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Abstract

We study best proximity points in the framework of metric spaces with w-distances. The results extend,
generalise and unify several well-known fixed point results in the literature.
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1. Introduction and preliminaries

In this paper, we introduce a new class of contractions involving R-functions in
the framework of complete metric spaces with a w-distance. Our main results
(Theorems 2.3 and 2.5) give the existence and uniqueness of best proximity points of
such mappings. Our results continue earlier work of Kosti¢ et al. [8], where a similar
problem has been investigated using the simulation functions of Khojasteh et al. [7].
However, as noted by Gavruta et al. [1], the Z-contractions (involving simulation
functions) introduced in [7] are a special case of Meir—Keeler (MK) contractions [9].
The R-contractions introduced by Roldan Lépez de Hierro and Shahzad [12] are a
true generalisation of MK contractions. Our best proximity results for R-proximal
contractions therefore generalise some earlier results such as those of Jleli et al. [4].
Moreover, our results hold in a more general setting than the usual metric space.

DeriniTioN 1.1. Let A € R be a nonempty subset and let o : A X A — R be a mapping.
We say that o is an R-function if the following two properties hold.

(a) a, — 0 for every sequence {a,} C (0,0) N A such that o(a,;,a,) > 0 for all
neN.

(b) For any two sequences {a,}, {b,} C (0,0) N A such that lim,,_,., a, = lim, . b, =
L > 0 with L < a,, and o(a,, b,) > 0 for all n € N, we have L = 0.

If, additionally, the following property is satisfied, then o is called a strong R-function.
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() If{a,},{b,} c (0,00) N A are two sequences such that b, — 0 and o(a,, b,) > 0
for all n € N, then a,, — 0.

The concept of R-functions was proposed by Roldan Lépez de Hierro and Shahzad
[12] in 2015, inspired by the simulation functions of Khojasteh et al. [7]. Since then,
various authors have contributed to the study of fixed points, as well as best proximity
points via R-functions (see, for example, [3, 6, 10, 11, 15]).

We recall some basic results and fundamental definitions. Meir and Keeler [9]
proved the following theorem, which is a generalisation of the Banach contraction
principle.

THeoREM 1.2. Let (X, d) be a complete metric space and let T : X — X be a mapping
such that, for every € > 0, there exists a 6 > 0 such that

e<dx,y)<e+6=d(Tx,Ty)<e

for all x,y € X. Then there exists a unique point z € X which is a fixed point of the
mapping T, and T"xg — 7 when n — oo for every xy € X.

From Theorem 1.2, we derive the notion of an MK-function.

DerintTION 1.3. A function ¢ : [0, c0) — [0, o0) is called an MK-function if it satisfies:

(@ ¢0)=0;
(b) () > 0forall > 0; and
(c) for all &£ > 0 there exists a 6 > 0 such that ¢(7) < e for all ¢ € [g, & + 0).

The next definition recalls the notion of a simulation function which was introduced
by Khojasteh et al. [7].

Derinition 1.4. A mapping ¢ : [0, 00) X [0, c0) — R is a simulation function if

(@ £00,0)=0;

(b) (@, 5)<s—tfort,s>0;and

(c) if{t,} and {s,} are two sequences in (0, co) such that lim, . t,, = lim, 0o 5, = € >
0, then lim sup,,_,  {(,, s,) <O.

ExampLE 1.5. The following examples of R-functions are taken from [3, 6, 7, 12, 15]:

(@) oft, s) = se(s) —t, where ¢ :[0,00) — [0,1) is a mapping such that
limsup,_,,, ¢(#) < 1 for all s € (0, 00);

(b) oft, s) = se(s) —t, where ¢ :[0,00) = [0,1) is a mapping such that
lim,,, ¢(t,) = 1 implies that lim,,, #, = 0 for every sequence {z,} C [0, 0);

(¢) oft,s) = ¢(s) —t, where ¢ : [0, 00) — [0, c0) is an MK-function (Definition 1.2);

(d) oft,s) =L(t,s), where £ : [0, 00) X [0, 00) — R is a simulation function;

(&) oft,s) =y(s) — @(s) — (), where ¥, ¢ : [0, 00) — [0, 00) are two functions such
that ¢ is nondecreasing and continuous from the right, while ¢ is lower
semicontinuous and ¢~ ({0}) = {0};
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0 ot,s)=s/t+1)-1
(g) oft,s)=se’ -t and
(h) ot s)=In(s+1)—1.

In 1996, Kada et al. [5] introduced a new generalised distance, the w-distance,
which they used to extend and improve some well-known fixed point results,
most notably Caristi’s theorem, Ekeland’s variational principle and the minimisation
theorems of Takahashi.

DeriniTioN 1.6. Let (X, d) be a metric space and let p : X X X — [0, o) be a function.
Then p is called a w-distance on X if

(@) px,y) < plx,z)+ pQy,z) for every x,y,z € X;

(b) for any x € X, the function p(x,-) : X — [0, c0) is lower semicontinuous; and

(c) for any & > 0 there exists a § > 0 such that p(z,x) <6, p(z,y) <o =>d(x,y) < e
holds for all x,y,z € X.

By adding the condition of semicontinuity with respect to the second variable in
Definition 1.6, we propose a new notion of wy-distance.

Dernition 1.7. Let (X, d) be a metric space. A w-distance function p : X X X — [0, o0)
is called a wy-distance on X if, additionally, it fulfils the following condition:

(d)  pC,y): X > [0, 00) is a lower semicontinuous function for any y € X.

Remark 1.8. In general, accounts of w-distance (see, for example, [13, 15]) assume the
symmetry condition, p(x,y) = p(y, x) for all x,y € X. We note that every symmetric w-
distance is a wy-distance in the sense of Definition 1.7, but the converse is not true.

Exampre 1.9. Let (X, d) be a metric space and let p : X X X — [0, c0) be a function.
Kada et al. [5] gave the following examples of w-distances on X:

(1) plx,y) =d(x,y);

(2) p(x,y) = ¢, where c is a positive real number;

(3) if (X, || - |]) is a normed space, then p(x,y) = ||x|| + |[y|| is a w-distance on X;

@) if (X, |- is asin (3), then p(x,y) =||y|| is also a w-distance on X;

b)) plx,y)=max{d(Tx,y),d(Tx,Ty)}, where T : X — X is a continuous mapping;

(6) if X =R with the standard metric d, then p(x,y) =| fx Y f(u)dul is a w-
distance on X, where f:X — [0,00) is a continuous function such that
inf ex fxxw f(u)du > 0 for any r > 0; and

(7) if F is a closed bounded subset of X and ¢ > diam F, then

d(x,y) forallx,yeF,
p(x,y) =

c forall x¢ Foryé¢F.
It is clear that the w-distances defined in each of these examples are lower
semicontinuous with respect to both variables. Hence all of the examples (1)—(7) are,

in fact, examples of wy-distances. Moreover, examples (1)—(3) and (7) are symmetric
w-distances.
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ExampLe 1.10. Here we give an example of a w-distance which is not a lower
semicontinuous function of the first variable when the other one is fixed.

Let (X,d) be a metric space endowed with the w-distance p, defined as in
Example 1.9(7). Let xp € X be an accumulation point of X and let @ : X — [0, c0)
be a function defined by

3¢ for x = xp,
a(x) =
2c¢ for all x # xp.

The function P : X X X — [0, co) defined by

P(x,y) = max{a(x), p(x,y)}

is also a w-distance on X [5, Lemma 3]. However, P is not a wy-distance on X.
Indeed, since xj is an accumulation point of X, there exists a sequence {x,} C X
such that x,, — xo and x,, # xo for all n € N. Then

P(xo,y) = max{a(xo), p(xo, )} = 3¢ > 2¢ = liminf P(x,, y)
n—oo
for any y € X, which means that P(-,y) is not a lower semicontinuous function.

Basic properties of a wy-distance are the same as those of a w-distance, as described
in the next lemma due to Kada et al. [5].

Lemma 1.11 (Kada et al. [5]). Let (X, d) be a metric space with a w-distance p. Also,
let {x,}, {y.} be two sequences in X and let {a,},{B,} be two sequences of real numbers
converging to zero. Then the following properties hold for all x,y,z € X:

(@) (foralln e N) p(x,,y) < ay, p(x,,2) < B, = y =z and, in particular, p(x,y) =
px,2)=0=>y=z

(b) (foralln e N) p(x,,yn) < @y P(X0,2) S Prn = Yu — %

() (forallm,n e N,m > n) p(x,, xn,) < a, = {x,} is a Cauchy sequence; and

(d) (forallneN) p(y, x,) < a, = {x,} is a Cauchy sequence.

We also recall the following standard notation in the setting of a metric space (X, d):
for0+A,BCX,

d(A,B) =inf{d(x,y) : x€ A,y € B},
Ag={xeA:(dyeB)d(x,y) = d(A,B),
Byo={yeB:(dxeA)d(x,y) =d(A, B)}.

In the next section, we introduce the notion of R-proximal contractions and
investigate whether such mappings yield the existence and uniqueness of best

proximity points (and also fixed points) in the context of a complete metric space
with a wy-distance.
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2. Main results

In this section, we introduce the notions of R-proximal contractions and prove our
main results. For all x,y € X, where (X, d) is a metric space with a wy-distance p, define
a function g : X X X — [0, o0) by

q(x,y) = max{p(x,y), p(y, X)}.

It is easily checked that the function ¢ is symmetric and satisfies the triangle inequality
and g(x,y) = 0 implies that x = y for all x,y € X.

Dermnition 2.1. Let (X, d) be a metric space with a wy-distance p and @ # A, B C X. Let
0:AXA — [0,0) be a strong R-function and assume that {p(x,y): x,ye X} CA. A
mapping T : A — B such that

d(u,Tv) = d(x,Ty) = d(A, B) = 0(q(u, x), q(y,v)) > 0

holds for all u, v, x,y € A is called an R-proximal contraction of the first kind.
In the same setting, the mapping 7 is called an R-proximal contraction of the second
kind if
d(u, Tv) = d(x,Ty) = d(A, B) = 0(q(Tu,Tx),q(Tv,Ty)) > 0
for every u,v, x,y € A.

Lemma 2.2. Let (X, d) be a metric space with wy-distance p and let {x,} be a sequence
in X such that
r}l_)ngo q(Xp, Xn11) = 0. (2.1

Then one of the following conditions holds:

(1) limm,n—mo q(xnv xm) =0; or
(ii) there exist € > 0 and two subsequences {x,, } and {x,} of {x,} with my, > ny for
all k € N such that q(xy,, x,,) > € for all k € N and

lim Q(xnk’ xmk) = lim (](xnk—l, xmk—l) = €.
k—o0 k—o0

Proor. Suppose that (i) is not true. Then there exist £ >0 and two sequences
{my}, {ny} € N U {0} with my > n; such that

q(Xngs Xim,) = € (2.2)
for all k € N. We can assume that m; is a minimal index for which (2.2) holds. Then
q(Xn> Xm—1) < € (2.3)
for any k € N. Using the triangle inequality for g, together with (2.2) and (2.3),
& < q(Xnes X)) < q(Xns Xim—1) + G(Xm—15 X)) < & + G(Xim—1, Xmy)-
Passing to the limit when k — oo, by (2.1),

khm Q(-xnk’ xmk) =& (24)
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Next, we show that
1im (-1, 21) = & (2.5)
Letting k — oo in the inequalities
q(xnk—l, xmk—l) < q(xnk—l, xnk) + CI(Xnk, xmk) + q(xmka xmk—l)

and
q(xnk7 xmk) < Q(xnka xnk—l) + q(xnk—ls xmk—l) + q(xmk—la xmk)’

by (2.1) and (2.4),
lim g(Xp,—1, Xpm—1) < €

k— o0
and
& < lim gQxs,—1, Xm-1),
respectively, which together imply (2.5). O

Now we can formulate our first main result.

TuEOREM 2.3. Let (X,d) be a complete metric space with a wy-distance p and let
0 # A, BC X such that Ay is nonempty and closed. Let T : A — Band g: A — A be
two mappings satisfying the following conditions:

(a) T is an R-proximal contraction of the first kind;
(b)  T(Ao) € Bo;

©  plxy) = pgx, gy) forall x,y € A;

(d) g is continuous; and

(e) Ao € g(Ao).

Then there is a unique point 7 € A such that d(gz, Tz) = d(A, B) and p(z,z) = 0.
Moreover, starting with an arbitrary xy € Ag, we can construct a sequence {x,} C Ag
such that d(gx,+1, T x,) = d(A, B) for every n € N U {0} and x, — z when n — oo.

Remark 2.4. Theorem 2.3 extends and generalises several best proximity point (and
also fixed point) theorems. We give a number of examples which can be obtained by
specialising the parameters in Theorem 2.3.

e [Ifp:[0,00)X[0,00) — R is a simulation function, g = ids and p = d, we obtain
Corollary 2.1 of Tchier et al. [14].

e If p is a symmetric w-distance on X and A = B = X, we obtain Theorem 9 of
Zarinfar et al. [15].

o If o(t, s) = ¢(s) — t, where ¢ : [0, 00) — [0, o) is an MK-function, we obtain a
generalisation of the best proximity point results of Jleli et al. [4]. Moreover, the
conditions imposed on the sets A and B are also relaxed.

o Ifo(t, s)is defined as in Example 1.5(b), and A = B = X, we obtain the fixed point
theorem of Geraghty [2] extended to spaces with a wy-distance.
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Proor oF THEOREM 2.3. Let xy € Ag. Then conditions (b) and (e) imply that there is
an x; € Ag such that d(gx;, Txy) = d(A, B). Continuing in the same manner, for any
X, € Ay, we can find an x,.| € Ay such that d(gx,.1, Tx,) = d(A, B).

If there exists ng € N such that g(x,,1, x»,) = 0, then x,,_| = x,,,, which means that
d(gxny-1, Txn,—1) = d(A, B): that is, x,,_; is a best proximity point of 7" under the
mapping g and the proof is finished.

Hence we can assume that g(x,_1, x,,) > 0 for all n € N.

Let us prove that the sequence {x,} converges. Since T is an R-proximal contraction
of the first kind,

0 < 0(q(8%xn, 8Xn+1), 4(Xn-1, Xn)) = O(G(Xn Xn41); G(Xn-1, Xn))
for every n € N. By property (a) of Definition 1.1,

lim g(x,-1,x,) = 0.
n—oo

Next, we show that
lim ¢g(x,, x,) =0. (2.6)

Suppose, on the contrary, that the limit in (2.6) is not zero. Then, by Lemma 2.2, there
exist an € > 0 and two sequences {m;}, {n;} € N with m; > n; for all k € N such that

Q(xnka xmk) & 2.7
for all k € N and
Yim gCxn 3n,) = Jim (1. T-1) = o 23)

Since T is an R-proximal contraction of the first kind and condition (c) holds,

Q(q(gxnks gxmk)’ Q(xnk—ls xmk—l)) = Q(Q(xnk, xmk)a Q(xnk—l s xmk—l)) >0

for all k € N. Now put a; := q(xp,, X»,) and by := g(x,,_1, X,—1) for k € N. By the last
inequality and Definition 1.1(b), together with (2.7) and (2.8),

s 4 = I b =0,
which is a contradiction. Hence (2.6) holds.

From (2.6) and Lemma 1.11(c), {x,} C Ap is a Cauchy sequence. But (X, d) is
a complete metric space and Ay C X is closed, so there exists lim,_, X, = z € Ap.
Conditions (c¢) and (d) also yield lim,_,., gx, = gz € Ag. On the other hand, Tz € By by
condition (b), which means that there is a u € A such that d(u, Tz) = d(A, B).

To complete the proof, we need to show that u = gz and p(z,z) = 0.

If u = gx, for infinitely many »n € N, then u = gz. Hence we assume that u # gz, in
which case there exists ng € N such that u # gx,, for all n > ny. If g(gx,,, u) = 0 for some
n > ng, then gx, = u, so we must have g(gx,,u) > 0 for all n > ny. Also, there exists
a subsequence {x,,} of {x,} such that g(x,,,z) > 0 for every k € N (if that is not true,
then there exists N € N such that ¢g(x,,z) = 0 for all n > N, and then ¢g(x,_;, x,) =0
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for all n > N, which is contrary to our assumption). Also, g(x,,,u) > 0 for every k € N
such that n; > ny. For convenience, from now on we will identify {x,, } with the whole
sequence {x,}.

From (2.6), for any & > 0, there exists N, € N such that g(x,, x,) < & for all
m >n > N,. For a fixed n € N with n > max{ng, N}, the function p(x,,-) is lower
semicontinuous so that

P(Xn, z) < liminf P(xn, Xm) < €.

Thus lim,,—,e p(x,, 2) = 0. Similarly, lim, .« p(z, x,) = 0. Combined with the previous
inequality, this yields

lim g(x,, 2) = lim g(gx;, g2) = 0. (2.9
Take a,, := q(gx,+1,u) and b, := g(x,,,z) for n € N in Definition 1.1(c). Then (2.9) gives
lim g(gx,+1,u) = 0. (2.10)

Finally, from (2.9) and (2.10) we conclude that gz = u by Lemma 1.11(a). Uniqueness
is proved using Definition 1.1(a) by taking a, := g(gv, gz) = q(v, z) to be a constant
sequence, where v € A is such that d(gv, Tv) = d(A, B). That p(z,2) = q(z,z) =0 is
proved similarly. O

Our second main result is a best proximity point theorem for R-proximal
contractions of the second kind.

THeEOREM 2.5. Let (X, d) be a complete metric space with a wy-distance p and let
0 # A, B C X such that T(Ag) is nonempty and closed. LetT : A — Band g : A — A be
two mappings with the following properties:

(a) T is an R-proximal contraction of the second kind;
(b) T(Ao) € Bo;

(¢) T isinjective on Ay,

d) p(Tx,Ty)=p(Tgx,Tgy)forall x,y €A,

(e) g is continuous; and

() Ao C g(Ao).

Then there is a unique point 7 € A such that d(gz,Tz) = d(A, B) and p(Tz,Tz) = 0.
Moreover, starting with an arbitrary xo € Ay we can construct a sequence {x,} C Ag
such that d(gx,+1, T x,) = d(A, B) for every n € N U {0} and x, — z when n — oo,

Prookr. Let xy € Ag. By similar reasoning to that in the proof of Theorem 2.3, using
conditions (b) and (f) we can construct a sequence {x,} C Ag such that d(gx,+1, T x,) =
d(A, B) for all n € N U {0}.

Suppose there exists ny € N such that g(T'x,—1, Tx,,) = 0. Then T'x,,—; = Tx,, and
Xno—1 = Xn, because T is injective on Ag. But then d(gx,,—1, Tx,,) = d(gxpn,, TXy,) =
d(A, B) and x,, is the best proximity point of 7" under the mapping g.
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Now suppose that g(T x,,—1, Tx,) > 0 for all n € N.
We proceed to prove that the sequence {x,} is convergent. Since 7 is an R-proximal
contraction of the second kind,

0 < 0(g(Tgxn, TgXp+1), (T X1, Txn)) = 0(q(T X, T Xp1), (T X1, T X))
for all n € N, which by Definition 1.1(a) implies that
lim ¢(T x,-1, Tx,) = 0.
n—oo

Let us show that
lim ¢(Tx,, Tx,)=0. 2.11)

Assume, to the contrary, that (2.11) does not hold. In that case, by Lemma 2.2 there
exist an £ > 0 and two sequences {my}, {n;} € N with m; > ny for all k € N such that

q(Txp, Txp,) > & (2.12)
forall k € N and
kh—>n; Q(Txnk, Txmk) = kh_{gj Q(Txnk—lv Txmk—l) =& (2.13)

Since T is an R-proximal contraction of the second kind,

Q(q(Tgxl’Lk B Tg-xmk)9 Q(Txnk—l B T-xmk— 1 )) = Q(Q(Txnk, Txmk)’ Q(Txnk—l B Txmk—l )) > 0

for all k € N. Take a; := q(Txy,, Txy,) and by := g(Tx,,—1, TXy—1) for k €N in
Definition 1.1(b). By (2.12) and (2.13), it follows that

lim a; = lim b, =0,
k—oo k—oo

which is a contradiction. Thus (2.11) is proved.

From (2.6) and Lemma 1.11(c), {Tx,} C T(Ag) is a Cauchy sequence. Since (X, d)
is a complete metric space and T(Ag) € X is closed, there exists lim, o Tx, =Tz €
T (Ap). By condition (b), Tz € T(Ag) C By, so there exists a u € Ay such that d(u, Tz) =
d(A, B). Also, from condition (f), u = gx for some x € Ay. Hence d(gx, Tz) = d(A, B).

Now we prove that Tx = Tz.

If Tx, = Tx holds for infinitely many values of n € N, then Tz = Tx. Therefore
we can assume that there exists ny € N such that Tx,, # Tx for all n > ng. Also, there
exists a subsequence {x,, } of {x,} (which we can assume is the whole sequence) such
that g(T'x,,, Tz) > 0 for all k € N.

Using (2.11), for any & > O there exists an N, € N such that ¢(Tx,, Tx,,) < & for
every m > n > Ng. Then, from Definition 1.6(b),

p(Tx,,Tz) <liminf p(Tx,, Tx,,) <&
m—oo

for any fixed n > max{ng, N}, which implies that lim,_,., p(Tx,, Tz) = 0. Similarly,
lim,,_,o, p(Tz, Tx,) = 0, and so

lim ¢(Tx,,Tz) = 0. (2.14)

n—oo

https://doi.org/10.1017/5S0004972718001193 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972718001193

506 A. Kosti¢, E. Karapinar and V. Rakocevié¢ [10]

Now take a, := q(Tgx,+1, Tgx) = g(Txp4+1, Tx) and b, := q(Tx,,Tz) for n€ N in
Definition 1.1(c). By (2.14),

lim ¢(T x,4+1, Tx) = 0. (2.15)

Finally, from (2.14), (2.15) and Lemma 1.11(a), we conclude that Tx = Tz.

To prove the uniqueness, take a, := q(Tgv,Tgz) = q(Tv,Tz) for all n €N in
Definition 1.1(a), where v € A is such that d(gv, Tv) = d(A, B). Then g(Tv, Tz) = 0, that
is, Tv = Tz, and then condition (c) yields v = z. The proof of p(Tz,Tz) = q¢(Tz,Tz) =0
is similar. O
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