the approval of participation was also
collected from all the participants. A pre- and a post-ideation survey were
conducted to collect information relating to age, gender, academic background,
nationality, and other demographic data of the participants, to understand their
experience of using patents a priori and posteriori to this exercise and the effects
of their use.

3.2. Evaluation of ideation outcome

From the concept generation reports from individual participants, the stimuli
used to generate each concept were identified, and novelty and quality of generated
concepts were assessed based on their sketches, renderings and annotations. In the
literature, researchers have proposed various metrics to assess the performance of
ideation, in terms of the attributes of ideation outcomes, such as quantity, quality,
novelty, variety, fluency, usefulness, feasibility, and similarity (Mcadams & Wood
2002; Shah et al. 2003; Sarkar & Chakrabarti 2011). In this research, novelty and
quality were used as metrics to assess performance of ideation.
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| 3. Anyother o
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414 video demonstration stair climbing robots)

4. Detadl on how did storm the ab rtioned T

Substitution: Instead of axtending 3 mechanical arm as proposed in past patents, we propose extending a segment
of the spherical casing tha is capable of Kfting the robot off the ground,
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Stair climbing &5 an acvantagecus capability for surveillante bats s it provides stersl maneuverabiity in bult up
arwiranmants. Mest stair climbing rebots have elongated bodies and climbing mechanisms positioned st the front snd
rear most ends of thelr Bodies. O1henwise, they are equipped with long caterpillar tracks to roll up the stalrs, bypassing
the need to even ‘climb’. Spherical rabots hewever do not hane the requisite langth.

| The idea of “bypassing the need to clmb” is applicable 1o the spherical bot. Specifically; we propose a mechanism to
extend a segment of the spherical case to Mt the robot off the grownd, to a helght that is higher than the step of the
| stair. This mevement i loaped umtil the robot has completely cimbed the stairs.

(a) Reported information in the concept generation report
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(b) Concept sketch with annotations in the concept generation report

Figure 1. A concept generation report from a student designer. (a) Reported
information in the concept generation report. (b) Concept sketch with annotations
in the concept generation report.

Novelty of a design outcome is a measure of unusualness or unexpectedness
of the outcome in comparison to other outcomes that perform the same overall
function. An expert in robotics and SRRs rated the novelty of the concepts on
a 4-point scale (0-3), corresponding to no, low, medium and high novelty. This
expert has extensive knowledge of prior arts in SRRs, based on which novelty of the
generated concepts was evaluated. For example, the concept shown in Figure 1(b)
can climb stairs by extending its arms, which had been seldom seen in prior
designs. Therefore, this concept obtained a novelty score of 3.
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Quality of an outcome is the degree of the fulfillment of requirements for which
the outcome is developed. In the assessment of quality, three abstraction levels,
namely functional, working principle, and structural levels, were considered.
Quality of a concept was assessed using the formula:

0=05xf+03xw+02xs (1)

where Q is the overall quality of a concept, f is a measure of the degree of
fulfillment of the identified requirements by the functions in the concept, w is
the degree of fulfillment of the identified functions by the working principles in
the concept, and s is the degree of fulfillment of the working principles by the
components and their relations in the concept. A weighting scale of 0.5, 0.3 and
0.2! was used corresponding to the function, working principle, and structural
levels, respectively, because higher abstraction levels are the basis for building
the lower abstraction levels. f, w and s were rated by one of the authors using
a 3-point scale (0-2)2, corresponding to no, partial and complete fulfillment.
Therefore, the overall quality of a concept also varied between 0 and 2. For
example, the sketch of the design for climbing stairs (see Figure 1b) describes
a full set of functions required to fulfill the stated objectives (rolling on ground
and climbing stairs) including rotate two hemispheres for propelling and steering,
increase grip, monitor environment with camera, and extend arms for lifting
the robot. So, it received 2 points for fulfilling requirements. This concept lacks
mechanism details of how to propel the robot and extend the arms, and so, it
received 1 point for partially fulfilling the functions identified earlier. Due to
the absence of working principles, the design also lacks information of structural
features required to fulfill the missing working principles, such as the transmission
system for propelling, and so, it received 1 point for the fulfillment of working
principles. When these individual weightings were substituted in (1), an overall
quality score of 1.5 was obtained for the concept.

An inter-rater reliability test was conducted using three raters for 20 concepts.
After two iterative rounds of analyzing, settling, reconciling differences and
reaching Cohen’s Kappa ratio of 0.86, the quality of the remaining concepts was
rated based on the learning gained from the earlier iterations.

3.3. Locating patent stimuli in home, near and far fields within
the patent technology network

To analyze the influence of stimulation distance of patent stimuli on ideation
outcomes, we located the patents used as stimuli in the ideation exercise within
the network of all technology classes. In the network, the stimulation distance of a
patent to a design problem can be measured according to the knowledge proximity
between the technology classes containing the patent and the technology classes
that correspond to the designers’ knowledge related to the design problem, i.e.,
the home field. To align with the theoretical lens of near and far analogies in the

1 We carried out sensitivity analyses with altered weights for f, w and s to investigate the robustness
of the findings. For each of the tests, we held one of the three weights fixed, increased or decreased the
second weight by 10%, and then adjusted the third one accordingly to ensure the weights sum up to 1.
The findings regarding concept quality hold true in the tests.

2 We alternatively experimented 5-point scale to assess f, w and s, and found it was difficult for three
raters to achieve a Cohen’s Kappa ratio higher than 0.8 in the inter-rater reliability tests. By contrast, a
3-point scale evaluation enabled satisfactory inter-rater reliability.
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Figure 2. Home, near and far fields of the SRR design in the technology class network. The size of each node
is proportional to the number of patents in each technology class, and the thickness of a link is proportional
to the knowledge proximity between the corresponding pair of technology classes. Nodes in the home field
are highlighted in green, near field in orange, and far field in blue.

literature, we further located patents in home, near and far fields, which are groups
of technology classes based on the latent community structure of the technology
network.

3.3.1. Construct a technology network
First, we used the entire USPTO database from 1976 to 2016 to empirically
create a patent technology network that approximates the total space of all known
technologies to date (Alstott et al. 2017a; Yan & Luo 2017). In the network,
121 3-digit IPC classes, such as node F02 that represents a class of patents for
combustion engine and node G06 for computing, are used to operationalize the
nodes. Each network node representing a technology class can be viewed as a
category of patents. The nodes are connected to each other according to the
knowledge proximity between them, as shown in Figure 2.

If two technology classes have low knowledge proximity, i.e., design processes
in two technology categories require relatively distinct design knowledge,

10/25

https://doi.org/10.1017/dsj.2017.27 Published online by Cambridge University Press


https://doi.org/10.1017/dsj.2017.27

Design Science

designers specializing in one technology category may find it difficult to
understand or design using knowledge and technologies from the other (Luo
2015). On the contrary, if the design process in two technology categories requires
similar knowledge pieces, designers in one category can easily understand and
leverage design knowledge from the other. Prior patent data analysis has also
statistically shown that inventors are more likely to succeed in filing patents in
proximate categories in the technology space (Alstott et al. 2017a,b). Therefore,
the information of knowledge proximity among technology classes will enable one
to locate patents with different distances to a design problem in the technology
space.

We utilized the reference-based cosine similarity index to calculate the
knowledge proximity. Specifically, the distribution of references from patents in
a technology class to unique patents is represented as a vector to characterize
the design knowledge base of the technology class. The references of a patented
technology are the proxy of the design knowledge used in the design of the
technology. Then the knowledge proximity between a pair of technology classes
is calculated as the cosine of the angle between their corresponding vectors (Yan
& Luo 2017), as follows:

>k CikCik
VI Ch /S

where Cj; or Cj; denotes the number of citations referred from patents in
technology class i or j to the specific patent k; k belongs to all the patents cited
by patents in either technology class i or j. The cosine similarity index value is
in the range [0, 1] and indicates the proximity of knowledge pieces required in
designing technologies in both classes. In this study, the references of more than
6 million utility patents in the USPTO database were analyzed to calculate the
cosine between each pair of the 121 IPC classes for the best possible empirical
approximation of knowledge proximity between them.

This knowledge proximity measure is theoretically motivated by the design-
by-analogy literature that has primarily focused on ‘similarity, e.g., functional,
structural and surface similarity, to define and measure analogical stimulation
distance (Gentner & Markman 1997; Ward 1998; Christensen & Schunn 2007;
Fu et al. 2013a; Murphy et al. 2014; Fu et al. 2015). In contrast to these prior
studies addressing the similarity between specific designs or individual patent
documents, our measure is formulated for the similarity between technology
classes, i.e., categories of patents. At this level, a few studies (Kay et al. 2014;
Leydesdorff et al. 2014) have used the cosine similarity of the vectors of patent
references made from a pair of classes to other classes (i.e., class-to-class reference
vectors). Our measure extends to class-to-patent vectors, concerning references
to specific patents instead of aggregated classes, for a higher granularity. In
addition, according to a recent study that compared 12 alternative knowledge
proximity measures, our measure appears as one of the most correlated with and
representative of other alternative knowledge proximity measures in the literature
(Yan & Luo 2017).

(2)

Proximity = cosin(i, j) =

3.3.2. Detect communities in the technology network
In the technology network, some groups of nodes are more cohesively connected
internally and have a higher density of links within than between them. Such
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dense groups of nodes are often called communities or clusters. In the network
analysis and graph theory literature, various community detection algorithms
have been developed to discover and analyze the latent community structures in
networks (Clauset, Newman & Moore 2004; Newman 2006; Blondel et al. 2008;
Chen et al. 2010; Browet, Absil & Van Dooren 2013; Wu et al. 2015). Specifically, in
terms of the technology network in Figure 2, communities are cohesive groups of
technologies (i.e., patent classes) with high knowledge proximity between them.
Technologies in the same communities possess more common knowledge than
technologies in different communities, and thus it is more likely to draw analogies
across technology classes in the same community.

In this paper, we employed a hierarchical agglomeration algorithm proposed
by Clauset et al. (2004) to detect the technology network’s latent community
structure. This algorithm was chosen because it is more efficient and faster than
competing algorithms and returns a uniquely determined community partition
rather than heuristic results. We assessed the community groupings of technology
classes resulting from the algorithm and deemed them reasonable based on
our engineering knowledge. Consequently, the 121 technology classes of the
technology network were clustered into 5 communities. We also compared
the community detection result with those from Louvain’s greedy optimization
method (Blondel et al. 2008) and found the results are consistent.

3.3.3. Locate ‘home field’

To locate the ‘home field’ of SRRs in the total technology space, we first need to
retrieve a set of US patents that can comprehensively represent the participant
designers’ knowledge base that is related to SRRs. As introduced in Section 3.1,
prior to the ideation exercise, Sphero provided the students with the basic
knowledge and understanding of SRRs, so we utilized the patents related to Sphero
to define the students’ SRR-related knowledge base. On this basis, we searched the
patents of Sphero Inc. and obtained 16 patents as of 31st August 2016.

Then we used the classification information of the retrieved patents to identify
the home field in the technology network. To do this, the following two steps are
carried out: (1) identify the technology classes that contain the retrieved patents
and sort them in descending order of the number of retrieved patents they contain;
(2) successively identify the minimum set of classes required to cover all the
retrieved patents. Such a procedure is unambiguous and reproducible. Specifically,
the 16 patents are classified in 8 technology classes. Among them, the 6 technology
classes - ‘GO5 Controlling & Regulating), ‘A63 Sports & Amusements, ‘B62 Land
Vehicles, ‘G06 Computing, ‘B60 Vehicles in General’ and ‘B63 Ships’ - constitute
the smallest set of top classes that cover all the 16 patents.

In addition, the technologies used in the 15 exemplar SRRs presented to
the students are also well covered by the 6 technology classes. Therefore, we
considered these 6 technology classes as the ‘home field’ of the SRR design in the
total technology space, which are located at the center and highlighted in green
in Figure 2. We also tested the robustness of the choice of technology classes to
represent the home field. First, we found each of the top 3 technology classes
contains more than a half of the total set of 16 patents and has a much greater
coverage than the other technology classes. We tested only using the top 3 classes
to define the home field. The statistical results presented in Section 4 vary slightly
and do not affect the general conclusions. In addition, we also compared the patent
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set used in this paper with the patent set that resulted from an exhaustive patent
search for SRRs and contained 153 SRR patents (Song & Luo 2017). The results
show that only 1 of the top 6 technology classes differs for the two patent sets.
These results show the robustness of the definition of the home field.

3.3.4. Identify ‘near field’ and ‘far field’

Based on the network partition results from the algorithm of Clauset et al.
(2004), the home-field classes G05, A63, B62, G06, B60 and B63 belong to 2
network communities. Then the technology classes other than these 6 in the
same 2 communities were designated as the ‘near field’ of the SRR design, which
are located at the inner ring and highlighted in orange in Figure 2. The near
field surrounds the home field. The technology classes outside these 2 network
communities were considered the ‘far field’ of the SRR design, which are located
at the outer layer and highlighted in light blue in Figure 2. Thus, the technology
class network, which represents the total technology space, was divided into three
mega fields: home, near and far fields. On this basis, the patent stimuli used were
assigned to one or multiple of the three fields in the technology space, according
to their classification information. Note that a patent may belong to multiple fields
if it is assigned in multiple technology classes.

In brief, the method of locating patents in home, near or far field involves
three main procedures: (1) construct a network map of all technology classes in
the patent database to represent the total technology space, (2) detect network
communities, and (3) determine the home, near and far fields in the network. In
turn, these three procedures respectively require: (1) a measure of the knowledge
proximity between patent classes, (2) a community detection algorithm, and (3) a
patent set representing the home of a design problem. In this sub-section, we have
introduced our choices for each of the three elements. On this basis, we located
the patent stimuli used in the ideation exercise in the home, near and far fields of
the SRR design in the technology network, for further analysis.

4. Findings

In this section, we report the frequencies and likelihood of the participants finding
patent stimuli from home, near and far fields, and the novelty and quality of the
concepts generated with patent stimuli from home, near and far fields.

4.1. Where designers find patent stimuli in the technology space

Figure 4(a) shows the number of reported unique patent stimuli from home,
near and far fields. The participant designers can use a patent as a stimulus for
generating multiple concepts. Figure 4(b) shows the frequency of patents being
used with multiple counting, i.e., it counts the use of a patent as stimulus for
multiple concepts. Both the figures (Figure 4a,b) show a similar pattern: most
patent stimuli used for concept generation are from the near field of the SRR
design. We also calculated the likelihood for patent stimuli being identified from
the various fields, as the number of patents used in a field to generate concepts
divided by the total number of patents granted in the corresponding field from
1976 to 2016. As seen in Figure 4(c), patents in the home field are more likely to
be used to generate concepts than those in the near and far fields, for which the
likelihoods are almost the same.
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Figure 4. Patent stimuli in each field of the technology space: (a) number of unique patents used; (b) frequency
of patents being used; (c) likelihood of patents being used.

A concept can be stimulated by either a single patent or multiple patents, whose
classes may fall into one or more of the home, near and far fields. Figure 5 shows
the number of the concepts generated using patents from the individual fields and
their combinations. In Figure 5(a), a concept stimulated by patents from multiple
fields is counted multiple times, once for each field to which a patent stimulus
belongs. Patents from the near and far fields help generate more concepts than
patents from the home field. In order to present the results more unambiguously,
we categorize a concept into only one of the individual fields or the combinations
of multiple fields according to the sources of patent stimuli used by the concept.
Under this setting, each concept is counted only once in one category. As shown in
Figure 5(b), the highest number of the concepts is generated using patents from a
combination of home, near and far fields (H, N & F), followed by the combination
of near and far fields (N & F). The influence of patents from the near field either
individually or in combination with other fields is prominent. As a single source,
patents from the near field help generate most concepts.

4.2. Implications of home-, near- and far-field stimuli on ideation
outcomes

The average quality of the concepts generated using patents from the individual
fields and their combinations is shown in Figure 6(a) and Figure 6(b), respectively.
No significant difference in average quality across the individual fields is observed
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Figure 5. Numbers of concepts generated using patents from individual fields and
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Figure 6. Average quality of generated concepts: (a) with patents from each field; (b)
with patents from combinations of the three fields.

in Figure 6(a), suggesting that the three fields contribute almost identically to
the quality of the concepts. When considering the combinations of the fields,
we can see in Figure 6(b) that concepts stimulated with patents from the far
field individually or the combination of home and far fields (H & F) have a
significantly higher average quality than the rest. Such differences in concept
quality are significant at 5% level in most cases based on pairwise 2-tailed t-tests,
as shown in Table 1.

Figures 7(a) and figure 7(b) shows the distributions of the concepts generated
using patents from the individual fields and their combinations by quality,
respectively. In the figures, the low, medium and high quality categories
correspond to the ranges of quality scores 0 < 1.2,1.2 < O < 1.8and Q > 1.8,
respectively, according to the multimodal frequency distribution of the generated
concepts by quality. As observed in Figure 7(a), patents from the home or far field
stimulate a higher percentage of high quality concepts than those from the near
field. In Figure 7(b), a higher percentage of the concepts stimulated by patents
from: (a) the far field and (b) the combination of the home and far fields (H &
F) have high quality. Interestingly, no low-quality concepts are generated using
patents from the far field individually, the combination of the home and far fields
(H & F) and the combination of the home and near fields (H & N).
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combinations of the three fields.

Table 1. ¢ statistics with p-values in parentheses for the pairwise comparison of
the quality of concept sets as indicated by the row and column labels. Underlines
denote significance at 5% level

Far Home and Far
Home 1.7303 (0.0909) 3.5036 (0.0008)
Near 1.6473 (0.1039) 3.8277 (0.1816)
Home and Near 0.4766 (0.6359) 1.8383 (0.0699)
Near and Far 2.6887 (0.0080) 5.3607 (<0.00001)
Home, Near and Far 2.3611 (0.0189) 4.8737 (<0.00001)

The average novelty of the concepts generated using patents from the
individual fields and their combinations is shown in Figure 8(a) and Figure 8(b),
respectively. The differences in average novelty of the concepts generated
using patents from the individual fields are not statistically significant (see
Figure 8a). Concepts stimulated by patents from the near field individually and all
combinations containing the near field (N; H & N; N & F; H, N & F) have higher
average novelty than concepts stimulated by patents from other individual fields
or combinations (see Figure 8b). Specifically, the differences in average novelty are
statistically significant at 5% level between concepts stimulated by patents from
the combinations containing the near field (H & N; N & F; H, N & F) and those
stimulated by patents from the home or far field individually or their combination
(H; F; H & F), as shown in Table 2.

Figures 9(a) and figure 9(b) shows the distributions of the concepts generated
using patents from the individual fields and their combinations by novelty,
respectively. As mentioned earlier, the high, medium, low and no novelty
corresponds to novelty score 3, 2, 1 and 0, respectively. As observed in Figure 9(a),
patents from the near field contribute a slightly higher percentage of high novelty
concepts than patents from the home and far fields. It is clear from Figure 9(b)
that the concepts generated with patents from the near field individually and all
combinations containing the near field (N; H & N; N & F; H, N & F) present a
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Figure 8. Average novelty of generated concepts: (a) with patents from each field;
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Figure 9. Distributions of concepts by novelty: (a) with patents from each field; (b) with patents from
combinations of the three fields.

Table 2. ¢ statistics with p-values in parentheses for the pairwise comparison of
the novelty of concept sets as indicated by the row and column labels. Underlines
denote significance at 5% level

Near Home and Near Near and Far Home, Near and Far
Home 1.1280 2.4251 2.2740 3.2022
(0.2636) (0.0203) (0.0244) (0.0015)
Far 1.3491 2.6817 2.7359 3.8571
(0.1816) (0.0102) (0.0070) (0.0001)
Home and Far  0.7047 2.1577 2.5120 3.6733
(0.4826) (0.0341) (0.0129) (0.0003)

higher percentage of high and medium novelty. These results are consistent with
the findings in Figure 8(b). The results suggest that patents from the near field
play a major role in stimulating concepts of higher novelty compared to patents
from the home or far field.
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4.3. Summary of findings

The following are observed in the data from the open concept generation exercise
and using the technology space network-based definition of home, near and far
fields of patent stimuli:

(1) Patents from the home field are most likely to be used as stimuli for concept
generation.

(2) Thenear field contributes most patent stimuli for concept generation, and the
most number of concepts are generated using patents from the near field.

(3) The concepts generated with patent stimuli from the far field individually
and the combination of the home and far fields have a higher average quality
than concepts generated with patents from other individual fields or other
combinations of the three fields.

(4) The concepts generated with patent stimuli from the near field individually
and the combinations of the near field with other fields have higher average
novelty than concepts generated with patent stimuli from the home field, far
field or their combination.

5. Discussion

5.1. Significance of findings

In this paper, we have presented a network-based approach to divide the
technology space into three fields — home field, near field and far field - with
varied knowledge proximity to a design problem based on the community
detection within the network of all 3-digit IPC technology classes in the patent
databases. The ‘home field’ entails technology classes that contain patents that are
directly relevant to a design problem, the ‘near field’ comprises technology classes
that are in the same network communities as those in the ‘home field, and the
remaining technology classes from other communities in the technology network
constitute the far field’ Each technology class can be further viewed as a category
of patents. The data-driven definition of the home, near and far fields is motivated
by the literature on design by analogy using patents as stimuli, which has used
such terms as near or far analogies or stimuli, to characterize discrete stimuli or
patents. Our approach provides a systemic and macro framework, which one can
consistently use to position a patent in either home, near or far fields of design
stimulation in the total technology space.

Based on the definitions of the home, near and far fields in the total technology
space, our experiment shows that patents from the home field are more likely to
be used than those from the near or far field. Since the home field is the area
nearest to the defined design problem or opportunity, the result produces evidence
in support of the argument that it is easier to analogize with stimuli from near
domains than far domains to some extent. In the studied case, patents in the home
field record technologies and processes having much more common knowledge
basis with the SRR-related design knowledge of the student designers, and so the
patents are much easier to be identified, understood and assimilated by them.

Results in this paper further suggest that in the given context, concepts
generated using patents from the far field or the combination of the home and far
tields have a higher average quality than the concepts stimulated by patents from
other individual fields or combinations. This seems to contradict the findings of
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Fu et al. (2013D) that solutions generated using stimuli from near sources had
higher quality than those generated using far sources, but support the findings
of Chan et al. (2011) that stimuli from far sources were more beneficial for
developing solutions of higher quality. However, these studies and ours might
not be comparable, primarily because the characterization of near and far is not
the same. Fu et al. and Chan et al. used functional similarity to characterize the
distance as near and far between individual patents and a specific design problem,
while in this study knowledge base similarity between patent technology classes
is used. Also, it must be noted that the context setting for this study is quite
different from theirs. That is, the objective of the design problem is open and the
participants are free to select patent stimuli from the given sets or search their own
independently. In this case, it is understandable that where the patent stimuli are
from has limited influence on feature creation. Although patents from different
fields are used with different likelihoods, once they are identified and chosen as
stimuli for concept generation, the designers would make effort to understand
and make sense of the information provided in the patents and transform it into
features in their own concepts.

The near field provides the most patent stimuli, which further stimulate the
largest portion of the concepts. Concepts generated using patents from the near
tield have higher novelty on average than those generated without patents from
the near field. On one hand, the near field is relatively nearer to the design
problem than the far field, and contains design knowledge that is relatively easy
to understand and make sense of. On the other hand, it is relatively more distant
to the design problem than the home field, and probably provides stimuli with
plenty of additional features for conceiving innovative attributes. Potentially, these
attributes may contribute to novelty. In brief, it can be argued that patents from the
near field are more beneficial for identifying stimuli and creating novel attributes
in concepts compared to those from the other fields.

This research uses data that comprises several variables. 138 concepts were
generated with 231 patents by student designers, who ideated individually
in uncontrolled conditions. The student designers in this study, unlike other
laboratory-based controlled ideation experiments, required more domain
knowledge to accomplish the task. From among an alternative set of the concepts
generated by individuals, one concept was chosen and if necessary, modified,
and then prototyped and demonstrated by each team. So, the quality of the
prototype depended on the concept set generated earlier. Therefore, the ideation
was a fun exercise with lots of project stakes attached to it. The grades of student
designers depended on their performance at every phase of the SRR development
process. Some of the projects were further pursued toward entrepreneurial and
co-curricular activities. So, the participants had adequate vested incentives to
pursue this ideation exercise seriously. Therefore, the results of this study must be
viewed taking into consideration the wide span of variables and the seriousness
with which this exercise was pursued.

In addition to our experiment findings, this paper may have made a
contribution to ideation methodology development, specifically regarding patent
stimuli search. Although prior studies have suggested the efficacy of using patents
as stimuli for concept generation, browsing through the huge patent database
within a short period to identify relevant stimuli may be cumbersome. To address
the problem, an efficient search-and-retrieve interface is required, through
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which millions of patents can be searched through using defined keywords and
relevant patents can be retrieved and ranked in the order of their appropriateness
to the keywords. Fu et al. (2013a) and Murphy et al. (2014) have developed
computational design tools to search and identify functionally relevant analogies
from the US patent database. Results in this paper offer fundamental insights on
designers’ natural preferences for stimuli and the influence of stimulation distance
on ideation outcomes. With these findings, the introduced method in Section 3.3,
which is based on a technology class network and community detection to define
the home field, near field and far field, might be a first step toward a data-driven
computational tool for better-guided and more-informed search of patents as
design stimuli. Such a tool is expected to allow designers to locate the home field
of a design problem and be informed of the fields of their search for patent stimuli,
and systematically guide them through the search for patent stimuli in either home
field, near field, far field or their combinations.

In fact, the method we used in this experimental research is structured
and repeatable. As introduced in Section 3.3 and depicted in Figure 3, the
method generally involves three main procedures: (1) construct a network map
of technology classes to represent the total technology space; (2) detect network
communities; and, (3) determine the home, near and far fields in the network. In
practice, once the home, near and far fields have been identified in the network,
a designer can search, locate and use patent stimuli within the home, near and
far fields, with the guidance of the understanding of the potential effectiveness
of finding useful patent stimuli from different fields and the corresponding
performance implications, as suggested from our experimental findings.

Meanwhile, the procedures require three key elements in practical implement-
ation: (a) a knowledge proximity measure for constructing the network of
technology classes, (b) a computer algorithm for partitioning the technology
network into a few communities, and (c) a patent set for identifying the technology
classes to determine the home field. For each of the elements, there are alternative
implementation choices. In this paper, we have provided one superior choice
for each element for our case study, but do not limit to them. For the first two
elements, in this study, alternative knowledge proximity measures and alternative
community detection algorithms result in quite similar community partitions of
the technology network. In a different case, one can still pick out superior choices
of the measures and algorithms by comparing the resulting community partitions
with the expectation based on his or her knowledge and the specific context.
Moreover, the patent set used to identify the home field can also be determined
using an approach according to the context. For example, to find the home field
of a designer, one can search the patents granted to the designer; to find the home
field of a designer who has no patents, one can search patents using keywords that
describe the technical expertise of the designer; one can also combine the search
approaches. In brief, our method provides a structured but flexible framework,
whose elements can be operationalized and calibrated according to the specific
context and situation of its application.

5.2. Limitations

The results in this research have the following limitations. First, in this research
the measure used to assess the knowledge proximity between 3-digit technology
classes may not be directly related to the relevance of a stimulus to a problem.
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Future research may explore knowledge proximity at alternative granularity levels,
such as proximity between 4-digit IPC technology classes or between classes and
patents. Second, the student designers received two sets of 121 patents (the most
cited patent and a random patent from each of the 121 technology classes) for
the ideation exercise. A patents description text is often lengthy and written in a
tedious and non-obvious manner, so it may be difficult for the student designers to
browse through all the 242 patents to assimilate the information, identify relevant
stimuli from them and use these for generating concepts all within a week. That is,
coverage of all the 121 technology classes in the total technology space may not be
guaranteed in practice. Future research may seek approaches for communicating
the technical information and design knowledge in patent documents to designers
more effectively and efficiently. Also, the ideation was an after-class exercise and
thus uncontrolled. For concepts generated using both patents and other resources
of inspiration, the influence of other resources was not accounted for locating the
stimuli in the home, near and far fields in the technology space. This discounts a
significant influence of other resources on the novelty or quality of the generated
concepts.

Moreover, it should be noted that our findings result from a technology-driven
design process with undergraduate designers as the participants. The findings
may not hold true for experienced designers or in other design situations, such
as the design of market-driven products. For example, when solving a design
problem, experienced designers typically have extensive knowledge of the near
field as well as the home field through their own learning and experience,
which allows them to build their own ‘feeling for near’ In such a situation, the
experienced designers would not find patent stimuli from the home and near fields
so useful as the student designers do. In addition, for the design of market-driven
products, the goal is to identify users’ value-based needs and convert them into
product features successfully. In such a design process, the distance of stimuli
from the design problem is largely determined by users’ requirements but not the
intrinsic proximity or distance between technologies. Moreover, the findings in
this paper are based on the case of SRRs and may not hold true for other products,
whereas the introduced method of locating patent stimuli is applicable to other
contexts. This suggests a future research opportunity to apply our network-based
methodology to more diverse products and contexts and potentially develop a
contingency understanding on the influence of stimulation distance on ideation
outcomes for different types of products.

6. Conclusions and future work

This research contributes to fundamental insights on designers’ preferences for
patent stimuli and the influence of stimulation distance on the ideation outcomes,
as well as a network-based methodology for better-guided search of patents as
design stimuli in concept generation practices. The objectives of this research are:
() to identify where designers identify useful patent stimuli within the technology
space: home, near or far fields, and (b) to study the implications of using patent
stimuli from these fields on the novelty and quality of the concepts generated.
It is observed that: (a) patents from the home field are more likely to be used as
stimuli, (b) the near field contributes most patent stimuli, which further stimulates
the most number of the concepts, (c) concepts generated with patents from the
far field and the combination of the home and far fields have higher average
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quality than concepts generated using patents from other individual fields or
combinations of the three fields, and (d) the concepts generated with patents from
the near field have higher average novelty than concepts generated without patents
from the near field. The methodology based on a technology class network and
community detection to define the home field, near field and far field might be
a first step toward a tool for better-guided search of patents as design stimuli.
Further efforts can be made to retrieve most useful patents for ideation at the field
or class level.
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